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Abstract. Cyber-physical systems, e.g., cars, interact with their phys-
ical environment, underlie real-time constraints, and exchange messages
with each other. An engineer can define their software using a component-
based architecture. An approach to manage the complexity of this task
is to separate concerns by specifying the behavior of each component’s
port independently and, afterwards, synthesizing the component behav-
ior based on the port’s behaviors and their dependencies. Though, such
a synthesis requires to specify the intra-component dependencies for-
mally. However, for several dependencies that are commonly used, no
formal language exists. In this paper, we present a language that en-
ables the specification of all commonly used dependencies in the domain
of cyber-physical systems. Moreover, we define the requirements for an
intra-component dependency language, provide an extended synthesis
process, and introduce the dependency kinds the language shall support.
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1 Introduction

Cyber-physical or intelligent technical systems [7] are systems that interact with
their physical environment. Their software development is especially difficult as
these systems have to obey real-time constraints, are safety-critical, and coordi-
nate with other systems by exchanging various messages. A cyber-physical sys-
tem (CPS) might utilize a component-based software architecture, where compo-
nents interact via ports. The interaction is either message-based or signal-based
(e.g., to access sensors, actors, and feedback controllers). The behavior specifi-
cation of a component is expressed via state machines. In addition, to ensure a
safe and useful coordination between the components, each interaction between
message ports has to adhere to communication protocols at application-level
that define which message at which time span must be sent or received.

One particular example of CPSs are autonomously driving cars. In the sce-
nario given in Fig. 1, the white car is faster than the gray car and, thus, wants to
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Fig. 1. Overtaking Scenario: The white car wants to overtake the gray car.

overtake it. Each car can measure its velocity and white can additionally measure
its distance to gray. To reduce the risk of a crash, the involved systems shall co-
ordinate the overtaking by adhering to two communication protocols. Both cars
must adhere to the communication protocol Overtaking which formally defines
that white needs permission from gray to start the overtaking and that gray does
not accelerate while white is overtaking. Moreover, white and a track informa-
tion provider (TIP) must adhere to the communication protocol TrackInfo which
formally defines that the TIP informs white whether the track is safe (e.g., it
is not safe if obstacles are on the street). To further increase the safety, white

shall fulfill additional requirements: (d1) white may only request to overtake, if
it reaches the safety distance to gray and the TIP has confirmed that the track
is safe for more than 5s. (d2) The planned overtaking speed that white sends to
grey depends on the current velocity of white. (d3) Before informing gray that the
overtaking has finished, white must restore the safety distance to gray.

A software engineer that shall develop the component behavior for the white
car’s software can split this task into two steps to enable a separation of concerns
and, therefore, to manage the task’s complexity. In step 1, he specifies the exter-
nally visible component behavior. It consists of the behavior of the component’s
single ports to access physical information (here: the distance and the velocity)
and to exchange messages according to the two communication protocols. The
result is a set of independent port behavior specifications. Step 2 serves to addi-
tionally fulfill the intra-component requirements (here: d1-d3). To achieve this,
the software engineer has to enhance the independently defined behavior models
of the component. Thus, these requirements are intra-component dependencies.
As errors in the component behavior are safety-critical, it is of vital importance
that the software engineer considers all intra-component dependencies and im-
plements them correctly such that the component behavior adheres to both, the
single ports behaviors as well as the ports communication requirements. How-
ever, our experience shows that executing the second step manually is – despite
this separation of concerns – still complex and error-prone.

A semi-automatic approach for step 2 is provided by Eckardt and Henkler [6].
They provide domain-specific languages (DSLs) a software engineer can use to
formally describe the intra-component dependencies between the independent
behaviors. Based on the independent behaviors and the formal dependencies,
the component behavior can be synthesized automatically. The approach is in-
tegrated into the software engineering method MechatronicUML [4,8].



In this paper, we extend the approach of Eckardt and Henkler [6] as their
formal dependency languages are not able to express all intra-component depen-
dencies that are commonly used in the domain of CPSs. For example, their lan-
guages cannot express the mentioned dependencies d1-3. One reason is that their
languages are not able to access the physical information (distance and velocity).
As the related work also does not provide DSLs for the unsupported dependen-
cies, we define a new DSL. In particular, the contribution of our paper is as
follows: (i) we explicitly define the requirements for specifying intra-component
dependencies that shall serve as an input for the synthesis, (ii) we extend the
synthesis process defined by Eckardt and Henkler, (iii) we provide 20 kinds of
intra-component dependencies, and (iv) we introduce a formal intra-component
dependency language for MechatronicUML. We provide our implementations
and the models of our running example online4.

The paper is structured as follows. Section 2 introduces MechatronicUML
and presents the models of the running example. Then, in Sect. 3, we define the
requirements for an intra-component dependency language and discuss to what
extent Eckardt and Henkler’s approach fulfills them. We explain the adapted
synthesis process in Sect. 5. Afterwards, we present the identified kinds of intra-
component dependencies in Sect. 6 and introduce our new DSL in Sect. 7. We
discuss related work in Sect. 8 and conclude the paper in Sect. 9.

2 MechatronicUML

MechatronicUML [4,8] is a method that is designed for the software develop-
ment of CPSs. It provides a component-based modeling language and a develop-
ment process. Thus, it is able to specify the models of the overtaking scenario.

MechatronicUML distinguishes between continuous and discrete compo-
nents. Continuous components represent, among others, sensors, actors and time-
continuous feedback-controllers. In contrary, the behavior of discrete components
is specified via extended states machines called Real-Time Statecharts (RTSCs).
A RTSC may contain data variables and continuous clocks (known from timed
automata [3]) which are used to define real-time constraints. Clocks can be reset
to zero and be compared with an expression. An example for a discrete compo-
nent is WhiteSw (cf. Fig. 2). Discrete components may contain discrete ports to
exchange messages with other discrete components and hybrid ports to send and
receive signals from continuous components. A RTSC of a discrete component
can specify to send and receive messages via its discrete ports and may read or
write values from hybrid ports. In our example, WhiteSw contains the discrete
ports Overtaker and Receiver and the hybrid ports Distance and Velocity. In par-
ticular, Distance is a hybrid in-port that periodically reads an incoming signal
measuring the distance between the cars while Velocity is a hybrid out-port that
writes an outgoing signal to set the car’s target velocity.

For ensuring a correct message communication, each discrete port must ad-
here to application-level communication protocols called Real-Time Coordina-

4 https://trac.cs.upb.de/mechatronicuml/wiki/ModComp2014
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Fig. 2. Models of the Overtaking Scenario Specified in MechatronicUML

tion Protocols (RTCPs). In particular, a RTCP consists of two communicating
partners, called roles, whereby each role represents a discrete port. As depicted
in Fig. 2, in our example, the discrete port Overtaker must adhere to and may re-
fine the same-named role of RTCP Overtaking, which coordinates the overtaking.
The discrete port Receiver must adhere to and may refine the same-named role
of RTCP TrackInfo, which coordinates the information whether the track is safe.
RTCPs may be formally verified via timed model checking [3] concerning for-
mal properties, e.g., that a deadlock may never occurs. Due to the separation of
components from RTCPs, MechatronicUML enables a scalable timed model
checking of the software under development for large and complex systems [8].

The behavior of a RTCP depends on the behavior of each roles which we
separately specify using RTSCs. The lower part of Fig. 2 shows the RTSCs for
the roles Overtaker and Receiver. The informal behavior description of the role
Overtaker is as follows: Initially, the role is in state NoOvertaking.Init and may
at any time send an overtaking request to role Overtakee including its planned
overtaking speed as a message parameter which is the current speed plus 10
km/h. Within 75 ms, it expects an accept or decline message. If no message or a
decline message is received, the role Overtaker has to wait until 1 minute in total is
over before it may send a new request. However, if the message accept is received,
it switches to state Overtaking and may now start the overtaking process. After
the overtaking, it sends the message finish and switches back to NoOvertaking.Init.
In contrast, the behavior of the role Receiver is quite simple: Initially, the role
Receiver assumes that the track is unsafe. As soon as the track is safe, the role
Receiver will be informed by the role Provider about this change. Analogously, the
role Provider will inform the role Receiver when the track becomes unsafe.

3 Existing Dependency Languages for MechatronicUML

Eckardt and Henkler [6] provide for MechatronicUML two formal languages
to describe intra-component dependencies: state composition rules (SCR) and
event composition automata (ECA).
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Fig. 3. Event Composition Automata for Synchronizing the Message Exchange

SCRs are able to synchronize the concurrent executed behavior of discrete
ports based on their states and clocks. In particular, SCRs can forbid that a set
of states may be active together at any point in time or at least for a specific
time interval (by defining constraints that reference existing clocks of a port).
An exemplary SCR is as follows: ¬((A, true) ∧ (B, c < 30)). It defines that the
states A and B may not be active together when the clock c is less than 30.

ECAs are expressed using timed automata [3]. They are able to synchronize
the behavior of two discrete ports based on sequences of messages the ports
exchange with other components. Moreover, timing restrictions on the message
sequences may be defined using auxiliary clocks. In particular, the automaton
can enforce the order and the delay of messages that the ports can send or
receive. We show an example in Fig. 3. The depicted automata constraints the
sending of message request by enforcing that message safe shall be received at
least 5 seconds before and that message unsafe is not received in between.

4 Requirements for the Dependency Language

Before we adapt the existing dependency languages, we explicitly define require-
ments and discuss the current fulfillment by Eckardt and Henkler [6].

Based on our experience, the dependency language shall (r1) be formal, (r2)
be able to reference existing modeling elements of the design language that are
used in the independent behaviors, (r3) include analyses to identify errors and
conflicts within the specification, (r4) cover the most commonly used dependen-
cies, (r5) be acceptable by all stakeholders, (r6) only enable useful dependencies,
and (r7) have a good tool support with a high usability.

The requirements r1 and r2 are essential to enable an automated synthesis,
while r3 shall improve the correctness of the dependencies and thus avoid sense-
less syntheses. Concerning r4, in our opinion, the goal should not be to support
all dependencies that are theoretically possible. This would lead to a language
that is complex to use and may result in incorrectly formalized dependencies.
Moreover, it is hard (maybe even impossible) to prove that all possibilities are
covered. Having a less complex language should benefit r5 because - in our opin-
ion - software engineers define the formal dependencies but requirements and
test engineers need to be able to understand them as they have to check if the
informal requirements are covered. Via r6, we want to prevent that the engineer
can define dependencies that the synthesis does not support or that he can de-
fine senseless expressions (e.g., tautologies). Concerning r7, good tool support
reduces the development time and avoids mistakes by the user. Examples for
usability enhancements are live syntax checks and auto suggestions.



The approach of Eckardt and Henkler [6] only fulfills the requirement r1. The
other requirements are partially or not fulfilled. The reason for this is that their
focus was to prove that their general synthesis approach is applicable rather
than concentrating on its usability or its completeness. In particular, they only
partially fulfill r2 as their languages cannot reference all syntax elements of
RTSCs, e.g., hierarchical states, concurrent state machines, variables, actions,
and entry/do/exit state events. Moreover, hybrid ports cannot be referenced, too.
Requirement r3 is not fulfilled as they only focus to identify conflicts after the
synthesis. Concerning requirement r4, their two dependency languages already
support a lot of dependencies. However, the languages do not support commonly
used dependencies, e.g., dependencies concerning data variables. Without an
evaluation, we can not answer in general if requirement r5 is fulfilled. However, in
our opinion, it is not obvious which dependencies they describe. This leads to the
conclusion that r5 can still be improved. Requirement r6 is only partially fulfilled
as they only enable dependencies that the synthesis supports but their language
allows superfluous dependencies (e.g., tautologies). Concerning requirement r7,
good tool support exists for ECA in form of a graphical editor. However, SCR
dependencies are defined as a plain string only and, therefore, do not provide
usability enhancements like the ones mentioned above.

5 Adaptions to the Synthesis Process

As most of the requirements from Sect. 4 were not in Eckhardt’s and Henkler’s
focus, adaptation to their syntheses process [6] are necessary. Figure 4 shows
the new process for semi-automatically defining the component behavior. In
particular, we added the steps 1b and 2c and the analyses for the steps 2a and
2c. In the following, we briefly describe the new process.

Based on (informal) requirements and the component structure, in the Steps
1a and 1b, software engineers concurrently specify all independent behaviors
that form the external component behavior, i.e., RTCPs for discrete ports and
hybrid ports. For each RTCP, a developer has to apply timed model checking
to ensure their correctness concerning the specified properties (e.g., no deadlock
occurs). Then, in Step 2a, a software engineer formalizes the dependencies using
a DSL that fulfills the requirements from Sect. 4. Dependencies that cannot be
formalized using the DSL are postponed to Step 2c. While specifying, analy-
ses identify errors and conflicts (e.g., contradictions and tautologies) to prevent
superfluous executions of the synthesis. Afterwards, in Step 2b, the developer ex-
ecutes the automatic synthesis and the succeeding refinement checks [11] which
verifies if the discrete ports still adhere to their RTCP. In Step 2c, a software
engineer may adapt the synthesized component behavior to integrate the depen-
dencies that were not formalizable in Step 2a. In that case, another refinement
check is necessary. To prevent that the manual changes are lost after a new syn-
thesis run, we propose to automatically log all manual changes and to enable
a semi-automatic reapplication. The final result of this process is the complete
component behavior that respects all requirements.
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As MechatronicUML already fully enables the Steps 1a-b (including the
timed model checking) as well as the refinement check [11], we only have to adapt
the concepts of Steps 2a and 2b. In this paper, we only focus on improving Step 2a
without the conflict analysis. Thus, in the following two sections, we present the
most commonly used dependency kinds of MechatronicUML components and
propose to exchange MechatronicUML’s formal dependency languages.

6 Kinds of Intra-Component Dependencies

By analyzing the modeling language and existing example models as well as
interviewing MechatronicUML users, we identified 20 commonly used depen-
dency kinds and list them in a catalog [9, Appx. B]. We classify them concerning
the involved modeling elements (data, time, transition, state, message) and their
direction (uni- or bidirectional). We describe each dependency kind via an uni-
form description format that defines six attributes: (1) the name of the kind,
(2) an informal description, (3), the involved modeling elements, (4) the direc-
tion, (5) an informal example, and (6) the formalization of this example. In the
following, we briefly introduce a selection of ten kinds due to space restrictions.

Synchronization The RTSCs of two discrete ports shall synchronize their be-
havior by enforcing that their transitions can only fire together.

Required State Constraint A transition of a discrete port shall be constrained
by the status (inactive / active) of a state of another discrete port, e.g., a
transition may only fire as long as another state is active.

Data Pull A discrete port shall have read access to local data variables of
another discrete port.

Data Push A discrete port needs write access to an existing local data variable
of another discrete port.

Data Merge Two or more data variables are in fact the same data variable and
shall be merged into one. If one of them is a hybrid port, all data variables
are merged into that port.

Clock Merge Two or more local clocks of different discrete ports are in fact
the same clock and shall be merged into one.

Forbidden State Combination A particular set of states distributed over
several discrete ports shall not be active at the same time.

Allowed State Combination States of different discrete ports may only be
active at the same time if they are listed in one common set.



Allowed Message Sequence A certain message sequence shall be allowed,
but subsets of these message sequences are not allowed.

Forbidden Message Sequence A sequence of messages shall be excluded from
the combined state space of the independent behaviors. However, subsets of
these message sequences are allowed.

In a small survey [9, Appx. C], we verified the completeness of our catalog.
The results were that no commonly used kinds were left out and most of the
identified kinds are commonly used. However, the survey showed that two depen-
dency kinds, e.g., Allowed State Combination, are not as common as expected. If
these results are confirmed in the future, we will remove them from the catalog.

7 Dependency Languages for MechatronicUML

The dependency languages of Eckardt and Henkler [6] (partially) support 12 de-
pendency kinds. However, among others, the kinds Synchronization, Data Push,
Data Pull, Data Merge, Clock Merge, and Forbidden Message Sequence are not
supported. One reason for this is that the languages do not consider data vari-
ables. Thus, we either have to extend the languages, select existing languages,
or define new languages.

Instead of ECAs, we propose to use Modal Sequence Diagrams (MSD) [10] to
describe message-based dependencies as they do not only support the dependen-
cies that an ECA may specify (e.g., Allowed Message Sequence) but also further
dependency kinds like Forbidden Message Sequence.

Moreover, we replace SCRs by a new DSL named MechatronicUML Intra-
Component Dependency Language (MIDL). MIDL shall support all dependency
kinds of SCR and all dependency kinds that MSDs do not support. We provide
a detailed definition of MIDL in [9, Sect. 4.4]. Below, we list three formal depen-
dencies for component WhiteSw specified using MIDL that relate to the informal
dependencies d1-d3 given in Sect. 1. The dependencies d1 and d3 are of kind
Transition Firing Constraint while dependency d2 is of kind Data Merge. The
formalized dependency d1 (line 1) states that the port Overtaker may only fire
the transition from NoOvertaking.Init to Requested (and send the message request)
if port Receiver is in state TrackSafe for more than 5s and if the hybrid port Dis-

tance has a value below 20. The formalized dependency d2 (line 2) states that
the local variable mySpeed shall be merged into the hybrid port variable Velocity.
The formalized dependency d3 (line 3) states that the port Overtaker may only
fire the transition from NoOvertaking to Overtaking (and send the message finish)
if the hybrid port Distance has a value higher than 20.

1 if [Receiver.TrackSafe is active longer than 5s] and [
Distance < 20] {enable transition Overtaker.NoOvertaking.
Init -->Requested };

2 merge variable Overtaker.mySpeed into Velocity;
3 if [Distance > 20] {enable transition Overtaker.Overtaking -->

NoOvertaking };

We realize our language by defining a formal representation using Xtext’s
LL(*) attribute grammar (requirement r1). We modified the generated meta



model by referencing elements of the MechatronicUML meta model (r2) and
by adding OCL constraints that prevent erroneous and superfluous dependen-
cies (r3,r7). Furthermore, we provide an editor for our DSL which has usability
features like syntax highlighting, live syntax check, and auto completion (r7).

In a small case study about trains that may enter various track sections [9,
Appx. A], we were able to formalize 29 intra-component dependencies in total
from three discrete component where each component consist of three to five
ports. This is a first indicator that our language fulfills r4.

8 Related Work

In the related field of controller synthesis for discrete and timed systems, for-
mal languages are required as an input. Via scenarios, the software engineer
has to define possible interactions between the controller (the software under
development) and the environment, e.g., using timed game automaton [1] or us-
ing modal sequence diagrams [10]. However, the scenarios are not independent.
Thus, in contrary to us, a developer does not need to specify dependencies ex-
plicitly. However, these related approaches have other negative side effects, e.g.,
in contrary to our approach that requires independent behaviors, they cannot
enable a scalable model checking of the system which is mandatory in CPSs.

Other synthesis approaches require temporal logic expression as input, e.g.,
Letier et al. [12] require the Fluent Linear Temporal Logic (FLTL) to specify
event-based dependencies and Attie et al. [2] propose to specify inter-task depen-
dencies using the temporal logic CTL. Uchitel et al. [14] even support scenarios
as well as FLTL as inputs for the synthesis. However, none of these logics is
able to express all intra-component dependency kind that we identified for the
domain of CPSs. One reason for this is that the partial behavior models of these
approaches do not support all properties of a CPS (e.g., real-time, data variables,
accessing physical information).

Donatelli [5] proposes to directly insert formal dependencies within the au-
tomata. This is contrary to us, as we specify our dependencies in an additional
model to separate concerns. Moreover, Donatelli only enables the specification of
event-based dependencies. Thus, only a small subset of our required dependency
kinds is covered.

9 Conclusion and Future Work

In this paper, we defined the requirements for specifying intra-component depen-
dencies to enable the synthesis of discrete component behaviors for CPSs. We
improve an existing synthesis process and identified the most commonly used
intra-component dependencies for discrete components of MechatronicUML.
Moreover, we propose the usage of MSDs as well as a new defined DSL called
MIDL to formally describe these dependencies.

Using our proposed DSL, software engineers are able to formally define intra-
component dependencies. In contrast to informally described dependencies, this



should avoid misunderstandings between the engineers. Moreover, MSDs and
MIDL can serve as an input for a component behavior synthesis that only re-
quires rare manual changes afterwards. Component models like Sofa 2 [13], which
define the external component behavior in separate parts and have no compo-
nent behavior synthesis yet, can apply our concepts to define their own DSL for
specifying intra-component dependencies. We think that a lot of the dependency
kinds should still be valid and that their DSL could be similar to MIDL.

In the future, we will complete the realization of our synthesis method. First,
we will further evaluate MIDL. Then, we will develop a detection of dependen-
cies conflicts. Afterwards, we will adapt the synthesis algorithm and perform a
thorough evaluation of the complete method.
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checking for real-time systems. Computer Science - Research and Development
(2014), published Online June 2014

12. Letier, E., Kramer, J., Magee, J., Uchitel, S.: Deriving event-based transition sys-
tems from goal-oriented requirements models. Automated Software Engineering
15(2), 175–206 (Jun 2008)

13. Malohlava, M., Hnetynka, P., Bures, T.: Sofa 2 component framework and its
ecosystem. Electr. Notes Theor. Comput. Sci. 295, 101–106 (2013)

14. Uchitel, S., Brunet, G., Chechik, M.: Synthesis of partial behavior models from
properties and scenarios. IEEE Transactions on SE 35(3), 384–406 (2009)

http://tinyurl.com/MA-Gos14

	 Specifying Intra-Component Dependencies for Synthesizing Component Behaviors 

