
Using component frameworks for model
transformations by an internal DSL

Georg Hinkel and Lucia Happe

Karlsruhe Institute of Technology
Am Fasanengarten 5
Karlsruhe, Germany

{georg.hinkel,lucia.kapova}@kit.edu

Abstract. To increase the development productivity, possibilities for
reuse, maintainability and quality of complex model transformations,
modularization techniques are indispensable. Component-Based Software
Engineering targets the challenge of modularity and is well-established
in languages like Java or C# with component models like .NET, EJB
or OSGi. There are still many challenging barriers to overcome in cur-
rent model transformation languages to provide comparable support for
component-based development of model transformations. Therefore, this
paper provides a pragmatic solution based on NMF Transformations,
a model transformation language realized as an internal DSL embedded
in C#. An internal DSL can take advantage of the whole expressiveness
and tooling build for the well established and known host language. In
this work, we use the component model of the .NET platform to rep-
resent reusable components of model transformations to support inter-
nal and external model transformation composition. The transformation
components are hidden behind transformation rule interfaces that can
be exchanged dynamically through configuration. Using this approach
we illustrate the possibilities to tackle typical issues of integrity and ver-
sioning, such as detecting versioning conflicts for model transformations.

1 Introduction

In Model-Driven Engineering (MDE), systems are designed in models that con-
form to a metamodel. This formal definition of the model makes it possible to
transform models to other artifacts like code or other models by means of model
transformations. As MDE is getting applied in more complex scenarios, these
model transformations also get very complex. As a consequence, it gets more
important to divide these transformations into parts, i.e. components, with the
goal to reuse these components in new scenarios as much as possible.

However, Wimmer, Kusel et al. indicate that reuse functionality of current
model transformations is hardly established in practice [1, 2], especially reuse
among different metamodels.

On the other hand, the situation is entirely different in most object-oriented
general purpose languages. Here, classes can hide implementation details even to



Georg Hinkel and Lucia Happe

inheriting classes by use of private methods or fields. Functionality can be reused
through these classes, even independent of domains through the usage of generic
types. These classes are assembled to components that have well-defined public
interfaces. Furthermore, these components are explicitly versioned, so that a
system can automatically detect versioning conflicts.

To pick an example, in the .NET component model, components (assemblies)
consist of a provided interface (the publicly visible types), references to required
assemblies, an explicit version information and possibly a digital signature. Ref-
erences to other assemblies also include the referenced version and the digital
signature where applicable. Assemblies can be reused, deployment is simplified
as dependencies are explicitly specified, integrity can be ensured through the us-
age of digital signatures and the runtime can detect version conflicts. A version
conflict is detected when a required component with the specified major and
minor version number (but possibly higher build or revision number) cannot be
found. A similar component model is also required for model transformations.
Unlike other component models like OSGi, the .NET component model does not
allow components to be exchanged, e.g. through configuration. This is typically
solved by using dependency injection frameworks.

Solving this problem by inventing a new component model for model trans-
formations yields all risks of duplicate concepts, as e.g. a high maintenance effort.
Thus, we think that it is a better approach to adopt existing component models
where possible to use the interface mechanism for model transformation. As in-
terfaces of .NET components are the publicly visible types, i.e. classes, we only
need a meaningful mapping from model transformation concepts like transfor-
mation rules to classes in order to be able to reuse such a component model
for internal model transformation composition, i.e. composing a single model
transformation of multiple reusable parts.

The .NET component model is a particularly interesting candidate, as it
has been used for a wide range of languages, including originally imperative
languages like C# or VB.NET as well as more recently functional languages like
F#. This variety of language paradigms yields the question of whether it can
also be reused for more tailored languages like model transformation languages.

One approach for such a mapping is the definition of an internal DSL where
concepts of model transformations are represented in the host language. Such
an internal DSL is provided e.g. by NMF Transformations, which has been
applied to several cases at the Transformation Tool Contest (TTC) 2013 [3,
4]. Furthermore, it is used within the .NET Modeling Framework (NMF)1 to
generate code for the model representation, quite similar to EMF2. Especially
the latter transformation is rather large, so there is a need to make it more
modular.

This embedding gives us a range of benefits regarding both internal and ex-
ternal model transformation composition. We can have model transformation
components that specify interfaces, we can ensure their integrity through digital

1 http://nmf.codeplex.com/
2 http://www.eclipse.org/modeling/emf/



Using component frameworks for model transformations by an internal DSL

signatures and detect versioning conflicts. Here, integrity means that a model
transformation component cannot be replaced by a forged component with the
same public interface. These benefits come at no maintenance cost for the re-
quired infrastructure, as the infrastructure e.g. to ensure integrity through digital
signatures is still maintained by the original owner, i.e. Microsoft. Furthermore,
our embedding allows us to specify how model transformation rules can be dy-
namically exchanged through configuration by means of dependency injection.

Because model transformation concepts like transformation rules and a trace
are represented directly by classes, NMF Transformations can act as a base-
line for mappings of other transformation languages to classes as well, e.g. by
translating model transformations of other languages to NMF Transforma-
tions.

The rest of this paper is structured as follows: Section 2 shows related work.
Section 3 explains the running example of finite state machines and Petri Nets.
Section 4 gives a brief overview of NTL, before Section 5 explains how NTL
can be used to specify model transformation components mapped to assemblies.
Finally, Section 6 concludes this paper.

2 Related Work

The idea of using internal DSLs [5] for model transformation has already been
applied several times, but for different reasons. These reasons include a low im-
plementation effort [6], type safety [7] or extensibility [8, 7, 9, 10]. However, their
implications on reusing underlying component models have not been analyzed
so far.

For external languages, experiences of reusing existing component models
exist, as e.g. Xtend3 is reusing the whole technology stack of Java, including the
organization in Jar archives as the technical component model. However, unlike
NTL, Xtend is a general-purpose language with support for model-to-text trans-
formations through Xpand templates. Tailored model-to-model transformation
languages implemented as external DSLs, like most commonly known QVT-O
[11] or ATL [12], usually specify module reuse concepts (as surveyed by Wim-
mer, Kusel et al. [1, 2], plus the more recent approach from Rentschler et al.
for modular QVT-O [13]), but cannot reuse component infrastructure that pro-
vides support regarding versioning conflicts or checking the integrity of model
transformation components.

Rather, these languages are mainly organized in files that do not specify ver-
sion information. References to other files are specified as import links. These
links also do not specify a version information and possible version conflicts are
not automatically detected. This is different for our approach where components
of model transformations are represented by assemblies that specify references
enriched with both version information and digital signatures in assemblies. This
rather technical information has to be specified separately from the transforma-
tion specification and does not pollute the latter. Essentially, our work reuses
3 http://www.eclipse.org/xtend/



Georg Hinkel and Lucia Happe

the specification of component dependencies from existing component models as
these dependency specifications are not specific to the domain of model trans-
formation.

Model transformations can also be composed of multiple transformations
through external composition such as chaining model transformations of mul-
tiple languages (see e.g. [1, 2] for a survey). Our embedding approach is also
applicable for external composition, but yields the limitation that all model
transformations must be embedded in the same platform. This limitation is typ-
ically avoided in specialized component models for model transformation [14],
but these component models suffer from duplicated concepts and interoperability
issues with other components.

3 Finite State Machines and Petri Nets

This section will introduce the running example of the transformation of finite
state machines to Petri Nets. Both finite state machines and Petri Nets are pop-
ular formalization techniques to model processes, for example business processes.
One is sometimes interested to transform finite state machines into Petri Nets
because Petri Nets are more expressive.

(a) Finite state machines (b) Petri Nets

Fig. 1. Metamodels of finite state machines and Petri Nets

The metamodels for finite state machines and Petri Nets are depicted in
Figure 1. The transformation maps each state of the state machine to a cor-
responding place. Each transition is mapped to a transition with an according
input and output. Places corresponding to start states have an initial token and
those corresponding to end places have a transition without a target.

4 NMF Transformations

NMF Transformations consists of two parts: a model transformation frame-
work and a DSL that provides an easy syntax for this framework. This language



Using component frameworks for model transformations by an internal DSL

is called NTL (NMF Transformations Language) and is an internal DSL em-
bedded in C#. Its abstract syntax is depicted in Figure 2. In NMF Transfor-
mations, model transformations consist of transformations and patterns (which
we omit for brevity here). These rules can have dependencies to each other,
letting computations of a transformation rule depend on one or multiple other
computations.

Fig. 2. The abstract syntax of NMF Transformations

In NTL, model transformations are represented as classes with their trans-
formation rules as public nested classes. The transformation rules then specify
how model elements should be transformed. Listing 1 shows an example of a
transformation transforming finite state machines to Petri Nets, accompanied
with the start rule (implicitly the first rule that matches the transformation re-
quest). The Transform method is used to specify the actions to be done when a
finite state machine is to be transformed, i.e. initializes the transformation rule
output where it may access the transformation context for tracing purposes.

1 using NMF.Transformations;
2 using NMF.Transformations.Core;
3
4 public class FSM2PN : ReflectiveTransformation {
5 public class Automata2Net : TransformationRule <FSM.FiniteStateMachine , PN.

PetriNet >
6 {
7 public override void Transform (...)
8 {
9 output.ID = input.ID;

10 }
11 }
12 }

Listing 1. The transformation rule FiniteStateMachine2PetriNet

To specify dependencies, transformation rule classes may override the method
RegisterDependencies and call several methods that create such dependencies
using lambda expressions. An example is shown in Listing 2. The first depen-
dency is a special one, as it specifies when the rule is going to be called (instead



Georg Hinkel and Lucia Happe

of what other rules should be called). The last argument specifies how dependent
computations should be saved. For example, the place corresponding to the start
state of a finite state machine transition should be added to the From collection
of the corresponding Petri Net transition.

1 public class Transition2Transition : TransformationRule <FSM.Transition , PN.
Transition >

2 {
3 public override void RegisterDependencies ()
4 {
5 CallForEach(Rule <Automata2Net >(),
6 selector: fsm => fsm.Transitions ,
7 persistor: (net , transitions) => net.Transitions.AddRange(transitions));
8
9 Require(Rule <State2Place >(),

10 selector: t => t.StartState ,
11 persistor: (t, place) => t.From.Add(place));
12
13 Require(Rule <State2Place >(),
14 selector: t => t.EndState ,
15 persistor: (t, place) => t.To.Add(place));
16 }
17 }

Listing 2. The rule Transition2Transition with multiple dependencies

The language also supports inheritance mechanisms that can be facilitated
for model transformation components. This includes both inheritance of trans-
formations (like superimposition in ATL) as well as two applicable concepts for
transformation rules, inheritance and instantiation. Transformation rule inher-
itance really is inheritance of the transformation rule class (similar to masked
rules in ATL), whereas instantiation is what most other transformation lan-
guages (including ATL) call inheritance, unfortunately. An inherited rule may
really override the body of that rule, as well as its dependencies. An instantiating
rule must not do so, but may instead take control over the creation of outputs.
Whereas rule inheritance aims for extensibility, instantiation is rather to support
inheritance hierarchies and thus omitted in this paper for brevity.

Let us, for example, extend the above transformation to use colored Petri
Nets. Listing 3 shows the implementation with rule inheritance. The behavior of
the Transition2Transition rule is simply overridden in that it now creates a Col-
oredTransition with the default color. The transformation engine will simply in-
stantiate a ColoredTransition2Transition rule instead of a Transition2Transition
rule, because a ColoredTransition2Transition rule is a Transition2Transition
rule and marked as overriding.

1 public class FSM2ColoredPN : FSM2PN {
2 [OverrideRule]
3 public class ColoredTransition2Transition : Transition2Transition
4 {
5 public override PN.Transition CreateOutput (...) {
6 return new PN.ColoredTransition () { Color = DefaultColor };
7 }
8 }
9 }

Listing 3. Introducing colored Petri Nets through rule inheritance



Using component frameworks for model transformations by an internal DSL

Next to transformation rule inheritance, Listing 3 demonstrates the inheri-
tance of transformations. The transformation FSM2ColoredPN inherits FSM2PN
and thus inherits its transformation rules (except for Transition2Transition which
is overridden).

5 Components in model transformations with NTL

One of the advantages of using an internal DSL for model transformation is the
easy integration of arbitrary code of the host language. For NTL, this is C# (or
in theory any other .NET language). The Transform method is just executed
normally and can contain arbitrary C# code, e.g. also using third-party compo-
nents referenced by the assembly that contains the model transformation. This
embedding allows target model elements to depend on source model elements in
more sophisticated forms than simple transformations such as adding a prefix but
more complex analysis. Being an ordinary method call, such a call is of course
possible through dependency injection, so targets of external calls can be re-
placed by means of configuration. Likewise, model transformations can be called
from arbitrary .NET assemblies as a transformation in NTL can be triggered by
a method call. This yields way to any means of external model transformation
composition. This composition is however restricted only to model transforma-
tions written for a common platform, which in our case is .NET.

Fig. 3. Dependent metamodels as components

An example of this is the generated model representation code for the in-
volved metamodels, as demonstrated in Figure 3. One usually wants to separate
this model representation code in own assemblies. Because both metamodel code
and transformation code lie in assemblies that carry a version information, the
transformation has an explicit knowledge of which metamodel version it is using.

Being .NET classes, transformation rules in NTL are perfectly allowed to also
split the implementation of their interface (which by default most importantly
consists of the two methods Transform and RegisterDependencies) in as many
private methods as they wish, hiding their implementation. More interestingly,
they can also have virtual, abstract or final methods. Thus, transformation rules
can decide how their behavior can (or must) be overridden. They can e.g. mark
the overridden RegisterDependencies method final to prevent child classes to
modify dependencies. Alternatively, transformation rules can specify new virtual
methods that are called e.g. from their Transform implementation, enabling
extension rules to override only parts of its behavior. Making the Transform
method final, the extension is also limited to these parts.



Georg Hinkel and Lucia Happe

With these virtual methods, such transformation rules do provide an inter-
face for other components that wish to extend them. If they are additionally
marked as abstract, the only remaining differences are that true .NET interfaces
do not interfere the inheritance hierarchy and type parameters can be covariant
or contravariant. The interference with the inheritance hierarchy is not relevant
to transformation rules, as transformation rules in NTL must eventually in-
herit from TransformationRule<,> anyhow. The restriction of covariancy/con-
travariancy means that implementations of such a transformation rule interface
must stick to the same signature, which we argue is an acceptable restriction.
Implementations of such an interface are transformation rules that inherit from
the interface transformation rule.

Since TransformationRule<,> itself is an abstract class, we can also use it
as an interface. This is possible because in the .NET platform, the runtime is
still aware of generic type arguments (unlike e.g. Java). This is even directly
supported by NTL. So instead of specifying a concrete transformation rule in
listing 2, one can also just specify the transformation rule signature (i.e. the
input and output type of the transformation rule) having the transformation
engine apply the dependency for all registered transformation rules that corre-
spond to this signature (without having to know the exact transformation or its
implementation).

Using generic transformation rule classes as transformation rule interfaces
has another advantage, as this decouples a transformation rule from the meta-
models used by this rule. Instead, the transformation rule interfaces can require
the input and/or output type to adhere to some type constraints or require im-
plementations to inject domain knowledge through abstract methods and generic
type arguments.

Now consider the transformation to create a language-independent model
representation code model. One of the challenges of this transformation is to
cope with the fact that the metamodels may use multiple inheritance whereas
.NET only supports single inheritance. This challenge is independent from the
exact mapping how model elements are transformed to type members and is
thus a good candidate for a reusable component.

Using external composition techniques, one would first transform the meta-
model to a code model with multiple inheritance and chain a separate trans-
formation that removes the multiple inheritance by introducing interfaces and
merging the implementing classes. Since our embedding allows to treat the in-
volved model transformations just like any other method call, we can put them
into separate components and hide them behind interfaces as we wish (using
platform standard interfaces).

On the other hand, we can also create a system of transformation rules in
a separate component where these rules fix their output type but leave the
input type open (using generic type parameters). This way, we compose the
transformation by refining specialized rules for this task, i.e. in a manner of
internal model transformation composition. These specialized rules would then
contain domain-specific extension points that allow to alter the merging step in



Using component frameworks for model transformations by an internal DSL

many places. With this approach, the second merging step becomes more like
a transformation framework in its own, based on the transformation language.
The advantage of this is that the merge process can be controlled in much more
detail as derived transformation rules may choose an extension point to override.

Finally, we can also load single transformation rules from other components,
adding e.g. the merging step as a separate transformation rule that runs de-
layed. This way, the merging step runs in the very same transformation run
and has access to all the trace. If we had multiple components that realize this
functionality in different ways, we could swap the implementation by means of
a dependency injector dynamically as NTL also allows to load transformation
rules in a method. The only restriction here is that a transformation always re-
quires fresh transformation rule instances (transformation rule instances cannot
be shared across multiple transformations), but most dependency injectors can
be configured to fit this requirement, i.e. creating a new instance per request.

Thus, the mapping of model transformation concepts to classes yields a clear
and precise notion of interfaces for model transformation rules as well as model
transformation components, where the components are the .NET assemblies each
containing a subset of transformation rules. But as they are assemblies, they also
inherit the version information of assemblies.

As a consequence, developers can (and have to) specify the version of their
model transformation components explicitly as version of the assembly that con-
tains the model transformation component and likewise the version of referenced
components. These version numbers consist of four parts, major, minor, build
and revision. Changes of build and revision number by default are interpreted
as bug fixes, i.e. the runtime will load assemblies with higher build or revision
numbers instead of the specified referenced assembly. Higher major or minor
version numbers are interpreted as breaking changes regarding the assemblies
public interface, which for NTL are publicly accessible model transformation
rules (or other public e.g. helper types). If only a higher version of a referenced
component is found (components are allowed to be present in multiple versions
concurrently), the runtime raises an exception, detecting possible versioning is-
sues.

6 Conclusion

In this paper, we have shown how a mapping from model transformation con-
cepts to object-oriented general-purpose constructs can be used to reuse compo-
nent models. We have achieved this goal through NMF Transformations, a
framework and internal DSL embedded in C#. This embedding allows us to:

– Integrate existing .NET components (assemblies) into model transformations
and vice versa

– Detect versioning conflicts of model transformation components
– Compose model transformations as extension of model transformations spec-

ified in other components
– Specify transformation rule interfaces



Georg Hinkel and Lucia Happe

– Compose model transformations of instancies previously defined transforma-
tion rule interfaces loaded from referenced components

– Ensure integrity of model transformation components by means of digital
signatures.

Reusing existing dependency injectors further yields the chance to reconfigure
model transformations based on configuration files without new compilation.
Thus, we showed that a mapping of model transformation concepts to general-
purpose programming, as e.g. with an internal DSL such as NTL, can be used
to adopt existing component models for model transformation and reuse a lot of
concepts and tools.

References

1. M. Wimmer, G. Kappel, A. Kusel, W. Retschitzegger, J. Schönböck, and
W. Schwinger, “Fact or fiction–reuse in rule-based model-to-model transformation
languages,” in Theory and Practice of Model Transformations. Springer, 2012,
pp. 280–295.

2. A. Kusel, J. Schönböck, M. Wimmer, G. Kappel, W. Retschitzegger, and
W. Schwinger, “Reuse in model-to-model transformation languages: are we there
yet?” Software & Systems Modeling, pp. 1–36, 2013.

3. G. Hinkel, T. Goldschmidt, and L. Happe, “An NMF Solution for the Flowgraphs
case study at the TTC 2013,” in Sixth Transformation Tool Contest (TTC 2013),
ser. EPTCS, 2013.

4. ——, “A NMF solution for the Petri Nets to State Charts case study at the TTC
2013,” in Sixth Transformation Tool Contest (TTC 2013), ser. EPTCS, 2013.

5. M. Fowler, Domain-specific languages. Addison-Wesley Professional, 2010.
6. H. Barringer and K. Havelund, TraceContract: A Scala DSL for trace analysis.

Springer, 2011.
7. L. George, A. Wider, and M. Scheidgen, “Type-Safe model transformation lan-

guages as internal DSLs in Scala,” in Theory and Practice of Model Transforma-
tions. Springer, 2012, pp. 160–175.

8. J. S. Cuadrado, J. G. Molina, and M. M. Tortosa, “RubyTL: A practical, ex-
tensible transformation language,” in Model Driven Architecture–Foundations and
Applications. Springer, 2006, pp. 158–172.

9. T. Horn, “Model Querying with FunnyQT,” in Theory and Practice of Model Trans-
formations. Springer, 2013, pp. 56–57.

10. G. Hinkel, “An approach to maintainable model transformations using internal
DSLs,” Master thesis, 2013.

11. Object Management Group, “Meta Object Facility (MOF) 2.0 Query/View/ Trans-
formation Specification,” http://www.omg.org/spec/QVT/1.1/PDF/, 2011.

12. F. Jouault and I. Kurtev, “Transforming models with ATL,” in Satellite Events at
the MoDELS 2005 Conference. Springer, 2006, pp. 128–138.

13. A. Rentschler, D. Werle, Q. Noorshams, L. Happe, and R. Reussner, “Designing
information hiding modularity for model transformation languages,” in Proceedings
of the of the 13th international conference on Modularity. ACM, 2014, pp. 217–
228.

14. J. S. Cuadrado, E. Guerra, and J. de Lara, “A component model for model trans-
formations,” Software Engineering, IEEE Transactions on, vol. PP, no. 99, pp. 1–1,
2014.


