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Abstract. Recent developments towards knowledge-based applications
in general and Semantic Web applications in particular are leading to an
increased interest in ontologies and in dynamic methods for developing
and maintaining them. As human language is a primary mode of knowl-
edge transfer, ontology learning from relevant text collections has been
among the most successful strategies in this work. Such methods mostly
combine a certain level of linguistic analysis with statistical and/or ma-
chine learning approaches to find potentially interesting concepts and
relations between them. Here, we discuss a formalization of this process
(in the specific context of the OntoLT tool for ontology learning from
text) in order to arrive at a better definition of this task, which we hope
to be of use in a more principled comparison of different approaches.
As ontology representation formalisms we will consider those that have
a model-theoretic semantics, with OWL (and subsets of OWL) being
appropriate candidates.
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1 Motivation

Recent developments towards knowledge-based applications such as Intelligent
Question-Answering, Semantic Web Services and Semantic-Level Multimedia
Search are also leading to an increased interest in ontologies. Additionally, as
ontologies are domain descriptions that tend to evolve rapidly over time and
between different applications, there has been an increased interest also towards
developing and maintaining ontologies dynamically (see also [1]).

As human language is a primary mode of knowledge transfer, ontology learn-
ing from relevant text collections has been among the most successful strategies



in this work. See, for instance, the overview of ontology learning systems and
approaches as discussed by the OntoWeb deliverable 1.5 [2]. Some recent ex-
amples of systems for ontology learning from text are: ASIUM [3], TextToOnto
[4], Ontolearn [5], OntoLT [6]. All of these combine a certain level of linguistic
analysis with statistical and/or machine learning approaches to find potentially
interesting concepts and relations between them.

In order to allow a principled comparison of these approaches and to define
evaluation environments, we propose a formalization of ontology (and knowledge
base) learning from text. Since the systems we want to concentrate on mainly
use ontology representation languages that are frame systems or (subsets of)
description logics like OWL [7], we developed a formalization approach which
is suited for this class of ontology languages, namely those that have a model-
theoretic semantics which we use as a basis for operations on ontologies. The
OntoLT [6] tool for ontology learning from text will be used to clarify the various
details of this formalization.

2 Ontology Learning From Text

A typical approach in ontology learning from text first involves term extraction
from a domain-specific corpus through a statistical process that determines their
relevance for the domain corpus at hand. These are then clustered into groups
with the purpose of identifying a taxonomy of potential classes. Subsequently,
relations can be identified by computing a statistical measure of “connectedness”
between identified clusters.

In the context of this paper we assume a similar approach, but we addition-
ally aim at a more direct connection between ontology learning and linguistic
analysis. Through such an approach, relations may be identified additionally
on the basis of linguistic analysis of the “dependency structure” between terms
and connecting or modifying words (i.e., verbs, prepositions, adjectives) in their
context.

2.1 OntoLT

The OntoLT plug-in for Protégé implements this approach through the definition
of mapping rules with which classes and properties can be extracted automat-
ically from linguistically annotated text collections. Through the use of such
rules, linguistic knowledge (context words, morphological and syntactic struc-
ture, etc.) remains associated with the constructed ontology and may be used
subsequently in its application and maintenance, e.g., in knowledge markup,
ontology mapping, and ontology evolution.

The ontology extraction process is implemented as follows. OntoLT provides
a precondition language, with which the user can define mapping rules. Pre-
conditions are implemented as XPath [8] expressions over XML-based linguistic
annotation of relevant text collections (see Section 2.2 below). If all constraints



are satisfied, the mapping rule activates one or more operators that describe in
which way the ontology should be extended if a candidate is found.

Predefined preconditions select for instance the predicate of a sentence, its
linguistic subject or direct object. Preconditions can also be used to check certain
conditions on these linguistic entities, for instance if the subject in a sentence
corresponds to a particular lemma (the morphological stem of a word).

Selected linguistic entities may be used in constructing or extending an on-
tology. For this purpose, OntoLT provides operators to create classes, slots and
instances. According to which preconditions are satisfied, corresponding opera-
tors will be activated to create a set of candidate classes and slots that are to
be validated by the user (see Fig. 1). Validated candidates are then integrated
into a new or existing ontology.

Fig. 1. OntoLT Screenshot

For example, OntoLT includes the following two mapping rules:

– HeadNounToClass ModToSubClass: maps a head-noun to a class and in
combination with its modifier(s) to one or more sub-class(es)

– SubjToClass PredToSlot DObjToRange: maps a linguistic subject to a class,
its predicate to a corresponding slot for this class and the direct object to
the range of this slot

Consider the following sentence to which these rules can be applied:



This disease is characterized primarily by impaired mental function
caused by damage to the brain.

Result for the HeadNounToClass ModToSubClass rule:
Class(’impaired mental function’) subClassOf Class(’function’)

Result for the SubjToClass PredToSlot DObjToRange rule:
Property(’characterize’) domain Class(’function’) range Class(’disease’)

2.2 Linguistic Analysis and Annotation

We consider linguistically annotated text corpora, using an XML-based annota-
tion format, which integrates multiple levels of linguistic and semantic analysis in
a multi-layered DTD with each analysis level (e.g., morphological, syntactic and
dependency structure) organized as a separate track with options of reference
between them via indices.

Linguistic annotation is currently provided by SCHUG, a rule-based system
for German and English analysis [9] that implements a cascade of increasingly
complex linguistic fragment recognition processes. SCHUG provides annotation
of part-of-speech (through integration of TnT [10]), morphological inflection and
decomposition (based on Mmorph [11]), phrase and dependency structure (head-
complement, head-modifier and grammatical functions).

In Fig. 2, we present a tree representation of the linguistic annotation for
(part of) the following sentence (German with translation in English):

An 40 Kniegelenkpräparaten wurden mittlere Patellarsehnendrittel
mit einer neuen Knochenverblockungstechnik in einem zweistufigen
Bohrkanal bzw. mit konventioneller Interferenzschraubentechnik femoral
fixiert.

(In 40 human cadaver knees, either a mid patellar ligament third with
a trapezoid bone block on one side was fixed on the femoral side in a
2-diameter drill hole, or a conventional interference screw fixation was
applied.)

The linguistic annotation for this sentence consists of part-of-speech and
lemmatization information in the <text> level, phrase structure (including head-
modifier analysis) in the <phrases> level and grammatical function analysis in
the <clauses> level (in this sentence there is only one clause, but more than
one clause per sentence is possible).

Part-of-speech information consists of the correct syntactic class (e.g., noun,
verb) for a particular word given its current context. For instance, the word
works will be either a verb (working the whole day) or a noun (all his works
have been sold).

Morphological information consists of inflectional, derivational or compound
information of a word. In many languages other than English the morphological
system is very rich and enables the construction of semantically complex com-
pound words. For instance the German word Kreuzbandverletzung corresponds in



English with three words: cruciate ligament injury. Phrase structure information
consists of an analysis of the syntactic structure of a sentence into constituents
that are headed by an adjective, a noun or a preposition. Additionally, the in-
ternal structure of the phrase will be analyzed and represented, which includes
information on modifiers that further specify the head. For instance, in the nom-
inal phrase neue Technik (new technology) the modifier neu further specifies the
head Technik.

Clause structure information consists of an analysis of the core semantic
units (clauses) in a sentence with each clause consisting of a predicate (mostly a
verb) with its arguments and adjuncts. Arguments are expressed by grammatical
functions such as the subject or direct object of a verb. Adjuncts are mostly
prepositional phrases, which further specify the clause. For instance, in John
played football in the garden, the prepositional phrase in the garden further
specifies the clause “play (John, football).”

All such information is provided by the annotation format that is illustrated
in Fig. 2. For instance, the direct object (DOBJ) in the sentence above covers the
nominal phrase p2, which in turn corresponds to tokens t5 to t10 (mittlere Patel-
larsehnendrittel mit einer neuen Knochenverblockungstechnik). As token t6 is a
German compound word, a morphological analysis is included that corresponds
to lemmas t6.l1, t6.l2, t6.l3.

Fig. 2. Linguistic Annotation Example

3 Formalizing Ontology Learning From Text

In this section, we will describe our general approach for formalizing ontology
learning from text and instantiate this for the OntoLT system. The general



approach and the OntoLT system do not only apply to ontologies, but also to
knowledge bases (i.e., ontologies together with instances), but we will mainly
concentrate on ontology learning in the following.

For describing the problem of ontology learning from text, we consider a sug-
gestion function σ which maps a text corpus C, an ontology O, and (background)
knowledge K to suggestions S:

σ : C ×O ×K → S

The background knowledge will often contain mapping specifications that
map a part of the corpus (e.g., one sentence) to some suggestions. It might also
contain results of statistical analyses of the text corpus (like the distribution of
nouns), thesaurus information (like WordNet), etc.

The suggestions will usually be a (possibly weighted) set of operations chang-
ing the ontology. They will be presented to the user who can select, possibly
correct, and then apply them to the old (possibly empty) ontology. This process
can be repeated as new documents come in, or as new background knowledge
has been defined.

3.1 Operations on Ontologies

In order to specify suggestions, we will consider a minimal set of operations on
ontologies, namely + and −:

+ : O ×O → O

− : O ×O → O

Their semantics will be defined without referring to concrete ontology lan-
guages, which allows our formalization to be applied to a wide range of systems.
The only thing we require is that the ontology language has a model-theoretic
semantics. This approach is radically different from approaches like ontology
algebrae (e.g., [12]) which seem not to be applicable to such a wide range of
ontology languages as our approach.

We define the semantics of + and − with the help of ontology entailment. An
ontology O1 is said to entail an ontology O2, written O1 |= O2, if every model
for O1 is also a model for O2 (cf. [13]).

Two ontologies O1 and O2 are said to be semantically equal (O1
.= O2) iff

O1 |= O2 and O2 |= O1.
An ontology O is said to be a most general ontology for a condition C if

O fulfills C and there exists no other ontology O′ 6 .= O which fulfills C and for
which O |= O′ holds. Note that, in general, more than one most general ontology
for a condition exists. A least general ontology for a given condition is specified
analogously.



We now define + and − as follows:

O1 + O2 is a most general ontology O with O |= O1 ∧O |= O2.
O1 −O2 is a least general ontology O with O1 |= O ∧O 6|= O2.

Note that, in general, the result of O1 + O2 and O1 −O2 is not well-defined,
depending on the choice of the ontology language. Furthermore, + and − are not
symmetric: + adds all of O2 to O1, while − removes only a minimal portion of
O2 from O1. While + is usually well-defined since most ontology languages allow
the statements that are used to define ontologies to be joined in some simple way,
− is usually not well-defined, thus leaving several choices to the user. This does,
however, not cause any problems in our scenario since the user has to interact
with the suggestions anyway.

3.2 Ontology Language

As ontology language, we consider in OntoLT a simple subset of standard de-
scription logics where we only allow “subclass of” axioms C v CE where C is
a class name and CE a class expression that uses only class names, intersection
(u), and range restrictions (∀P.C). > is the superclass of all classes.

Because of {C v C1 u C2} .= {C v C1, C v C2} we will in the following
only consider axioms without intersection, i.e., we allow only axioms of the form
C1 v C2 and C1 v ∀P.C2, where Ci are class names and P is a property name.

This results in a description logics that is the subset of OWL Lite [7] with
the expressiveness of frame systems like RDF Schema [14] and Protégé [15]

In the OntoLT system, we also take instances into account. The extensions
necessary for this are straight-forward and will not be further described here.

Note that the proposed formalization allows the use of any other ontology
(or knowledge-base) language as long as it has a model-theoretic semantics,

3.3 Suggestions

For suggestions, we consider sequences of ontology operations, written as
±{a1, a2, . . .}, {b1, b2, . . .}, . . . where ± is either + or − and ai and bi are ax-
ioms as described above. For ±{a}, we also write ±a.

The current implementation of OntoLT only handles suggestions for ontology
extensions, so we only need the + operation. For ontology languages based on
description logics, where an ontology is a set of axioms, + directly maps to set
union ∪:

O1 + O2
.= O1 ∪O2

Note that even in the case of our simple ontology language, the − operator
is not well-defined. Nevertheless, this would not be a big problem in a concrete
tool, as the user could then be presented with several choices of how to remove
a certain axiom from the ontology, as he will have to choose which suggestions
to apply anyway.



3.4 Mapping Rules

OntoLT uses a set of mapping rules R(Σ) that maps a single sentence (which is
the parameter Σ for the rule set) from the text corpus to a set of suggestions.
These rules are of the following form:

P 7→ S

P is the precondition and expressed as a formula in FOL. S is a sequence of
ontology operations as defined above, or, to allow a shorthand for alternatives,
an expression of the form S1 | S2 | . . . where Si is a sequence of operations.
S will usually share some variables with P ; these variables must be introduced
with a common forall quantifier:

∀V1, . . . , Vn P (V1, . . . , Vn) 7→ S(V1, . . . , Vn)

We also allow the specification of Horn rules [16] (with FOL syntax) H ← B
that can be accessed in the precondition.

The predicate xpath(X, E, V ) applies an XPath [8] expression E to an XML
fragment X and enumerates the results in V . This predicate is used to extract
information from the corpus (by applying it on Σ).

The preconditions of the mapping rules and the bodies of the Horn rules may
also access the ontology. For this, DL axioms (C1 v C2, C1 v ∀P.C2) can be
used as literals.

In OntoLT, we also allow access to thesauri, in particular WordNet, via ad-
ditional builtin predicates.

3.5 Enactment

For the enactment of rules, all mapping rules are transformed into Horn rules,
as shown in the following table:

P 7→ S sugg(S′)← P
sugg(S′1)← P

P 7→ S1 | S2 | . . . sugg(S′2)← P
. . .

Here, S′ is a representation of an ontology operation sequence S with FOL func-
tion symbols. Quantifiers and other syntactic constructs which are not allowed
in normal Horn rules are removed with the Lloyd-Topor transformation [17], just
as has been done in SiLRI [18] and TRIPLE [19], allowing the resulting rules to
be enacted by a standard PROLOG engine (with some additional builtins).

A set of mapping rules R(Σ) can now be enacted for a sentence s by executing
the query ∀S ← sugg(S) for the set of Horn rules obtained from the above
transformation (and after replacing Σ with s in the rule set).

To evaluate the mapping rules for the whole text corpus C, we simply have
to evaluate R(Σ) for each sentence s from the text corpus, thus obtaining a set
of suggestions that will be presented to the user.



3.6 Example

The following example are the rules for turning the subject of a sentence to a
class and the predicate to a slot with the direct object as range:

∀S subject(S)←
xpath(Σ, ”.//phrase[@id=...[@type="SUBJ"]/@phrase]/head”, S)
∧ . . . .

∀P predicate(P )←
xpath(Σ, ”.//phrase[@id=./../..//clause/@pred]”, P )
∧ . . . .

∀O directObject(O)←
xpath(Σ, ”.//phrase[@id=...[@type="DOBJ"]/@phrase]/head”, O)
∧ . . . .

∀S, P, O subject(S) ∧ predicate(P ) ∧ directObject(O) 7→
+ {S v >, O v >, S v ∀P.O}.

The first three rules simply define how to find subjects, predicates, and direct
objects in sentences with the help of some XPath expressions. The fourth rule
generates the suggestion that S and O should become classes (S v >, O v >)
with P a property on S with range O (S v ∀P.O}).

4 Conclusions

Automatic methods for text-based ontology learning have developed over recent
years, see, e.g., the proceedings of the ECAI-20003, IJCAI-20014 and ECAI-
20025 workshops on Ontology Learning. Still, a remaining challenge is to evalu-
ate how useful or accurate the extracted ontologies are. In fact, we believe this
to be a central issue as it is currently very hard to compare methods and ap-
proaches, due to the lack of a shared and formal understanding of the task at
hand. By the work described in this paper, we hope to have contributed to such
a shared understanding by providing a formal definition of the OntoLT approach
to ontology learning from text. We believe that such a formal definition will al-
low for a better comparison with similar approaches, not so much on the level of
specific methods, but rather on the level of preconditions, inputs, and results.
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