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Preface

The design of modern software systems requires support capable of properly dealing with
their ever-increasing complexity. In order to account for such a complexity, the whole
software engineering process needs to be rethought and, in particular, the traditional divi-
sion among development phases to be revisited, hence moving some activities from design
time to deployment and runtime. Model-Driven Engineering (MDE) and Component-
Based Software Engineering (CBSE) can be considered as two orthogonal ways of reduc-
ing development complexity: the former shifts the focus of application development from
source code to models in order to bring system reasoning closer to domain-specific con-
cepts; the latter aims to organize software into encapsulated independent components with
well-defined interfaces, from which complex applications can be built and incrementally
enhanced.

When exploiting these development approaches, numerous different modelling nota-
tions and consequently several software models are involved during the software life cycle.
On the one hand, effectively dealing with all the involved models and heterogeneous mod-
elling notations that describe software systems needs to bring component-based principles
at the level of the software model landscape hence supporting, e.g., the specification of
model interdependencies, and their retrieval, as well as enabling interoperability between
the different notations used for specifying the software. On the other hand, MDE tech-
niques must become part of the CBSE process to enable the effective reuse of third-party
software entities and their integration as well as, generally, to boost automation in the
development process.

An effective interplay of CBSE and MDE approaches could help in handling the in-
tricacy of modern software systems and thus reducing costs and risks by: (i) enabling
efficient modelling and analysis of extra-functional properties, (ii) improving reusability
through the definition and implementation of components loosely coupled into assemblies,
(iii) providing automation where applicable (and favourable) in the development process.
In the last fifteen years, such a cooperation has been recognized as extremely promising;
tools and frameworks have been developed for supporting this kind of integrated develop-
ment process. Nevertheless, when exploiting interplay of MDE and CBSE, clashes arise
due to misalignments in the related terminology but also, and more importantly, due to
differences in some of their basic assumptions and focal points.

The goal of the workshop on Model-Driven Engineering for Component-Based Soft-
ware Systems 2014 (ModComp’14) was to gather researchers and practitioners to share
opinions, propose solutions to open challenges and generally explore the frontiers of collab-
oration between MDE and CBSE. ModComp’14 aimed at attracting contributions related
to the subject at different levels, from modelling to analysis, from componentization to
composition, from consistency to versioning; foundational contributions as well as concrete
application experiments were sought.

The workshop was co-located with ACM/IEEE 17th International Conference on
Model Driven Engineering Languages & Systems, and represented a forum for practition-
ers and researchers. We received fifteen papers out of which eight papers were selected for
inclusion in the proceedings. The accepted papers covers many different forms of evolution
in modeling including, but not limited to:

– model transformations for analysis and code generation;
– model interoperability;
– modeling component interaction and component behaviors.
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This was the first edition of the workshop and the high attention received in terms of
submissions demonstrates that the topics are relevant both in practice and in theory of
model-driven engineering of component-based software systems. Thus, we would like to
thank the authors – without them the workshop simply would not have taken place – and
the program committee for their hard and precious work.

September 2014 Federico Ciccozzi, Massimo Tivoli and Jan Carlson
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Keynote

Component-Based and Model-Driven
Engineering: what is the difference? A CBSE

perspective

Ivica Crnkovic

Chalmers University - Mälardalen University

Model-driven Engineering (MDE) and component-based software engineer-
ing have many similarities but also their own specific. The goals are similar
– by raising the abstraction level of software system development, the goal is
increase the development efficiency, effectiveness, and quality. Reusability plays
an important role in both approaches. Components (mostly assumed as software
components) are the fundamental parts in both MDE and CBSE approaches.
In many CBSE approaches the emphasis is on component models, and system
modeling using component models. Yet there are some clear differences – while
the ultimate result of MDE is generated executable code from models (using
modeling languages), CBSE aims at reusability in general, and in particular
reusability of the executable code. What are the common characteristics then?
Which achievements from one approach can be utilised in the other approach?
Is it possible to combine the results for each approach? In the modern era of am-
biguous computing new challenges are imposed on software system development
– dynamic architecture, heterogeneous platforms, energy and other resources
constraints, real-time issues, etc.. How these challenges are reflected in CBSE
and how they can be used in MDE? In this presentation we will address these
questions and identify some possible directions in further research in CBSE &
MDE.

Ivica Crnkovic is a professor of industrial software engineering at Mlardalen Uni-

versity where he is the scientific leader of the industrial software engineering research.

His research interests include component-based software engineering, software archi-

tecture, software configuration management, software development environments and

tools, as well as software engineering in general. Professor Crnkovic is the author of

more than 150 refereed articles and papers on software engineering topics and a co-

author and co-editor of two books: ”Building reliable component-based Systems” and

”Implementing and integrating Product Data Management and Software Configuration

Management”. He has co-organized several conferences and workshops and related to

software engineering (such as CBSE symposium, ESEC/FSE conference, Euromicro

SEAA conference), and participated in Program Committees of software configuration

management symposia and workshops. His teaching activities cover several courses in

the area of Software Engineering undergraduate and graduate courses. From 1985 to

1998, Ivica Crnkovic worked at ABB, Sweden, where he was responsible for software

development environments and tools. He was a project leader and manager of a group
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developing software configuration management systems and other software development

environment tools and methods for distributed development and maintenance of real-

time systems. From 1980 to 1984, he worked for the Koncar company in Zagreb, Croa-

tia. Professor Crnkovic received an M.Sc. in electrical engineering in 1979, an M.Sc.

in theoretical physics in 1984, and a Ph.D. in computer science in 1991, all from the

University of Zagreb, Croatia.
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Using component frameworks for model
transformations by an internal DSL

Georg Hinkel and Lucia Happe

Karlsruhe Institute of Technology
Am Fasanengarten 5
Karlsruhe, Germany

{georg.hinkel,lucia.kapova}@kit.edu

Abstract. To increase the development productivity, possibilities for
reuse, maintainability and quality of complex model transformations,
modularization techniques are indispensable. Component-Based Software
Engineering targets the challenge of modularity and is well-established
in languages like Java or C# with component models like .NET, EJB
or OSGi. There are still many challenging barriers to overcome in cur-
rent model transformation languages to provide comparable support for
component-based development of model transformations. Therefore, this
paper provides a pragmatic solution based on NMF Transformations,
a model transformation language realized as an internal DSL embedded
in C#. An internal DSL can take advantage of the whole expressiveness
and tooling build for the well established and known host language. In
this work, we use the component model of the .NET platform to rep-
resent reusable components of model transformations to support inter-
nal and external model transformation composition. The transformation
components are hidden behind transformation rule interfaces that can
be exchanged dynamically through configuration. Using this approach
we illustrate the possibilities to tackle typical issues of integrity and ver-
sioning, such as detecting versioning conflicts for model transformations.

1 Introduction

In Model-Driven Engineering (MDE), systems are designed in models that con-
form to a metamodel. This formal definition of the model makes it possible to
transform models to other artifacts like code or other models by means of model
transformations. As MDE is getting applied in more complex scenarios, these
model transformations also get very complex. As a consequence, it gets more
important to divide these transformations into parts, i.e. components, with the
goal to reuse these components in new scenarios as much as possible.

However, Wimmer, Kusel et al. indicate that reuse functionality of current
model transformations is hardly established in practice [1, 2], especially reuse
among different metamodels.

On the other hand, the situation is entirely different in most object-oriented
general purpose languages. Here, classes can hide implementation details even to
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inheriting classes by use of private methods or fields. Functionality can be reused
through these classes, even independent of domains through the usage of generic
types. These classes are assembled to components that have well-defined public
interfaces. Furthermore, these components are explicitly versioned, so that a
system can automatically detect versioning conflicts.

To pick an example, in the .NET component model, components (assemblies)
consist of a provided interface (the publicly visible types), references to required
assemblies, an explicit version information and possibly a digital signature. Ref-
erences to other assemblies also include the referenced version and the digital
signature where applicable. Assemblies can be reused, deployment is simplified
as dependencies are explicitly specified, integrity can be ensured through the us-
age of digital signatures and the runtime can detect version conflicts. A version
conflict is detected when a required component with the specified major and
minor version number (but possibly higher build or revision number) cannot be
found. A similar component model is also required for model transformations.
Unlike other component models like OSGi, the .NET component model does not
allow components to be exchanged, e.g. through configuration. This is typically
solved by using dependency injection frameworks.

Solving this problem by inventing a new component model for model trans-
formations yields all risks of duplicate concepts, as e.g. a high maintenance effort.
Thus, we think that it is a better approach to adopt existing component models
where possible to use the interface mechanism for model transformation. As in-
terfaces of .NET components are the publicly visible types, i.e. classes, we only
need a meaningful mapping from model transformation concepts like transfor-
mation rules to classes in order to be able to reuse such a component model
for internal model transformation composition, i.e. composing a single model
transformation of multiple reusable parts.

The .NET component model is a particularly interesting candidate, as it
has been used for a wide range of languages, including originally imperative
languages like C# or VB.NET as well as more recently functional languages like
F#. This variety of language paradigms yields the question of whether it can
also be reused for more tailored languages like model transformation languages.

One approach for such a mapping is the definition of an internal DSL where
concepts of model transformations are represented in the host language. Such
an internal DSL is provided e.g. by NMF Transformations, which has been
applied to several cases at the Transformation Tool Contest (TTC) 2013 [3,
4]. Furthermore, it is used within the .NET Modeling Framework (NMF)1 to
generate code for the model representation, quite similar to EMF2. Especially
the latter transformation is rather large, so there is a need to make it more
modular.

This embedding gives us a range of benefits regarding both internal and ex-
ternal model transformation composition. We can have model transformation
components that specify interfaces, we can ensure their integrity through digital

1 http://nmf.codeplex.com/
2 http://www.eclipse.org/modeling/emf/

7



Using component frameworks for model transformations by an internal DSL

signatures and detect versioning conflicts. Here, integrity means that a model
transformation component cannot be replaced by a forged component with the
same public interface. These benefits come at no maintenance cost for the re-
quired infrastructure, as the infrastructure e.g. to ensure integrity through digital
signatures is still maintained by the original owner, i.e. Microsoft. Furthermore,
our embedding allows us to specify how model transformation rules can be dy-
namically exchanged through configuration by means of dependency injection.

Because model transformation concepts like transformation rules and a trace
are represented directly by classes, NMF Transformations can act as a base-
line for mappings of other transformation languages to classes as well, e.g. by
translating model transformations of other languages to NMF Transforma-
tions.

The rest of this paper is structured as follows: Section 2 shows related work.
Section 3 explains the running example of finite state machines and Petri Nets.
Section 4 gives a brief overview of NTL, before Section 5 explains how NTL
can be used to specify model transformation components mapped to assemblies.
Finally, Section 6 concludes this paper.

2 Related Work

The idea of using internal DSLs [5] for model transformation has already been
applied several times, but for different reasons. These reasons include a low im-
plementation effort [6], type safety [7] or extensibility [8, 7, 9, 10]. However, their
implications on reusing underlying component models have not been analyzed
so far.

For external languages, experiences of reusing existing component models
exist, as e.g. Xtend3 is reusing the whole technology stack of Java, including the
organization in Jar archives as the technical component model. However, unlike
NTL, Xtend is a general-purpose language with support for model-to-text trans-
formations through Xpand templates. Tailored model-to-model transformation
languages implemented as external DSLs, like most commonly known QVT-O
[11] or ATL [12], usually specify module reuse concepts (as surveyed by Wim-
mer, Kusel et al. [1, 2], plus the more recent approach from Rentschler et al.
for modular QVT-O [13]), but cannot reuse component infrastructure that pro-
vides support regarding versioning conflicts or checking the integrity of model
transformation components.

Rather, these languages are mainly organized in files that do not specify ver-
sion information. References to other files are specified as import links. These
links also do not specify a version information and possible version conflicts are
not automatically detected. This is different for our approach where components
of model transformations are represented by assemblies that specify references
enriched with both version information and digital signatures in assemblies. This
rather technical information has to be specified separately from the transforma-
tion specification and does not pollute the latter. Essentially, our work reuses
3 http://www.eclipse.org/xtend/
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the specification of component dependencies from existing component models as
these dependency specifications are not specific to the domain of model trans-
formation.

Model transformations can also be composed of multiple transformations
through external composition such as chaining model transformations of mul-
tiple languages (see e.g. [1, 2] for a survey). Our embedding approach is also
applicable for external composition, but yields the limitation that all model
transformations must be embedded in the same platform. This limitation is typ-
ically avoided in specialized component models for model transformation [14],
but these component models suffer from duplicated concepts and interoperability
issues with other components.

3 Finite State Machines and Petri Nets

This section will introduce the running example of the transformation of finite
state machines to Petri Nets. Both finite state machines and Petri Nets are pop-
ular formalization techniques to model processes, for example business processes.
One is sometimes interested to transform finite state machines into Petri Nets
because Petri Nets are more expressive.

(a) Finite state machines (b) Petri Nets

Fig. 1. Metamodels of finite state machines and Petri Nets

The metamodels for finite state machines and Petri Nets are depicted in
Figure 1. The transformation maps each state of the state machine to a cor-
responding place. Each transition is mapped to a transition with an according
input and output. Places corresponding to start states have an initial token and
those corresponding to end places have a transition without a target.

4 NMF Transformations

NMF Transformations consists of two parts: a model transformation frame-
work and a DSL that provides an easy syntax for this framework. This language

9
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is called NTL (NMF Transformations Language) and is an internal DSL em-
bedded in C#. Its abstract syntax is depicted in Figure 2. In NMF Transfor-
mations, model transformations consist of transformations and patterns (which
we omit for brevity here). These rules can have dependencies to each other,
letting computations of a transformation rule depend on one or multiple other
computations.

Fig. 2. The abstract syntax of NMF Transformations

In NTL, model transformations are represented as classes with their trans-
formation rules as public nested classes. The transformation rules then specify
how model elements should be transformed. Listing 1 shows an example of a
transformation transforming finite state machines to Petri Nets, accompanied
with the start rule (implicitly the first rule that matches the transformation re-
quest). The Transform method is used to specify the actions to be done when a
finite state machine is to be transformed, i.e. initializes the transformation rule
output where it may access the transformation context for tracing purposes.

1 using NMF.Transformations;
2 using NMF.Transformations.Core;
3
4 public class FSM2PN : ReflectiveTransformation {
5 public class Automata2Net : TransformationRule <FSM.FiniteStateMachine , PN.

PetriNet >
6 {
7 public override void Transform (...)
8 {
9 output.ID = input.ID;

10 }
11 }
12 }

Listing 1. The transformation rule FiniteStateMachine2PetriNet

To specify dependencies, transformation rule classes may override the method
RegisterDependencies and call several methods that create such dependencies
using lambda expressions. An example is shown in Listing 2. The first depen-
dency is a special one, as it specifies when the rule is going to be called (instead

10
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of what other rules should be called). The last argument specifies how dependent
computations should be saved. For example, the place corresponding to the start
state of a finite state machine transition should be added to the From collection
of the corresponding Petri Net transition.

1 public class Transition2Transition : TransformationRule <FSM.Transition , PN.
Transition >

2 {
3 public override void RegisterDependencies ()
4 {
5 CallForEach(Rule <Automata2Net >(),
6 selector: fsm => fsm.Transitions ,
7 persistor: (net , transitions) => net.Transitions.AddRange(transitions));
8
9 Require(Rule <State2Place >(),

10 selector: t => t.StartState ,
11 persistor: (t, place) => t.From.Add(place));
12
13 Require(Rule <State2Place >(),
14 selector: t => t.EndState ,
15 persistor: (t, place) => t.To.Add(place));
16 }
17 }

Listing 2. The rule Transition2Transition with multiple dependencies

The language also supports inheritance mechanisms that can be facilitated
for model transformation components. This includes both inheritance of trans-
formations (like superimposition in ATL) as well as two applicable concepts for
transformation rules, inheritance and instantiation. Transformation rule inher-
itance really is inheritance of the transformation rule class (similar to masked
rules in ATL), whereas instantiation is what most other transformation lan-
guages (including ATL) call inheritance, unfortunately. An inherited rule may
really override the body of that rule, as well as its dependencies. An instantiating
rule must not do so, but may instead take control over the creation of outputs.
Whereas rule inheritance aims for extensibility, instantiation is rather to support
inheritance hierarchies and thus omitted in this paper for brevity.

Let us, for example, extend the above transformation to use colored Petri
Nets. Listing 3 shows the implementation with rule inheritance. The behavior of
the Transition2Transition rule is simply overridden in that it now creates a Col-
oredTransition with the default color. The transformation engine will simply in-
stantiate a ColoredTransition2Transition rule instead of a Transition2Transition
rule, because a ColoredTransition2Transition rule is a Transition2Transition
rule and marked as overriding.

1 public class FSM2ColoredPN : FSM2PN {
2 [OverrideRule]
3 public class ColoredTransition2Transition : Transition2Transition
4 {
5 public override PN.Transition CreateOutput (...) {
6 return new PN.ColoredTransition () { Color = DefaultColor };
7 }
8 }
9 }

Listing 3. Introducing colored Petri Nets through rule inheritance

11
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Next to transformation rule inheritance, Listing 3 demonstrates the inheri-
tance of transformations. The transformation FSM2ColoredPN inherits FSM2PN
and thus inherits its transformation rules (except for Transition2Transition which
is overridden).

5 Components in model transformations with NTL

One of the advantages of using an internal DSL for model transformation is the
easy integration of arbitrary code of the host language. For NTL, this is C# (or
in theory any other .NET language). The Transform method is just executed
normally and can contain arbitrary C# code, e.g. also using third-party compo-
nents referenced by the assembly that contains the model transformation. This
embedding allows target model elements to depend on source model elements in
more sophisticated forms than simple transformations such as adding a prefix but
more complex analysis. Being an ordinary method call, such a call is of course
possible through dependency injection, so targets of external calls can be re-
placed by means of configuration. Likewise, model transformations can be called
from arbitrary .NET assemblies as a transformation in NTL can be triggered by
a method call. This yields way to any means of external model transformation
composition. This composition is however restricted only to model transforma-
tions written for a common platform, which in our case is .NET.

Fig. 3. Dependent metamodels as components

An example of this is the generated model representation code for the in-
volved metamodels, as demonstrated in Figure 3. One usually wants to separate
this model representation code in own assemblies. Because both metamodel code
and transformation code lie in assemblies that carry a version information, the
transformation has an explicit knowledge of which metamodel version it is using.

Being .NET classes, transformation rules in NTL are perfectly allowed to also
split the implementation of their interface (which by default most importantly
consists of the two methods Transform and RegisterDependencies) in as many
private methods as they wish, hiding their implementation. More interestingly,
they can also have virtual, abstract or final methods. Thus, transformation rules
can decide how their behavior can (or must) be overridden. They can e.g. mark
the overridden RegisterDependencies method final to prevent child classes to
modify dependencies. Alternatively, transformation rules can specify new virtual
methods that are called e.g. from their Transform implementation, enabling
extension rules to override only parts of its behavior. Making the Transform
method final, the extension is also limited to these parts.

12
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With these virtual methods, such transformation rules do provide an inter-
face for other components that wish to extend them. If they are additionally
marked as abstract, the only remaining differences are that true .NET interfaces
do not interfere the inheritance hierarchy and type parameters can be covariant
or contravariant. The interference with the inheritance hierarchy is not relevant
to transformation rules, as transformation rules in NTL must eventually in-
herit from TransformationRule<,> anyhow. The restriction of covariancy/con-
travariancy means that implementations of such a transformation rule interface
must stick to the same signature, which we argue is an acceptable restriction.
Implementations of such an interface are transformation rules that inherit from
the interface transformation rule.

Since TransformationRule<,> itself is an abstract class, we can also use it
as an interface. This is possible because in the .NET platform, the runtime is
still aware of generic type arguments (unlike e.g. Java). This is even directly
supported by NTL. So instead of specifying a concrete transformation rule in
listing 2, one can also just specify the transformation rule signature (i.e. the
input and output type of the transformation rule) having the transformation
engine apply the dependency for all registered transformation rules that corre-
spond to this signature (without having to know the exact transformation or its
implementation).

Using generic transformation rule classes as transformation rule interfaces
has another advantage, as this decouples a transformation rule from the meta-
models used by this rule. Instead, the transformation rule interfaces can require
the input and/or output type to adhere to some type constraints or require im-
plementations to inject domain knowledge through abstract methods and generic
type arguments.

Now consider the transformation to create a language-independent model
representation code model. One of the challenges of this transformation is to
cope with the fact that the metamodels may use multiple inheritance whereas
.NET only supports single inheritance. This challenge is independent from the
exact mapping how model elements are transformed to type members and is
thus a good candidate for a reusable component.

Using external composition techniques, one would first transform the meta-
model to a code model with multiple inheritance and chain a separate trans-
formation that removes the multiple inheritance by introducing interfaces and
merging the implementing classes. Since our embedding allows to treat the in-
volved model transformations just like any other method call, we can put them
into separate components and hide them behind interfaces as we wish (using
platform standard interfaces).

On the other hand, we can also create a system of transformation rules in
a separate component where these rules fix their output type but leave the
input type open (using generic type parameters). This way, we compose the
transformation by refining specialized rules for this task, i.e. in a manner of
internal model transformation composition. These specialized rules would then
contain domain-specific extension points that allow to alter the merging step in

13
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many places. With this approach, the second merging step becomes more like
a transformation framework in its own, based on the transformation language.
The advantage of this is that the merge process can be controlled in much more
detail as derived transformation rules may choose an extension point to override.

Finally, we can also load single transformation rules from other components,
adding e.g. the merging step as a separate transformation rule that runs de-
layed. This way, the merging step runs in the very same transformation run
and has access to all the trace. If we had multiple components that realize this
functionality in different ways, we could swap the implementation by means of
a dependency injector dynamically as NTL also allows to load transformation
rules in a method. The only restriction here is that a transformation always re-
quires fresh transformation rule instances (transformation rule instances cannot
be shared across multiple transformations), but most dependency injectors can
be configured to fit this requirement, i.e. creating a new instance per request.

Thus, the mapping of model transformation concepts to classes yields a clear
and precise notion of interfaces for model transformation rules as well as model
transformation components, where the components are the .NET assemblies each
containing a subset of transformation rules. But as they are assemblies, they also
inherit the version information of assemblies.

As a consequence, developers can (and have to) specify the version of their
model transformation components explicitly as version of the assembly that con-
tains the model transformation component and likewise the version of referenced
components. These version numbers consist of four parts, major, minor, build
and revision. Changes of build and revision number by default are interpreted
as bug fixes, i.e. the runtime will load assemblies with higher build or revision
numbers instead of the specified referenced assembly. Higher major or minor
version numbers are interpreted as breaking changes regarding the assemblies
public interface, which for NTL are publicly accessible model transformation
rules (or other public e.g. helper types). If only a higher version of a referenced
component is found (components are allowed to be present in multiple versions
concurrently), the runtime raises an exception, detecting possible versioning is-
sues.

6 Conclusion

In this paper, we have shown how a mapping from model transformation con-
cepts to object-oriented general-purpose constructs can be used to reuse compo-
nent models. We have achieved this goal through NMF Transformations, a
framework and internal DSL embedded in C#. This embedding allows us to:

– Integrate existing .NET components (assemblies) into model transformations
and vice versa

– Detect versioning conflicts of model transformation components
– Compose model transformations as extension of model transformations spec-

ified in other components
– Specify transformation rule interfaces
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– Compose model transformations of instancies previously defined transforma-
tion rule interfaces loaded from referenced components

– Ensure integrity of model transformation components by means of digital
signatures.

Reusing existing dependency injectors further yields the chance to reconfigure
model transformations based on configuration files without new compilation.
Thus, we showed that a mapping of model transformation concepts to general-
purpose programming, as e.g. with an internal DSL such as NTL, can be used
to adopt existing component models for model transformation and reuse a lot of
concepts and tools.

References

1. M. Wimmer, G. Kappel, A. Kusel, W. Retschitzegger, J. Schönböck, and
W. Schwinger, “Fact or fiction–reuse in rule-based model-to-model transformation
languages,” in Theory and Practice of Model Transformations. Springer, 2012,
pp. 280–295.

2. A. Kusel, J. Schönböck, M. Wimmer, G. Kappel, W. Retschitzegger, and
W. Schwinger, “Reuse in model-to-model transformation languages: are we there
yet?” Software & Systems Modeling, pp. 1–36, 2013.

3. G. Hinkel, T. Goldschmidt, and L. Happe, “An NMF Solution for the Flowgraphs
case study at the TTC 2013,” in Sixth Transformation Tool Contest (TTC 2013),
ser. EPTCS, 2013.

4. ——, “A NMF solution for the Petri Nets to State Charts case study at the TTC
2013,” in Sixth Transformation Tool Contest (TTC 2013), ser. EPTCS, 2013.

5. M. Fowler, Domain-specific languages. Addison-Wesley Professional, 2010.
6. H. Barringer and K. Havelund, TraceContract: A Scala DSL for trace analysis.

Springer, 2011.
7. L. George, A. Wider, and M. Scheidgen, “Type-Safe model transformation lan-

guages as internal DSLs in Scala,” in Theory and Practice of Model Transforma-
tions. Springer, 2012, pp. 160–175.

8. J. S. Cuadrado, J. G. Molina, and M. M. Tortosa, “RubyTL: A practical, ex-
tensible transformation language,” in Model Driven Architecture–Foundations and
Applications. Springer, 2006, pp. 158–172.

9. T. Horn, “Model Querying with FunnyQT,” in Theory and Practice of Model Trans-
formations. Springer, 2013, pp. 56–57.

10. G. Hinkel, “An approach to maintainable model transformations using internal
DSLs,” Master thesis, 2013.

11. Object Management Group, “Meta Object Facility (MOF) 2.0 Query/View/ Trans-
formation Specification,” http://www.omg.org/spec/QVT/1.1/PDF/, 2011.

12. F. Jouault and I. Kurtev, “Transforming models with ATL,” in Satellite Events at
the MoDELS 2005 Conference. Springer, 2006, pp. 128–138.

13. A. Rentschler, D. Werle, Q. Noorshams, L. Happe, and R. Reussner, “Designing
information hiding modularity for model transformation languages,” in Proceedings
of the of the 13th international conference on Modularity. ACM, 2014, pp. 217–
228.

14. J. S. Cuadrado, E. Guerra, and J. de Lara, “A component model for model trans-
formations,” Software Engineering, IEEE Transactions on, vol. PP, no. 99, pp. 1–1,
2014.

15



Specifying Intra-Component Dependencies for
Synthesizing Component Behaviors

Stefan Dziwok1,2, Sebastian Goschin3, and Steffen Becker1

1 Software Engineering Group, Heinz Nixdorf Institute, University of Paderborn,
Zukunftsmeile 1, 33102 Paderborn, Germany, stefan.dziwok@upb.de

2 Fraunhofer IPT, Project Group Mechatronic Systems Design, Software
Engineering, Zukunftsmeile 1, 33102 Paderborn, Germany

3 Step2e Innovation GmbH, Rosstraenke 4, 94032 Passau, Germany

Abstract. Cyber-physical systems, e.g., cars, interact with their phys-
ical environment, underlie real-time constraints, and exchange messages
with each other. An engineer can define their software using a component-
based architecture. An approach to manage the complexity of this task
is to separate concerns by specifying the behavior of each component’s
port independently and, afterwards, synthesizing the component behav-
ior based on the port’s behaviors and their dependencies. Though, such
a synthesis requires to specify the intra-component dependencies for-
mally. However, for several dependencies that are commonly used, no
formal language exists. In this paper, we present a language that en-
ables the specification of all commonly used dependencies in the domain
of cyber-physical systems. Moreover, we define the requirements for an
intra-component dependency language, provide an extended synthesis
process, and introduce the dependency kinds the language shall support.

Keywords: Component-Based Software Systems, Model-Driven Engi-
neering, Model Dependencies, Cyber-Physical Systems, MechatronicUML

1 Introduction

Cyber-physical or intelligent technical systems [7] are systems that interact with
their physical environment. Their software development is especially difficult as
these systems have to obey real-time constraints, are safety-critical, and coordi-
nate with other systems by exchanging various messages. A cyber-physical sys-
tem (CPS) might utilize a component-based software architecture, where compo-
nents interact via ports. The interaction is either message-based or signal-based
(e.g., to access sensors, actors, and feedback controllers). The behavior specifi-
cation of a component is expressed via state machines. In addition, to ensure a
safe and useful coordination between the components, each interaction between
message ports has to adhere to communication protocols at application-level
that define which message at which time span must be sent or received.

One particular example of CPSs are autonomously driving cars. In the sce-
nario given in Fig. 1, the white car is faster than the gray car and, thus, wants to
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Track Information Provider (TIP)

Overtaking

TrackInfo

Fig. 1. Overtaking Scenario: The white car wants to overtake the gray car.

overtake it. Each car can measure its velocity and white can additionally measure
its distance to gray. To reduce the risk of a crash, the involved systems shall co-
ordinate the overtaking by adhering to two communication protocols. Both cars
must adhere to the communication protocol Overtaking which formally defines
that white needs permission from gray to start the overtaking and that gray does
not accelerate while white is overtaking. Moreover, white and a track informa-
tion provider (TIP) must adhere to the communication protocol TrackInfo which
formally defines that the TIP informs white whether the track is safe (e.g., it
is not safe if obstacles are on the street). To further increase the safety, white

shall fulfill additional requirements: (d1) white may only request to overtake, if
it reaches the safety distance to gray and the TIP has confirmed that the track
is safe for more than 5s. (d2) The planned overtaking speed that white sends to
grey depends on the current velocity of white. (d3) Before informing gray that the
overtaking has finished, white must restore the safety distance to gray.

A software engineer that shall develop the component behavior for the white
car’s software can split this task into two steps to enable a separation of concerns
and, therefore, to manage the task’s complexity. In step 1, he specifies the exter-
nally visible component behavior. It consists of the behavior of the component’s
single ports to access physical information (here: the distance and the velocity)
and to exchange messages according to the two communication protocols. The
result is a set of independent port behavior specifications. Step 2 serves to addi-
tionally fulfill the intra-component requirements (here: d1-d3). To achieve this,
the software engineer has to enhance the independently defined behavior models
of the component. Thus, these requirements are intra-component dependencies.
As errors in the component behavior are safety-critical, it is of vital importance
that the software engineer considers all intra-component dependencies and im-
plements them correctly such that the component behavior adheres to both, the
single ports behaviors as well as the ports communication requirements. How-
ever, our experience shows that executing the second step manually is – despite
this separation of concerns – still complex and error-prone.

A semi-automatic approach for step 2 is provided by Eckardt and Henkler [6].
They provide domain-specific languages (DSLs) a software engineer can use to
formally describe the intra-component dependencies between the independent
behaviors. Based on the independent behaviors and the formal dependencies,
the component behavior can be synthesized automatically. The approach is in-
tegrated into the software engineering method MechatronicUML [4,8].
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In this paper, we extend the approach of Eckardt and Henkler [6] as their
formal dependency languages are not able to express all intra-component depen-
dencies that are commonly used in the domain of CPSs. For example, their lan-
guages cannot express the mentioned dependencies d1-3. One reason is that their
languages are not able to access the physical information (distance and velocity).
As the related work also does not provide DSLs for the unsupported dependen-
cies, we define a new DSL. In particular, the contribution of our paper is as
follows: (i) we explicitly define the requirements for specifying intra-component
dependencies that shall serve as an input for the synthesis, (ii) we extend the
synthesis process defined by Eckardt and Henkler, (iii) we provide 20 kinds of
intra-component dependencies, and (iv) we introduce a formal intra-component
dependency language for MechatronicUML. We provide our implementations
and the models of our running example online4.

The paper is structured as follows. Section 2 introduces MechatronicUML
and presents the models of the running example. Then, in Sect. 3, we define the
requirements for an intra-component dependency language and discuss to what
extent Eckardt and Henkler’s approach fulfills them. We explain the adapted
synthesis process in Sect. 5. Afterwards, we present the identified kinds of intra-
component dependencies in Sect. 6 and introduce our new DSL in Sect. 7. We
discuss related work in Sect. 8 and conclude the paper in Sect. 9.

2 MechatronicUML

MechatronicUML [4,8] is a method that is designed for the software develop-
ment of CPSs. It provides a component-based modeling language and a develop-
ment process. Thus, it is able to specify the models of the overtaking scenario.

MechatronicUML distinguishes between continuous and discrete compo-
nents. Continuous components represent, among others, sensors, actors and time-
continuous feedback-controllers. In contrary, the behavior of discrete components
is specified via extended states machines called Real-Time Statecharts (RTSCs).
A RTSC may contain data variables and continuous clocks (known from timed
automata [3]) which are used to define real-time constraints. Clocks can be reset
to zero and be compared with an expression. An example for a discrete compo-
nent is WhiteSw (cf. Fig. 2). Discrete components may contain discrete ports to
exchange messages with other discrete components and hybrid ports to send and
receive signals from continuous components. A RTSC of a discrete component
can specify to send and receive messages via its discrete ports and may read or
write values from hybrid ports. In our example, WhiteSw contains the discrete
ports Overtaker and Receiver and the hybrid ports Distance and Velocity. In par-
ticular, Distance is a hybrid in-port that periodically reads an incoming signal
measuring the distance between the cars while Velocity is a hybrid out-port that
writes an outgoing signal to set the car’s target velocity.

For ensuring a correct message communication, each discrete port must ad-
here to application-level communication protocols called Real-Time Coordina-

4 https://trac.cs.upb.de/mechatronicuml/wiki/ModComp2014
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Fig. 2. Models of the Overtaking Scenario Specified in MechatronicUML

tion Protocols (RTCPs). In particular, a RTCP consists of two communicating
partners, called roles, whereby each role represents a discrete port. As depicted
in Fig. 2, in our example, the discrete port Overtaker must adhere to and may re-
fine the same-named role of RTCP Overtaking, which coordinates the overtaking.
The discrete port Receiver must adhere to and may refine the same-named role
of RTCP TrackInfo, which coordinates the information whether the track is safe.
RTCPs may be formally verified via timed model checking [3] concerning for-
mal properties, e.g., that a deadlock may never occurs. Due to the separation of
components from RTCPs, MechatronicUML enables a scalable timed model
checking of the software under development for large and complex systems [8].

The behavior of a RTCP depends on the behavior of each roles which we
separately specify using RTSCs. The lower part of Fig. 2 shows the RTSCs for
the roles Overtaker and Receiver. The informal behavior description of the role
Overtaker is as follows: Initially, the role is in state NoOvertaking.Init and may
at any time send an overtaking request to role Overtakee including its planned
overtaking speed as a message parameter which is the current speed plus 10
km/h. Within 75 ms, it expects an accept or decline message. If no message or a
decline message is received, the role Overtaker has to wait until 1 minute in total is
over before it may send a new request. However, if the message accept is received,
it switches to state Overtaking and may now start the overtaking process. After
the overtaking, it sends the message finish and switches back to NoOvertaking.Init.
In contrast, the behavior of the role Receiver is quite simple: Initially, the role
Receiver assumes that the track is unsafe. As soon as the track is safe, the role
Receiver will be informed by the role Provider about this change. Analogously, the
role Provider will inform the role Receiver when the track becomes unsafe.

3 Existing Dependency Languages for MechatronicUML

Eckardt and Henkler [6] provide for MechatronicUML two formal languages
to describe intra-component dependencies: state composition rules (SCR) and
event composition automata (ECA).
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Fig. 3. Event Composition Automata for Synchronizing the Message Exchange

SCRs are able to synchronize the concurrent executed behavior of discrete
ports based on their states and clocks. In particular, SCRs can forbid that a set
of states may be active together at any point in time or at least for a specific
time interval (by defining constraints that reference existing clocks of a port).
An exemplary SCR is as follows: ¬((A, true) ∧ (B, c < 30)). It defines that the
states A and B may not be active together when the clock c is less than 30.

ECAs are expressed using timed automata [3]. They are able to synchronize
the behavior of two discrete ports based on sequences of messages the ports
exchange with other components. Moreover, timing restrictions on the message
sequences may be defined using auxiliary clocks. In particular, the automaton
can enforce the order and the delay of messages that the ports can send or
receive. We show an example in Fig. 3. The depicted automata constraints the
sending of message request by enforcing that message safe shall be received at
least 5 seconds before and that message unsafe is not received in between.

4 Requirements for the Dependency Language

Before we adapt the existing dependency languages, we explicitly define require-
ments and discuss the current fulfillment by Eckardt and Henkler [6].

Based on our experience, the dependency language shall (r1) be formal, (r2)
be able to reference existing modeling elements of the design language that are
used in the independent behaviors, (r3) include analyses to identify errors and
conflicts within the specification, (r4) cover the most commonly used dependen-
cies, (r5) be acceptable by all stakeholders, (r6) only enable useful dependencies,
and (r7) have a good tool support with a high usability.

The requirements r1 and r2 are essential to enable an automated synthesis,
while r3 shall improve the correctness of the dependencies and thus avoid sense-
less syntheses. Concerning r4, in our opinion, the goal should not be to support
all dependencies that are theoretically possible. This would lead to a language
that is complex to use and may result in incorrectly formalized dependencies.
Moreover, it is hard (maybe even impossible) to prove that all possibilities are
covered. Having a less complex language should benefit r5 because - in our opin-
ion - software engineers define the formal dependencies but requirements and
test engineers need to be able to understand them as they have to check if the
informal requirements are covered. Via r6, we want to prevent that the engineer
can define dependencies that the synthesis does not support or that he can de-
fine senseless expressions (e.g., tautologies). Concerning r7, good tool support
reduces the development time and avoids mistakes by the user. Examples for
usability enhancements are live syntax checks and auto suggestions.
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The approach of Eckardt and Henkler [6] only fulfills the requirement r1. The
other requirements are partially or not fulfilled. The reason for this is that their
focus was to prove that their general synthesis approach is applicable rather
than concentrating on its usability or its completeness. In particular, they only
partially fulfill r2 as their languages cannot reference all syntax elements of
RTSCs, e.g., hierarchical states, concurrent state machines, variables, actions,
and entry/do/exit state events. Moreover, hybrid ports cannot be referenced, too.
Requirement r3 is not fulfilled as they only focus to identify conflicts after the
synthesis. Concerning requirement r4, their two dependency languages already
support a lot of dependencies. However, the languages do not support commonly
used dependencies, e.g., dependencies concerning data variables. Without an
evaluation, we can not answer in general if requirement r5 is fulfilled. However, in
our opinion, it is not obvious which dependencies they describe. This leads to the
conclusion that r5 can still be improved. Requirement r6 is only partially fulfilled
as they only enable dependencies that the synthesis supports but their language
allows superfluous dependencies (e.g., tautologies). Concerning requirement r7,
good tool support exists for ECA in form of a graphical editor. However, SCR
dependencies are defined as a plain string only and, therefore, do not provide
usability enhancements like the ones mentioned above.

5 Adaptions to the Synthesis Process

As most of the requirements from Sect. 4 were not in Eckhardt’s and Henkler’s
focus, adaptation to their syntheses process [6] are necessary. Figure 4 shows
the new process for semi-automatically defining the component behavior. In
particular, we added the steps 1b and 2c and the analyses for the steps 2a and
2c. In the following, we briefly describe the new process.

Based on (informal) requirements and the component structure, in the Steps
1a and 1b, software engineers concurrently specify all independent behaviors
that form the external component behavior, i.e., RTCPs for discrete ports and
hybrid ports. For each RTCP, a developer has to apply timed model checking
to ensure their correctness concerning the specified properties (e.g., no deadlock
occurs). Then, in Step 2a, a software engineer formalizes the dependencies using
a DSL that fulfills the requirements from Sect. 4. Dependencies that cannot be
formalized using the DSL are postponed to Step 2c. While specifying, analy-
ses identify errors and conflicts (e.g., contradictions and tautologies) to prevent
superfluous executions of the synthesis. Afterwards, in Step 2b, the developer ex-
ecutes the automatic synthesis and the succeeding refinement checks [11] which
verifies if the discrete ports still adhere to their RTCP. In Step 2c, a software
engineer may adapt the synthesized component behavior to integrate the depen-
dencies that were not formalizable in Step 2a. In that case, another refinement
check is necessary. To prevent that the manual changes are lost after a new syn-
thesis run, we propose to automatically log all manual changes and to enable
a semi-automatic reapplication. The final result of this process is the complete
component behavior that respects all requirements.
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Fig. 4. Adapted Process for Synthesizing the Component Behavior

As MechatronicUML already fully enables the Steps 1a-b (including the
timed model checking) as well as the refinement check [11], we only have to adapt
the concepts of Steps 2a and 2b. In this paper, we only focus on improving Step 2a
without the conflict analysis. Thus, in the following two sections, we present the
most commonly used dependency kinds of MechatronicUML components and
propose to exchange MechatronicUML’s formal dependency languages.

6 Kinds of Intra-Component Dependencies

By analyzing the modeling language and existing example models as well as
interviewing MechatronicUML users, we identified 20 commonly used depen-
dency kinds and list them in a catalog [9, Appx. B]. We classify them concerning
the involved modeling elements (data, time, transition, state, message) and their
direction (uni- or bidirectional). We describe each dependency kind via an uni-
form description format that defines six attributes: (1) the name of the kind,
(2) an informal description, (3), the involved modeling elements, (4) the direc-
tion, (5) an informal example, and (6) the formalization of this example. In the
following, we briefly introduce a selection of ten kinds due to space restrictions.

Synchronization The RTSCs of two discrete ports shall synchronize their be-
havior by enforcing that their transitions can only fire together.

Required State Constraint A transition of a discrete port shall be constrained
by the status (inactive / active) of a state of another discrete port, e.g., a
transition may only fire as long as another state is active.

Data Pull A discrete port shall have read access to local data variables of
another discrete port.

Data Push A discrete port needs write access to an existing local data variable
of another discrete port.

Data Merge Two or more data variables are in fact the same data variable and
shall be merged into one. If one of them is a hybrid port, all data variables
are merged into that port.

Clock Merge Two or more local clocks of different discrete ports are in fact
the same clock and shall be merged into one.

Forbidden State Combination A particular set of states distributed over
several discrete ports shall not be active at the same time.

Allowed State Combination States of different discrete ports may only be
active at the same time if they are listed in one common set.
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Allowed Message Sequence A certain message sequence shall be allowed,
but subsets of these message sequences are not allowed.

Forbidden Message Sequence A sequence of messages shall be excluded from
the combined state space of the independent behaviors. However, subsets of
these message sequences are allowed.

In a small survey [9, Appx. C], we verified the completeness of our catalog.
The results were that no commonly used kinds were left out and most of the
identified kinds are commonly used. However, the survey showed that two depen-
dency kinds, e.g., Allowed State Combination, are not as common as expected. If
these results are confirmed in the future, we will remove them from the catalog.

7 Dependency Languages for MechatronicUML

The dependency languages of Eckardt and Henkler [6] (partially) support 12 de-
pendency kinds. However, among others, the kinds Synchronization, Data Push,
Data Pull, Data Merge, Clock Merge, and Forbidden Message Sequence are not
supported. One reason for this is that the languages do not consider data vari-
ables. Thus, we either have to extend the languages, select existing languages,
or define new languages.

Instead of ECAs, we propose to use Modal Sequence Diagrams (MSD) [10] to
describe message-based dependencies as they do not only support the dependen-
cies that an ECA may specify (e.g., Allowed Message Sequence) but also further
dependency kinds like Forbidden Message Sequence.

Moreover, we replace SCRs by a new DSL named MechatronicUML Intra-
Component Dependency Language (MIDL). MIDL shall support all dependency
kinds of SCR and all dependency kinds that MSDs do not support. We provide
a detailed definition of MIDL in [9, Sect. 4.4]. Below, we list three formal depen-
dencies for component WhiteSw specified using MIDL that relate to the informal
dependencies d1-d3 given in Sect. 1. The dependencies d1 and d3 are of kind
Transition Firing Constraint while dependency d2 is of kind Data Merge. The
formalized dependency d1 (line 1) states that the port Overtaker may only fire
the transition from NoOvertaking.Init to Requested (and send the message request)
if port Receiver is in state TrackSafe for more than 5s and if the hybrid port Dis-

tance has a value below 20. The formalized dependency d2 (line 2) states that
the local variable mySpeed shall be merged into the hybrid port variable Velocity.
The formalized dependency d3 (line 3) states that the port Overtaker may only
fire the transition from NoOvertaking to Overtaking (and send the message finish)
if the hybrid port Distance has a value higher than 20.

1 if [Receiver.TrackSafe is active longer than 5s] and [
Distance < 20] {enable transition Overtaker.NoOvertaking.
Init -->Requested };

2 merge variable Overtaker.mySpeed into Velocity;
3 if [Distance > 20] {enable transition Overtaker.Overtaking -->

NoOvertaking };

We realize our language by defining a formal representation using Xtext’s
LL(*) attribute grammar (requirement r1). We modified the generated meta
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model by referencing elements of the MechatronicUML meta model (r2) and
by adding OCL constraints that prevent erroneous and superfluous dependen-
cies (r3,r7). Furthermore, we provide an editor for our DSL which has usability
features like syntax highlighting, live syntax check, and auto completion (r7).

In a small case study about trains that may enter various track sections [9,
Appx. A], we were able to formalize 29 intra-component dependencies in total
from three discrete component where each component consist of three to five
ports. This is a first indicator that our language fulfills r4.

8 Related Work

In the related field of controller synthesis for discrete and timed systems, for-
mal languages are required as an input. Via scenarios, the software engineer
has to define possible interactions between the controller (the software under
development) and the environment, e.g., using timed game automaton [1] or us-
ing modal sequence diagrams [10]. However, the scenarios are not independent.
Thus, in contrary to us, a developer does not need to specify dependencies ex-
plicitly. However, these related approaches have other negative side effects, e.g.,
in contrary to our approach that requires independent behaviors, they cannot
enable a scalable model checking of the system which is mandatory in CPSs.

Other synthesis approaches require temporal logic expression as input, e.g.,
Letier et al. [12] require the Fluent Linear Temporal Logic (FLTL) to specify
event-based dependencies and Attie et al. [2] propose to specify inter-task depen-
dencies using the temporal logic CTL. Uchitel et al. [14] even support scenarios
as well as FLTL as inputs for the synthesis. However, none of these logics is
able to express all intra-component dependency kind that we identified for the
domain of CPSs. One reason for this is that the partial behavior models of these
approaches do not support all properties of a CPS (e.g., real-time, data variables,
accessing physical information).

Donatelli [5] proposes to directly insert formal dependencies within the au-
tomata. This is contrary to us, as we specify our dependencies in an additional
model to separate concerns. Moreover, Donatelli only enables the specification of
event-based dependencies. Thus, only a small subset of our required dependency
kinds is covered.

9 Conclusion and Future Work

In this paper, we defined the requirements for specifying intra-component depen-
dencies to enable the synthesis of discrete component behaviors for CPSs. We
improve an existing synthesis process and identified the most commonly used
intra-component dependencies for discrete components of MechatronicUML.
Moreover, we propose the usage of MSDs as well as a new defined DSL called
MIDL to formally describe these dependencies.

Using our proposed DSL, software engineers are able to formally define intra-
component dependencies. In contrast to informally described dependencies, this
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should avoid misunderstandings between the engineers. Moreover, MSDs and
MIDL can serve as an input for a component behavior synthesis that only re-
quires rare manual changes afterwards. Component models like Sofa 2 [13], which
define the external component behavior in separate parts and have no compo-
nent behavior synthesis yet, can apply our concepts to define their own DSL for
specifying intra-component dependencies. We think that a lot of the dependency
kinds should still be valid and that their DSL could be similar to MIDL.

In the future, we will complete the realization of our synthesis method. First,
we will further evaluate MIDL. Then, we will develop a detection of dependen-
cies conflicts. Afterwards, we will adapt the synthesis algorithm and perform a
thorough evaluation of the complete method.
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Abstract. Component-based software engineering aims to reduce soft-
ware development effort by reusing established components as building
blocks of complex systems. Defining components in general-purpose pro-
gramming languages restricts their reuse to platforms supporting these
languages and complicates component composition with implementation
details. The vision of model-driven engineering is to reduce the gap be-
tween developer intention and implementation details by lifting abstract
models to primary development artifacts and systematically transform-
ing these into executable systems. For sufficiently complex systems the
transformation from abstract models to platform-specific implementa-
tions requires augmentation with platform-specific components. We pro-
pose a model-driven mechanism to transform platform-independent log-
ical component & connector architectures into platform-specific imple-
mentations combining model and code libraries. This mechanism allows
to postpone commitment to a specific platform and thus increases reuse
of software architectures and components.

1 Introduction

Component-based software engineering (CBSE) [16] ultimately aims to com-
pose complex systems from off-the-shelf components. Usually, components are
provided as general-purpose programming language (GPL) source code. This
restricts reuse to certain platforms and requires domain experts to become
programming experts. Model-driven engineering (MDE) pursues to reduce the
conceptual gap [7] between domain and implementation concepts by describing
software systems as abstract models. These models can be systematically trans-
formed into implementations for potentially multiple target platforms. Compo-
nent & connector (C&C) architecture description languages (ADLs) [15] are

? J. O. Ringert acknowledges support from a postdoctoral Minerva Fellowship, funded
by the German Federal Ministry for Education and Research.
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modeling languages with high potential to combine the benefits of MDE and
CBSE. Software architectures can be modeled platform-independently, enriched
with platform-specific information, and transformed into an implementation.

We have developed the C&C ADL and framework MontiArcAutomaton [19,20]
to facilitate MDE in robotics. MontiArcAutomaton supports the integration of
the most suitable modeling languages and the composition and orchestration of
independently developed code generators. Modeling software components and
their behavior reduces the need for GPL components and liberates developers
from implementation details. However, some components still require manual im-
plementations or the integration of legacy code. As components models are tied
to implementations by MontiArcAutomaton convention, architectures contain-
ing components with platform-specific implementations (PSIs) are tied to specific
platforms as well. This poses challenges when generating PSIs from models.

We present a mechanism implemented in MontiArcAutomaton to enable
modeling of logical, platform-independent C&C architectures and their transfor-
mation into PSIs for different platforms. This mechanism relies on a combination
of model and code libraries as well as an application specific configuration that
regulates the transition from models to PSIs. To illustrate the toolchain and
its benefits, the next section introduces the MontiArcAutomaton modeling lan-
guage and framework (Sect. 2). Afterwards, Sect. 3 explains the transformation
toolchain itself and illustrates its application. Section 4 discusses related work
and Sect. 5 concludes this contribution with an outlook on future work.

2 MontiArcAutomaton

MontiArcAutomaton [19,20] is a modeling language family and framework for
generative MDE of robotics applications. Logical architectures are modeled as
the hierarchical composition of components that provide the system’s function-
ality. Components posses a stable interface comprising their type, configuration
parameters, generic type parameters, and sets of typed input ports and output
ports. A component is either atomic or composed. Atomic components specify
behavior directly. The behavior of a composed component emerges from the in-
teraction of its subcomponents. Components interact by sending and receiving
messages over directed connectors between their ports. The types of ports are
defined via class diagrams (CDs) or a GPL. Encapsulation of components with
stable interfaces facilitates logically distributed development and physically dis-
tributed computation models. It enables component composition independent
of their behavior description. MontiArcAutomaton exploits this encapsulation
mechanism to allow the embedding of behavior modeling languages into atomic
components [20]. Component developers may use the most suitable behavior
description languages instead of GPLs.

MontiArcAutomaton is developed with the domain-specific language work-
bench MontiCore [13] which provides frameworks for language integration [14,26]
and code generator development [23]. MontiCore languages are textual and de-
fined by context free grammars with additional well-formedness rules. From these
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Fig. 1. Platform-independent software architecture of the composed component type
BumperBot with five subcomponent instances.

grammars, MontiCore generates infrastructure to parse complying models into
their corresponding abstract syntax tree (AST). MontiCore supports language
inheritance, language embedding, and language aggregation (referencing and us-
ing models from other languages) [14,26] to compose new languages from existing
ones and MontiArcAutomaton uses all three mechanisms: it extends the Mon-
tiArc [11] ADL, component behavior languages are embedded into the base ADL,
and port types may use UML/P [22] CD models. The MontiCore code genera-
tion framework facilitates development of code generators using the FreeMarker3
template engine to generate code from ASTs and code templates written in a tar-
get language [18,23]. MontiArcAutomaton comprises modeling languages, code
generators, generator composition mechanisms, model-transformations, language
integration support, and libraries.

Consider a robot that comprises a distance sensor to measure the distance
to the closest obstacle ahead and motors to control its left and right wheel. The
robot drives forward until it approaches an obstacle, then backs up, rotates, and
continues to drive forward. Figure 1 depicts the logical software architecture
of this robot which consists of the composed component BumperBot with five
subcomponent instances: sensor of type DistSensor, clock of type Timer, con-
troller of type BumpControl, and two instances leftMotor and rightMotor of
type Motor. The subcomponent sensor has the single outgoing port data of type
Integer, which is connected to the incoming port distance of controller. Based
on the inputs received, the controller sends messages of type MotorCmd to the
motors. This type is defined in a CD. The behavior of controller is modeled as
an automaton following the I/Oω automaton paradigm [17,21].

Executable code for the C&C architecture of the system requires some plat-
form dependent component implementations. To execute the system on a Lego

3 Website of the FreeMarker Java template engine: http://freemarker.org/.
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NXT robot using the Lego Java Operating System (leJOS)4 the component in-
stances leftMotor and rightMotor require Java wrappers for the leJOS API.
Executing the same system on a NXT robot using the Robot Operating Sys-
tem (ROS)5 requires a Python implementation controlling ROS nodes. These
platform specific components cannot easily be modeled and are among existing
legacy components examples for the need of integrating GPL code in MDE.

3 Platform-Independent Model and Multi-Platform Code

To facilitate reuse of the same logical architecture model with different plat-
forms, it is favorable to postpone commitment to a specific platform as long
as possible. With MontiArcAutomaton this commitment is expressed as bind-
ing component instances to PSIs. We distinguish two kinds of components: fully
modeled components are composed components or atomic components with an
embedded behavior model. Abstract components are atomic components without
a behavior model. The interfaces of abstract component types may refer only
to types provided by the MontiArc type system and types defined in CDs. The
port types depicted in Fig. 1 are such types. Fully modeled components require
no binding as their implementation is generated by the combination of code
generators for component structure and behavior.

Integrating existing code: Abstract components require GPL behav-
ior implementations compatible with the generated code of the surrounding
architecture. Integration of generated code with manual implementations can
follow different patterns (e.g., generation gap [6] or delegation [8]). MontiArc-
Automaton does not prescribe a pattern. Instead, MontiArcAutomaton code
generators specify which runtime environment (RTE) they are compatible with.
Such a RTE may employ appropriate patterns to integrate generated and man-
ually implemented code, define how communication between components and
scheduling are realized, and contain common domain functionality [24]. Techni-
cal details and requirements for the integrated code are RTE specific. Our RTE
for Java component implementations defines an abstract class Component and
factories [8] which enable utilization of the generation gap pattern. The code
generator transforms component models into subclasses of Component, which
realize the component behavior. For abstract components, the generator only
creates the according factory and expects the component developer to provide
an according component implementation in the RTE’s GPL Java, i.e., to bind
the component model to a PSI. A manual binding is error-prone and requires
knowledge of implementation details of the generated code. Modeling the binding
reduces these “accidental complexities” [7].

Model and code libraries: Enabling component developers to efficiently
develop software architectures with abstract components requires to enable com-
ponent and component implementation reuse. MontiArcAutomaton therefore

4 Website of the Lego Java Operating System (leJOS): http://www.lejos.org/.
5 Website of the Robot Operating System (ROS): http://www.ros.org/.
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distinguishes platform-independent model libraries and platform-specific code li-
braries. Model libraries contain fully modeled components, abstract components,
and CDs. Code libraries contain component behavior implementations and port
types formulated in a GPL. Furthermore, each code library contains a library
properties model, describing the RTE of the contained implementations and
component types each implementation conforms to. This is necessary to ensure
compatibility of the generated and provided implementations for different RTEs.

The left part of Fig. 2 shows the model library SenseActModels used by
the platform-independent BumperBot architecture depicted in Fig. 1. The right
part shows a corresponding code library. The model library contains the abstract
component models DistSensor, Motor and a CD modeling the data type Mo-
torCmd used by component Motor. The NXTJava code library contains PSIs
and a library properties model which describes the RTE UltraSonicSensor and
RegulatedMotor are compatible with.

Binding PSIs: Retaining platform-independent architectures prohibits to
model component binding in the logical architecture itself. Instead, MontiArc-
Automaton applications may provide application configuration models. These
describe the selected code generators and binding information. A binding de-
scribes a mapping of component instances of the architecture model to imple-
mentations. The mapping augments the architecture’s AST before any code is
generated and thus can be reused with arbitrary generator combinations.

The MontiArcAutomaton generator toolchain parses the application configu-
ration and passes the binding information to a transformation which adds infor-
mation about component implementations to the architecture. The generation
framework considers this information and, e.g., generates factories instantiating
the bound implementations accordingly.

Listing 1 shows the application configuration used to bind component in-
stances sensor, leftMotor, rightMotor, and clock. First, the required implemen-
tation library is imported (ll. 1). Model libraries are imported by the architecture
and made available to the application configuration. Afterwards (l. 4) code gen-
erators are selected. The generators declare which runtime environments they are
compatible with and thus restrict which implementations can be bound. Finally,
ll. 5-9 describe the actual bindings of the application. Here, component instances,
identified by the name between map and to, are mapped to imported implemen-
tations, identified by the name after to. Please note that the two instances of the
component motor are mapped to the same implementations RegulatedMotor.
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ApplicationConfiguration

1 import NXTJava . * ;
2

3 a p p l i c a t i o n NXTJavaBumperBot {
4 g e n e r a t o r s ComponentJava , AutomatonJava , CDJava ;
5 b ind ings
6 map BumperBot . s enso r to UltraSonicSensor ,
7 map BumperBot . l e f tMotor to RegulatedMotor ,
8 map BumperBot . r ightMotor to RegulatedMotor ,
9 map BumperBot . c l o ck to JavaTimer ;

10 }

Listing 1. Application configuration model for the BumperBot selecting code
generators and binding component instances sensor, leftMotor, rightMotor, and clock.

Application configuration models are checked at design time whether all compo-
nents are bound and whether the binding is compatible by reading the libraries’
property models, which map the contained implementations to component types.

Implementation in MontiArcAutomaton: Figure 3 illustrates how the
MontiArcAutomaton code generation framework integrates applications, code
generators, libraries, and transformations of platform-independent architecture
models into PSIs. The GenerationTool parses architecture and application mod-
els, which reference model libraries and code libraries, respectively. The result is
passed to the BindingTransformation which augments the architecture before
code generation. Architecture AST, binding, and imported libraries are passed
to the BindingTransformation which transforms the AST accordingly. With the
transformed AST, the GenerationTool starts the GeneratorOrchestration pro-
cess which instantiates and executes the selected code generators as selected.
Both, code library and code generators have to comply to the same runtime
environment (RTE) to ensure an executable implementation of the architecture.
The RTE provides interfaces manually implemented and generated components
have to implement to ensure compatibility. Data types are translated into PSIs
using the selected CD generator, which maps the basic types of the MontiArc
type system onto platform-specific representations.

With help of the MontiArcAutomaton transformation toolchain, application
configuration, and libraries the logical BumperBot architecture (Fig. 1) can be
transformed into an intermediate platform-specific architecture where the sub-
components sensor, leftMotor, rightMotor, and clock are bound to PSIs. This
resulting software architecture is passed to the code generation framework and
ultimately transformed into implementations executable on robotic platforms.

An excerpt of the resulting implementations for two different platforms is
shown in Fig. 4. The left panel shows the project structure of the BumperBot
application containing two application configuration models. The first maps sen-
sor, leftMotor, rightMotor and clock to Java implementations based on leJOS,
the second maps them to Python implementations based on ROS. The bottom
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panels show part of the generated implementations for component BumperBot
where subcomponents are instantiated. The leJOS Java implementation uses the
implementations UltraSonicSensor and RegulatedMotor and the ROS python
implementation uses RangeSensor and JointMotor as defined in the respective
application configuration models (depicted in the top panels).

4 Related Work

Related approaches are toolchains enabling platform-independent modeling and
automated creation of source code implementations — especially ADL frame-
works with code creation capabilities, e.g., the Architecture Analysis & Design
Language [5] (AADL), AutoFocus [12], Simulink [25], and SysML [27].

AADL is modeling language for systems consisting of software components
and hardware components. While AADL models could be subjected to late bind-
ing as well, AADL architectures models component implementations explicitly –
thus hampering reuse. We are not aware of an integrated binding modeling lan-
guage and framework for AADL. AutoFocus is a C&C ADL and modeling tool
for the development of distributed systems based on the semantics of Focus [3].
Behavior is modeled as state transition diagrams similar to I/Oω automata. In
contrast to MontiArcAutomaton, AutoFocus lacks a distinction between compo-
nent types and instances. This prohibits component reuse by instantiation and
bindings as introduced above. MathWorks Simulink features a block diagram
language to describe of components and connectors. Stateflow6 extends blocks
with state transition diagrams. Simulink relies on M2T code generation without
6 Website of Stateflow: http://www.mathworks.de/products/stateflow/.
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import NXTJava.*

import JavaCommons.*

application NXTJavaBumperBot {

generators ComponentsJava, AutomatonJava, CDJava;

bindings

map robot.BumperBot.sensor to UltraSonicSensor,

map robot.BumperBot.leftMotor to RegulatedMotor,

map robot.BumperBot.rightMotor to RegulatedMotor,

import ROSPython.*

import PythonCommons.*

application ROSPythonBumperBot {

generators ComponentsPython, AutomatonPython, CDPyth

bindings

map robot.BumperBot.sensor to RangeSensor,

map robot.BumperBot.leftMotor to JointMotor,

map robot.BumperBot.rightMotor to JointMotor,

public BumperBot() {}

public NXTJava.UltraSonicSensor sensor;

public NXTJava.RegulatedMotor.leftMotor;

public NXTJava.RegulatedMotor.RightMotor;

public robot.BumpControl controller;

public JavaCommons.JavaTimer clock;

@Override

public void setUp() {

sensor = NXTJava.UltraSonicSensorFactory.create();

leftMotor = NXTJava.RegulatedMotorFactory.create();

rightMotor = NXTJava.RegulatedMotorFactory.create();

controller = robot.BumperBotFactory.create();

class BumperBot(Component):

def setUp(self):

self._sensor = RangeSensorFactory.create()

self._leftMotor = JointMotorFactory.create()

self._rightMotor = JointMotorFactory.create()

self._controller = BumpControlFactory.create()

self._clock = PythonTimerFactory.create()

self._sensor.setUp()

self._leftMotor.setUp()  

self._rightMotor.setUp()  

self._controller.setUp()  

self._clock.setUp()  

Fig. 4. Application configuration models and generated implementations for execution
of the logical BumperBot architecture on two different platforms.

intermediate model transformations. SysML is a set of modeling languages based
on a subset of extended UML [10]. The SysML language for internal block dia-
grams resembles MontiArcAutomaton and component behavior can be modeled
with state machine diagrams, thus SysML enables to express architectures sim-
ilar to MontiArcAutomaton. Modeling with SysML focuses on the requirements
phase and thus provides “only models on the PIM level” [9]. In most approaches
manually written code (if required) is typically integrated after code generation.

While we propose a binary notion of platform-independence compared to a
continuous notion where “abstract platforms” [1] may add and refine platform-
properties, e.g., an abstract-platform for the BumperBot could describe that it
requires two motors. It is an interesting future work to evaluate these differences.

Other approaches to transform PIMs into PSIs focus different issues: the
authors of [4], for example, transform platform-independent statecharts with
real-time properties into PSMs via complex model analysis. Such languages and
transformations are beyond the scope of this contribution.

5 Discussion and Conclusion

We presented a model-driven integrated, automated transformation toolchain,
modeling languages, and library concepts for the transformation of platform-
independent C&C software architectures into PSIs for multiple platforms. This
transformation is defined as the binding of subcomponents to platform-specific
component implementations. Abstract components are provided in model li-
braries while their implementations are provided in platform specific code li-
braries. To separate binding information for the architecture, we extended Monti-
ArcAutomaton’s application configuration modeling language to contain bind-
ings. This separation enables reuse of logical architecture models with different
source code implementations without modifications to the software architecture
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Currently, bindings specify unconditional mappings. Different distribution
scenarios might require to bind components under certain conditions (e.g., tar-
get platform properties). An extension of the application configuration language
with conditions is easily possible due to MontiCore’s language integration mech-
anisms. We currently explore different notions of interface compatibility as it
might be feasible to bind components where a port’s type might be a subtype of
the abstract component’s respective port. Another notion of interface compat-
ibility is, that the replacing component extends the component of the replaced
component instance in the sense of component inheritance [11]. While interface
compatibility ensures syntactic well-formedness, it does not ensure that bound
component implementations behave similarly. Securing this could be achieved by
employing component behavior contracts. We are working on such mechanisms
based on assumptions and guarantees [2].

Overall the MontiArcAutomaton toolchain integrates transformations and
code generation seamlessly and enables easy reuse of the same software architec-
ture on different platforms. In the future we plan to work on the issues mentioned
above and evaluation of the toolchain.
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Abstract. One of the problems of systems based on distributed archi-
tectures is the communication between applications running on different
platforms on a network. The appearance of middleware reduces the com-
plexity in transferring data between heterogeneous platforms of such sys-
tems. Up until now, various middleware have been proposed to facilitate
the distributed system construction. In the context of component-based
development, connectors represent links that realize the communication
between application components. However, from the modeling perspec-
tive, the transition from the behavior of connectors to middleware im-
plementation is still not clear.
This paper reports how to model the interaction components that de-
fine the behavior of connectors by using the ZeroMQ middleware due
to several advantages it offers such as effective asynchronous commu-
nication patterns. In order to test our approach, we designed and im-
plemented several different examples. Based on these examples, we ob-
served that implementing interaction components between components
based on a middleware simplifies the connection between components in
a distributed system.

1 Introduction

A distributed system consists of multiple different application components that
connect together to exchange data. These components usually run on hetero-
geneous platforms and thus have to handle platform differences such as byte-
order. In model-driven approaches, this problem is often tackled by abstracting
the communication logic from its implementation. In the UML specification,
connectors illustrate such abstract communication links between the application
components. However, the UML specification does not define the behavior of
connectors. Therefore, an additional refinement is required on the model level.

On the implementation level, it is possible to integrate the connection code
into application components directly. In other words, the connection code is
integrated into the application components. Nevertheless, the management of
application components becomes more difficult as their number increases and
the embedded connection code cannot be reused. It is therefore necessary to
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separate interaction components1 from application components; hence develop-
ers can focus on application components without taking the communication into
account.

In case of heterogeneous platforms, the implementation of connections needs
to take several issues into account, notably different conventions for the ordering
of bytes within a word2. In addition, it is also difficult to directly manage com-
plicated connections from the application using socket connections since many
sockets need to be created. Middleware is a way to overcome such difficulties
since it offers a higher level of abstraction and does not depend on the underly-
ing operating system.

The presented paper is based on previous work in this area, notably the
support of connectors [9] for the UML profile MARTE and the support of simple
socket interactions in [10]. The Qompass designer tool chain has been developed
in the context of this work. It is a code generation and deployment extension of
the UML modeler Papyrus3. The novelties of this paper are (1) the presentation
of an additional interaction component based on the ZeroMQ middleware and
(2) the support of asynchronous requests with return values (also called deferred
synchronous calls).

The remaining of this paper is organized as follows. Section 2 outlines the
methods and tools. Section 3 presents the modeling of ZeroMQ interaction com-
ponents. Section 4 shows examples to test our implementation. Section 5 gives
the related work and Section 6 concludes the paper.

2 Background

In this section, we introduce the method and tools used for our study, in particu-
lar Qompass Designer. It is used to transform models and deploy an application.
Besides a model of the application software, the input model consists of a library
of interaction components (and container services), a platform description and a
deployment description that declares, configures and allocates instances. In the
context of this paper, we only focus on application and interaction components.
The component model is enriched by means of the Flex-eware Component Model
(FCM) profile. It provides (among other extensions) a means to enrich ports of
components. An FCM port has an additional port kind (extensible) that denotes
whether the port is for instance a client/server, data-flow or event port. From an
implementation perspective, the port kind determines the required and provided
interfaces of this port.

There are basically two main steps for using interaction components4 (1)
transforming the UML application model into an intermediate model, and (2)
1 As a common terminology, components that implement a UML connector are called

interaction components.
2 Orderding of bytes, http://www.gnu.org/software/libc/manual/html_node/Byte-
Order.html, accessed on 07/07/2014.

3 Papyrus, http://www.eclipse.org/papyrus/, accessed on 17/07/2014.
4 It is basically a UML component (class) tagged as interaction component.
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generating the implementation code from the intermediate model. The first
transformation step replaces UML connectors with interaction components, as
detailed later (see Fig. 2).

From the perspective of a developer who wants to incorporate new interaction
components, a preliminary step is the modeling of this interaction component.
This is done in form of a stereotyped class. The interaction component has ports
to connect to the ports of application components. To be able to allocate these
ports on different platforms, interaction components are logically decomposed
into several fragments [10] (fragment per node). For example, a uni-directional
communication interaction component has a sending fragment and a receiving
fragment. These logically connected fragments are physically connected by using
programming languages such as C++, Java in the implementation level. In this
work, a new interaction component on top of the ZeroMQ (also known as ZMQ)
middleware is developed5 since we want to apply the AMI callback pattern and
ZeroMQ offers a set of asynchronous socket APIs that transfers messages quickly
and efficiently over the network. These sockets run on top of the standard sockets
of operating systems and carry atomic messages across various transports such
as in-process, inter-process, TCP, and multicast. The modeling of the interaction
component is detailed in the next section.

In this study, we focus on asynchronous method invocation (AMI) callback
communication pattern [11] since it allows clients to achieve high performance.
For example, in a client/server application, a client sends a request to a server.
Instead of blocking and waiting for a reply from the server (as synchronous
calls), it provides callback functions to be invoked in order to process results
received. These callback functions are called once replies are received. In the sense
of component-based development, we use ports dedicated to the AMI callback
pattern that are used by applying the AMI callback element of the FCM profile
(see Fig. 1).

Fig. 1: The AMI port has two interfaces (right), one required and one provided, derived
from a original port interface (left). The provided interface is needed since it contains
callback functions that are invoked through the AMI callback port.

During application deployment, the modeled UML connectors are trans-
formed into interaction components in an intermediate model (Fig. 2) by using
Qompass Designer. The FCM Connector stereotype references the interaction

5 ZeroMQ, http://zeromq.org/, accessed on 18/07/2014.
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component that should be used. The transformation adapts the interaction com-
ponent automatically to the application components that are connected, e.g. the
ports of the interaction component need to be compatible with the ports of the
connected application components. The ports of application components then
connect to the ports of the generated interaction components instead of the end
points of the UML connectors.

Fig. 2: Transformation from a system with (a) line of connector to (b) a composite
structure of connector

The implementation code is generated from the intermediate model (a UML2
model with expanded interaction components). The code generator is basically
generating C++ code from the UML model.

3 Interaction components modeling based on ZeroMQ

In this section, we present the decomposition of connectors and how AMI call-
back ports are used for modeling the asynchronous communication pattern. The
AMI ports are dedicated for asynchronous requesting components such as clients
in Client/Server applications.

This interaction component (see Fig. 3) contains fragments that define the
behavior of connectors, provides interfaces to connect to application components
through its ports and are co-located with appropriate application components
on specific nodes of platforms. Interaction components often have two ports to
connect two application components, but the concept is not limited to this case.

ClientFrag_AMICallBack  

 + clientImpl_AMICallBack: ClientImpl_...

  pRegister: RegisterDispatcher  fconn_ami: ~I

 + sr: AMISocketRuntime [1]

  register: RegisterDispatcher

  fconn_ami: ~I

ServerFrag_AMICallBack  

 + serverImpl_AMICallBack: ServerI...

  pRegister: RegisterDispatcher   rconn: ~I

 + sr: AMISocketRuntime [1]

  register: RegisterDispatcher

  rconn: ~I

ZMQAMI_InteractionComponent  

 + clientFrag_AMICallBack: Clie...

  fconn_ami: ~I

 + serverFrag_AMICallBack: ServerF...

  rconn: ~I

  fconn_ami: ~I   rconn: ~I

Fig. 3: Interaction component composite for AMI Callback model
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The client fragment (ClientFrag_AMICallback) is asynchronous and the server
fragment (ServerFrag_AMICallback) is synchronous. The interaction component
needs to be reusable in other applications; hence the interfaces of the ports of the
interaction component must match with the interfaces of different application
components. In other words, when the interfaces of a port change, the interaction
component has to adapt with the new interfaces.

To do this, we use an interface I as a formal parameter in a template and the
ports of the interaction component are typed with this template. I is then bound
to a specific interface when it is in use. The template binding defined here is
realized by model to model transformations in Qompass Designer.

The inside of each of these two fragments is divided into two parts to differ-
entiate between dispatching (xImpl) and communication (SocketRuntime) tasks.
For the client and the server, there are ClientImpl and ServerImpl respectively
that dispatch the requests or callbacks to right addresses. SocketRuntime, on the
other hand, permits the dispatching component to register the dispatch interface
(RegisterDispatcher) to the corresponding port (pRegister). RegisterDispatcher is
called when the SocketRuntime receives some data. To realize this mechanism,
SocketRuntime uses a set of ZeroMQ sockets to connect to the application com-
ponents.

When a requesting component (e.g., client) calls a function through the AMI
method invocation, the in/inout parameters of the function are marshalled into
a chain of bytes. These parameters are stored in a buffer of the interaction
component, ClientImpl in particular. These parameters are then passed as the
parameters of the callbacks. This storage is essential to distinguish callbacks
from multiple invocations since different callbacks corresponding to different
input parameters may process results received in different ways. The parameters
marshaling is generated from an Acceleo template. An example of an interface
with two operations (int sum(int a, int b) and int square(int value)) is shown in
Fig. 4. The chain of bytes also includes an operation ID and a handler ID. The
operation ID is used by the server to determine the right processing function and
the hander ID to find again the input parameters saved corresponding to the
right results received. The callbacks therefore execute with its results and input
parameters. The called function returns immediately after saving its parameters.
The requesting component can go ahead without waiting for results. Data are
actually sent and received in background threads. The socket runtime at the
server side receives the request, calls dispatch to de-marshal parameters and then
execute the right function to get the result. The de-marshaling of parameters is
also generated from Acceleo.

The maximum number of input data has to be configured by users. For net-
work applications with high calls number density or high computational time
on servers, this number should be large enough to prevent the data of previous
requests from overwriting. ClientFragment (sender) has a DEALER6 socket of Ze-
roMQ to send requests and a ROUTER socket to asynchronously receive replies

6 See the ZeroMQ web site for more information.
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Fig. 4: Transformation from Acceleo to C++ code

from ServerFragment (recipient). The DEALER socket connects to a ROUTER
socket of the recipient. These sockets offer asynchronous data transfers.

4 Examples

In this section, we present two examples to testify our interaction component im-
plementation. The first example is about a client/server application. The second
one is about a simple load balancing application.

4.1 Client/Server application using AMI callback

This system consists of a client and a server. The client is asynchronous and
requests to the server through AMI callback communication with the interface
ICompute as shown in Fig. 5. The interface has two operations: add(in a:Long,
in b:Long):Long and mult(in a:Long, in b:Long):Long. The client needs to initiate
requests. For this need, the FCM provides a simple convention: the client pos-
sesses a port start providing the interface IStart. This interface contains a run
method that is automatically called pending the system start-up. The connector
between the client and the server refers the interaction component implemented.

System  

 + cli: Client_App [1]

  q: ICompute
  start: IStart

 + srv: Server_App [1]

  p: ICompute

<<FCM::Connector>>

Fig. 5: Client/Server using AMI Callback example

For the deployment, the system is distributed on two different nodes. The
client is deployed on ClientNode, the server on ServerNode as exposed in Fig. 6.
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The fragments of the connector are co-located with the application components.
The model transformed by Qompass Designer is then the input of the code
generation process. This process is realized by using Acceleo7.

System  

 + cli: Client_A...

  q: ICompute

 + srv: Server_Ap...

  p: ICompute

 + qp_connector: ZMQInteractionComponentUniDir [1]

 + clientFrag_AMIC...  + serverFrag_AMIC...

«Node»

Client Node  

«Node»

Server Node  

«Allocate»
«Allocate» «Allocate»«Allocate»

Fig. 6: Client/Server AMI callback example deployment

4.2 Interactions between components in the load balancing model

The Client/Server model is widely used because of its simplicity and facility of
implementation. However, the model presents some issues, i.e. it is difficult to
scale since the server must always run or the server can be a bottleneck since it
has to treat all requests. Load balancing model8 has been proposed as a solution
to overcome these issues.

Load balancing is offered by ZeroMQ for distributing workloads of an appli-
cation onto several servers called workers. Workloads distribution is performed
by a broker component. The workers have the computational responsibility. They
expedite the result to the broker.

In this example, there are one client, one broker and one worker (on the
type level). The client needs to implement call back functions. AMI callback
port kind is used. The ZMQAMI_InteractionComponent interaction component
is applied to the connectors between components. The workers act synchronously.
Information about the address and listening ports of the broker is configured.
Clients need to know the front end port number and the broker’s IP address and
workers know about the back end’s.

The application components of the system are allocated onto three nodes,
client node, worker node, broker node. Many instances of client and worker can be
run in different platforms. The broker has to start firstly and listen on the worker
side (back end). When a worker begins, it sends a ready signal to the broker and
the broker sets it as an available worker. The broker only actives on the client
(front end) side if there is one available worker at least. Requests are forwarded
from the broker and arrive to the workers alternatively.
7 Acceleo, http://www.eclipse.org/acceleo/, accessed on 17/07/2014.
8 Load Balanced Cluster, http://msdn.microsoft.com/en-us/library/ff648960.
aspx, accessed on 12/09/2014.
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System  

 + client: Client [1]

  start: IStart   q_ICompute: ICompute

 + worker: Worker [1]

  p_ICompute: ICompute

 + broker: Broker [1]

  p_ICompute: ICompute   q_ICompute: ICompute

<<FCM::Connector>> <<FCM::Conenctor>>

Fig. 7: Simple application follows load balancing model

5 Related Work

The concept of interaction components presented in this paper is supported
by multiple component models and tools in other terminologies. The follow-
ing sketches several works that are categorized into AMI callback implementa-
tions, component models supporting interaction components and implementa-
tions based on ZeroMQ.

Arulanthu et al. [1] provide the implementation of AMI callback for CORBA.
Their implementation is in TAO [11]. They use the IDL (interface definition lan-
guage) compiler to generate callbacks from the original interface. However, this
does not resolve asynchronous messaging in MDE. At a higher level of abstrac-
tion, asynchronous messaging has been integrated into the CORBA component
model (CCM), called AMI4CCM [7]. An AMI4CCM connector (analogous to
the interaction component described in this paper) is responsible for managing
the interaction. The connector is part of the extensibility mechanism in CCM,
providing a so-called generic interaction support (GIS). The major difference
between AMI4CCM and the work presented here is to address the concepts di-
rectly at the modeling level and the support for the middleware ZeroMQ. Please
note that Qompass designer is inspired by CCM and supports similar concepts.

The interest for a further standardization of component models with ex-
tensible interaction support is expressed by a request-for-proposal of a Unified
Component Model (UCM) [8] that the Object Management Group (OMG) has
issued recently. In the sequel we reference two older component models with this
ability, before we talk about a different approach to build higher level services
on top of ZeroMQ: ZeroRPC.

SOFA 29 [5, 6, 4] is a component system employing hierarchically composed
components. SOFA connectors are automatically generated. A connector might
support a transport mechanism such as CORBA or low level mechanisms. In
this context, they are responsible for marshaling and de-marshaling. The pro-
posed connector architecture consists of a distributor deployment unit and sev-
eral sender/recipient units. The sender/recipient unit allows sending messages
to attached components. The sender/recipient units connect to the distributor
unit in a similar way. Connector configurations and deployment models are also
shown. However, SOFA 2 does not support UML.

Fractal is a hierarchical and reflective component model [3]. It is intended to
implement, deploy, and manage complex software systems, including in partic-
9 SOFA, http://sofa.ow2.org/, accessed on 15/09/2014.
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ular operation systems and middleware. Fractal connectors are Fractal binding
components with behavior [2].A composite binding component is a communica-
tion path between an arbitrary numbers of component interfaces, of arbitrary
language types. These bindings are represented as a set of primitive bindings
and binding components (stubs, skeletons, adapters in the con-text of remote
method calls).

ZeroRPC10 is a light-weight, reliable and modern communication library for
distributed systems. ZeroRPC builds on top of ZeroMQ and MessagePack. Ze-
roRPC is more than a typical Remote Procedure Call (RPC) engine and sup-
ports multiple ZeroMQ socket types, streaming, heartbeat and more. ZeroRPC
is created to satisfy requirements such as exposing arbitrary code with minimal
modification, self-document systems, propagate exceptions, trace nested calls
and provide brokerless, highly available, fast fan-in/fan-out. However, ZeroRPC
focuses on communications between server-side processes and so far is only im-
plemented in Python and Node.js that are not suitable to distributed embedded
applications

6 Conclusion and Future Work

In this paper, we have shown the modeling in UML of the AMI interaction
component that defines the behavior of connectors. We used the stereotypes of
the FCM profile to apply UML connectors and ports for the modeling. A UML
connector applying the Connector stereotype of the FCM profile is transformed
to a composite structure. We used Papyrus to model and Qompass Designer
to transform models. At the physical connection level, we used the ZeroMQ
middleware due to the several advantages it offers.

After the modeling of the interaction component, we tested it with two ex-
amples. One is a simple Client/Server application with asynchronous client and
synchronous server; the other one is a simple load balancing application11. The
separation between interaction and application components simplifies the devel-
opment process of distributed systems. The interaction component can be reused
in other applications. Application components developers can therefore focus on
data processing at application level.

As future work, we will enrich the properties of quality of service for the
interaction components to provide more reliable communications. We will also
further study systems with dynamic adaptation which are currently poorly sup-
ported by our approach.

The work presented in this paper is supported by the European project
SafeAdapt, grant agreement No. 608945, see http://www.SafeAdapt.eu.

10 ZeroRPC, http://zerorpc.dotcloud.com/, accessed on 15/09/2014.
11 We also support publisher/subscriber and producer/consumer patterns, but we are

unable to present them here due to space limitation.

44



References

[1] Alexander B. Arulanthu, Carlos O’Ryan, Douglas C. Schmidt, Michael
Kircher, and Jeff Parsons. The design and performance of a scalable orb
architecture for cobra asynchronous messaging. In IFIP/ACM International
Conference on Distributed Systems Platforms, Middleware ’00, pages 208–
230, Secaucus, NJ, USA, 2000. Springer-Verlag New York, Inc.

[2] Tomás Barros, Rabea Boulifa, Antonio Cansado, Ludovic Henrio, and Eric
Madelaine. Behavioural Models for Distributed Fractal Components. Rap-
port de recherche RR-6491, INRIA, 2008.

[3] E. Bruneton, T. Coupaye, and J.B. Stefani. The Fractal Component Model,
February 2004. Version 2.0-3.

[4] Lubomir Bulej and Tomas Bures. Using connectors for deployment of het-
erogeneous applications in the context of omg d&c specification. In Dim-
itri Konstantas, Jean-Paul Bourrières, Michel Léonard, and Nacer Boudjl-
ida, editors, Interoperability of Enterprise Software and Applications, pages
349–360. Springer London, 2006.

[5] Tomas Bures and Frantisek Plasil. Communication style driven connector
configurations. In LNCS3026, ISBN 3-540-21975-7, ISSN 0302-9743, pages
102–116. Springer-Verlag, 2004.

[6] Ondrej Galik and Tomás Bures. Generating connectors for heteroge-
neous deployment. In Elisabetta Di Nitto and Amy L. Murphy, editors,
Proceedings of the 5th International Workshop on Software Engineering
and Middleware, SEM 2005, Lisbon, Portugal, September 5-6, 2005, pages
54–61. ACM, 2005.

[7] Object Management Group. Asynchronous method invocation for ccm.
Specification Version 1.0, Object Management Group, April 2013.

[8] OMG. OMG Unified Component Model for Distributed, Real-Time
and Embedded Systems. Request for proposal, OMG, May 2014.
http://www.omgwiki.org/ucm/doku.php.

[9] Ansgar Radermacher, Arnaud Cuccuru, Sebastien Gerard, and François
Terrier. Generating Execution Infrastructures for Component-oriented
Specifications with a Model Driven Toolchain: A Case Study for MARTE’s
GCM and Real-time Annotations. SIGPLAN Not., 45(2):127–136, October
2009.

[10] Ansgar Radermacher, Önder Gürcan, Arnaud Cuccuru, Sebastien Gerard,
and Brahim Hamid. Split of composite components for distributed ap-
plications. In Torsten Maehne and Marie-Minerve Louërat (eds), editors,
Languages, Design Methods, and Tools for Electronic System Design, chap-
ter 14, pages 255–267. Springer, Septembre 2014. doi:10.1007/978-3-319-
06317-1_14.

[11] Douglas C. Schmidt, David L. Levine, and Sumedh Mungee. The Design
of the TAO Real-time Object Request Broker. Computer Communications,
21(4):294–324, April 1998.

45



Towards a metamodel for the
Rubus Component Model

Alessio Bucaioni, Antonio Cicchetti, and Mikael Sjödin

Mälardalen Real-Time Research Centre (MRTC)
School of Innovation, Design and Engineering (IDT)

Mälardalen University, Väster̊as, Sweden
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Abstract. Component-Based Software Engineering has been recognized
as an effective practice for dealing with the increasing complexity of the
software for vehicular embedded systems. Despite the advantages it has
introduced in terms of reasoning, design and reusability, the software
development for vehicular embedded systems is still hampered by constel-
lations of different processes, file formats and tools, which often require
manual ad hoc translations. By exploiting the crossplay of Component-
Based Software Engineering and Model-Driven Engineering, we take ini-
tial steps towards the definition of a seamless chain for the structural,
functional and execution modeling of software for vehicular embedded
systems. To this end, one of the entry requirements is the metamodels
definition of all the technologies used along the software development.
In this work, we define a metamodel for an industrial component model,
Rubus Component Model, used for the software development of vehicular
real-time embedded systems by several international companies. We fo-
cus on the definition of metamodeling elements representing the software
architecture.

Keywords: Component-Based Software Engineering, Model-Driven En-
gineering, Component-Based Software Systems, Vehicular Embedded Sys-
tems, Rubus Component Model

1 Introduction
During the last decades, industrial requirements on vehicular embedded systems
have been constantly evolving causing an enlargement of the related software
complexity: it has been estimated that current vehicles have more than 70 em-
bedded systems running up to 100 million lines of code [14]. In this context, tra-
ditional software development processes have revealed strong limitations. On the
one hand, industry needs efficient processes for reducing software development
cost and time-to-market. On the other hand, most of the vehicular embedded
systems present real-time properties, which have to be taken into account from
the early stages of the development.

Component Based Software Engineering (CBSE) [15] has been acknowledged
as an effective practice for dealing with the increasing software complexity. It
promotes the development of the system at higher level of abstraction relying on
the definition and reuse of atomic unit of composition, i.e., components. Also,
CBSE allows to annotate components, at design time, with real-time properties
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and constraints, e.g., worst-case execution time, enabling pre-run-time analysis,
e.g., end-to-end response time and delay analysis [15].

Several component-based development processes have been introduced for
improving the vehicular embedded systems software development. EAST-ADL,
together with its follow-up initiatives, is the de facto standard for the soft-
ware development of vehicular embedded systems. Among other contributions,
EAST-ADL has standardized the terminology and promoted separation of con-
cerns through a top-down development process, which makes use of four differ-
ent abstraction layers. Despite the great initial reception, EAST-ADL is rarely
adopted as it is. For instance, considering modern vehicle development, e.g., ve-
hicles product line, it is very unlikely that vehicles are developed from scratch
using top-down approaches. Contrariwise, they are mostly developed using a
bottom-up strategy, reusing pre developed and tested components. In this con-
text, the process defined by EAST-ADL finishes to hamper the software devel-
opment, as the concepts used in each layer are designed for hiding non necessary
information at higher and lower layers. While this can be effective within a top-
down strategy - where the artifacts are enriched as they move forward towards
the development layers - it is counterproductive when used within a bottom-up
strategy - where low-level information, such as component’s real time proper-
ties, need to be available at the earlier development stages. Also, the industrial
vehicle software development is hindered by manual ad hoc translations, needed
to integrate legacy systems and external tools: automation and tools integra-
tion have been acknowledged, by several projects 1, as key factors when dealing
with extensive architectures as those for vehicular embedded systems. Informa-
tion management, interoperability and traceability issues can not be fully solved
using CBSE, as the discipline itself was not defined towards such aspects [15].

Model-Driven Engineering (MDE) is a discipline which promotes the sepa-
ration of concerns by using different models for different concerns [16]. Unlike
CBSE, MDE establishes precise relationships among models for the automatic
generation of new models, change propagation and model-synchronization [16].
In this respect, MDE enhances software development targeting important de-
velopment issues, such as information management, traceability, integration and
interoperability [17].

We propose to exploit the crossplay of MDE and CBSE for realizing a seam-
less chain for the structural, functional and execution modeling of software for
vehicular embedded systems. To this end, we believe one of the entry require-
ments is the metamodels definition of all the technologies used along the software
development. In this work we define a metamodel for the Rubus Component
Model (RCM), a component model (CM) used in the development of resource-
constrained real-time vehicular embedded systems, focusing on the metamodel-
ing elements representing the software architecture. As a proof of concept, we
show a model transformation from RCM to AUTOSAR (RCM2AUTOSAR).

The rest of the paper is organized as follows. Section 2 presents the context
of this work. Section 3 introduces the RCM metamodel. Section 4 shows the

1 OSLC: http://open-services.net ; CRYSTAL: http://www.crystal-artemis.eu
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RCM2AUTOSAR transformation while Section 5 discusses some related works.
Finally, Section 6 draws conclusions and future works.

2 Context

In this section we present the context of this work by describing the four ab-
straction layers used in the software development of vehicular embedded systems.
Additionally, we give some insights about RCM and the accompanying tool suite.

Fig. 1. The four abstraction layers as introduced by the EAST-ADL specification

2.1 Abstraction levels

EAST-ADL standardized a top-down development process composed of four dif-
ferent abstraction layers. Despite the top-down strategy is rarely used in industry,
the abstraction layers and the related terminology have been fully adopted. The
four abstraction levels are shown in Figure 1.

Vehicle level The vehicle level captures all the information regarding what
the system is supposed to do. Feature models can be used for showing what
the system provides and, eventually, how the product line is organized in terms
of available assets. Feature models can be complemented with requirements.
The vehicle layer is also known as End-to-End level as it serves to capture
requirements and features on the end-to-end vehicle functionality.

Analysis level In the analysis level, vehicle functions are expressed using formal
notations. The functionality are defined in terms of behaviors and interfaces. Yet,
design and implementation details are omitted. At this stage, high level analysis
for functional verification can be performed.

Design level In this level, the analysis-level artifacts are refined with more
design-oriented details. While the analysis level does not differentiate among
software, middleware abstraction and hardware architecture, the Design level
explicitly separates this areas of the system implementation. Also, software func-
tions to hardware allocation is expressed in this layer.

Implementation level In the implementation layer, the design-level artifacts
are refined with implementation details. At this stage CMs, e.g., AUTOSAR,
RCM, can be used to model the systems in terms of components and interactions
among them. The output of this layer is a complete software architecture used
for the code synthesis.
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2.2 The Rubus Concept

Rubus [10] is a collection of methods, theories and tools for model- and component-
based development of resource-constrained embedded real-time systems; it is de-
veloped by Arcticus Systems in collaboration with Mälardalen University. It is
mainly used for the development of control functionality in vehicles by several
international companies. The Rubus concept is based around the RCM[11] and
its development environment Rubus-ICE [10]. Rubus-ICE includes:

– The Rubus Analysis Framework, for expressing real-time requirements and
properties while modeling the system architecture;

– The Rubus Code Generator and Run-Time System, for synthesizing the code
from the specified architecture;

– The Rubus SIMulation Model (RSIM), for simulating and testing the archi-
tecture at all the different hierarchical levels, e.g., components, Electronic
Control Units (ECUs), subsystems, complete distributed system;

– The Rubus Execution Platform, for optimizing the run-time architecture.

With respect to the aforesaid four layers architecture, RCM is currently used
in the implementation level as alternative/complement to AUTOSAR .

3 Providing a Metamodel to RCM
In this section, we present the RCM metamodel. 2 focusing on the metamodel
definition of the architectural elements. For reading sake, we present the meta-
model in three sections: Section 3.1 introduces the metamodel backbone, Section
3.2 introduces the metamodel elements for the data flow while Section 3.3 intro-
duces the metamodel elements for the control flow.

Fig. 2. Metamodel fragment for the backbone architectural elements

3.1 Backbone

Figure 2 shows the metamodel backbone. The top element is System, which
acts as a container for the whole architecture. System, as all the elments in
the metamodel, inherits from the abstract element NamedElement. A System
element contains one or more Node(s). A Node is a hardware and operating-
system independent abstraction of a Target and groups the software architecture
elements which realize a certain function. Its attribute activeTarget defines which

2 In this work, we do not seek to explain RCM; the interested reader may refer to [11]
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Target, among those specified, is active for a certain Node. A Target is a hardware
and operating-system specific instance of a Node, which models the deployment
of the software architecture, that is, it contains all the functions which have to
be deployed on the same ECU. A Node can be realized by different Targets,
depending from which hardware and operating system are considered for the
deployment, i.e., PowerPC with Rubus Operating System, Simulated target with
Windows operating system. A Target might contain one or more Mode(s). A
Mode represents a specific application of the software, i.e., start-up mode, low
power mode. A Mode might contains Circuit(s) and Assembly(ies). A Circuit
is the lowest-level hierarchical element which encapsulates basic functions. It is
composed by an Interface, which collects its data and triggering ports (Section
3.2 and Section 3.3), and one, or more, Behavior(s). A Circuit has the run-
to-completion semantic, which means that, upon triggering, it reads data from
the input ports, executes its behavior and writes data on the output ports. Its
attribute activeBehavior specifies which Behavior, among those defined, is active.
A Behavior represents the code to be executed. It has one attribute, entry, and
it is composed by one or more RunTimeProfile(s), which define the Behavior
execution and run-time properties for a specific platform. Interface might be
composed by several State(s). A State is used for preserving data among the
different executions of a behavior. A State has two attributes: initialValue, and
dimension. An Assembly is used for grouping different Circuits or Assemblies; it
does not add any semantic.

3.2 Data elements
As aforesaid, RCM explicitly separates the data and the control flow. Figure 3(a)
shows a metamodel fragment containing the architectural elements for modeling
the data flow. PortData models a generic data port. Data ports are used for
modeling data communication among Circuits or Assemblies. PortData is an
abstract element. PortDataIn and PortDataOut specialize PortData and repre-
sent input and output data port, respectively. PortDataOut has a on-to-many
relationship with PortDataIn, dataOutToDataIn, meaning that a value on the
data output port can be fed to several input ports.

3.3 Triggering elements
Figure 3(b) shows a metamodel fragment containing the architectural elements
for modeling the control flow. PortTrig models a generic trigger port. PortTri-
gIn and PortTrigOut specialize PortTrig; they represent trigger input and output
ports, respectively. Trigger ports are used for specifying precedence and control
over the architectural elements. A trigger output port generates trigger signal
upon the completion of the related Circuit. When receiving a trigger signal, a
trigger input port triggers the execution of the related Circuit’s Behavior. Any
trigger signal after the first received is meaningless, therefore ignored. PortTrig,
PortTrigIn and PortTrigOut are abstract. PortTrigIn is specialized by PortTrig-
InMode, PortTrigInAssembly and PortTrigInInterface. Similarly, PortTrigOut is
specialized by PortTrigOutMode, PortTrigOutAssembly and PortTrigOutInter-
face. A Mode is composed by, at least, one PortTrigInMode and one PortTrigOut-
Mode; PortTrigOutMode has a one-to-many relationship with PortTrigInMode,
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(a) Metamodel fragment for the data flow objects

(b) Metamodel fragment for the control flow objects

Fig. 3. RCM metamodel fragments

meaning that a trigger output port can trigger more than one trigger input
port. Similarly, Interface is composed by exactly one PortTrigInInterface and, at
least, one PortTrigOutInterface. Also, PortTrigOutInterface has a one-to-many
relationship with PortTrigInInterface. Finally, an Assembly might contain Port-
TrigInAssembly and PortTrigOutAssembly, where a PortTrigOutAssembly has
a one-to-many relationship with PortTrigInAssembly.

4 RCM2AUTOSAR transformation

In this section, we describe the RCM2AUTOSAR transformation. Figure 4(a)
depicts a RCM model of a single node real time system composed by three
Circuits, Sensor, Processor and Actuator.

Sensor has one trigger input port, IT, one trigger output port, OT, and one
data output port, SensorOut. Similarly, Processor has two trigger ports and two
data ports, and Actuator has two trigger ports and a data port. Intuitively, the
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model describes a vehicle function in which data are sensed, processed and fed
to the actuator for the stimulation 3.

(a) RCM model of a single-node real time system

(b) RCM model serialization

Fig. 4. RCM model and its serialization

Although trivial, the transformation is used for miming typical scenarios in
the software development of vehicle embedded systems. With models as that
depicted in Figure 4(a), manual translations might still appear feasible; never-
theless, in reality, vehicle embedded systems are composed by over 70 embedded
systems and thousands components [14]. Also, the transformation is used for
proving the validity of the metamodel introduced in the Section 3. Figure 4(b)
shows the textual serialization of the model.

Algorithm 1 shows the metacode for the RCM2AUTOSAR transformation.
The algorithm mainly consists of two relationships between RCM and AU-
TOSAR elements, which are: Circuit to Software Component, and PortData
to PortClientServer 4. The former relationship exploits a naming convention for
better translating the elements avoiding flattening the RCM model. The two
involved metamodels do not have the same expressiveness, which means that
the underneath relationship is partial. Indeed the are some elements of RCM
which are ignored from the transformation. Figure 5 shows the serialization of
the AUTOSAR model obtained as a result of the transformation.

5 Related Works

The embedded system research community and the vehicular industry have fo-
cused more and more on the definition of component-based technologies for
embedded vehicular systems. Hereafter, we present and discuss some attempts
targeted towards the development of resource-constrained vehicular real-time
systems.
3 The model contains triggering elements not presented in this work, i.e., clock and

trigger terminator elements. The reader can assume they are responsible for trigger-
ing the circuits and terminating the control flow, respectively.

4 The explanation of the AUTOSAR metamodel is outside the foucs of this work. The
interested reader may refer to the [1].
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Algorithm 1 RCM2AUTOSAR transformation

1: new V irtualFunctionBus V FB;
2: for each Circuit c in a Target t do
3: switch c.name do
4: case (1) //c.name ends in Sensor
5: new SensorSoftwareComponent sc;
6: sc.name = c.name;

7: case (2) //c.name ends in Actuator
8: new ActuatorSoftwareComponent sc;
9: sc.name = c.name;

10: case (default)
11: new SoftwareComponent sc;
12: sc.name = c.name;

13: for each Interface i in c do
14: for each PortDataIn di in i do
15: new RequiredPortClientServer rp;
16: rp.name = di.name;
17: end for
18: for each PortDataOut do in i do
19: new ProvidedPortClientServer pp;
20: pp.name = do.name;
21: pp.receiver = do.dataOutToDataIn;
22: end for
23: end for
24: end for

Fig. 5. Serialization of the obtained AUTOSAR model

5.1 EAST-ADL/AUTOSAR

AUTOSAR [1] is an industrial initiative to provide standardized software ar-
chitecture for the development of embedded software for the vehicular domain.
Within AUTOSAR, the software architecture is defined in terms of Software
Components (SWCs) and Virtual Function Bus (VFB). VFB handles the vir-
tual integration and communication among SWCs, hiding the low-level imple-
mentation details. Compared with RCM, EAST-ADL/AUTOSAR describes the
software at a higher level of abstraction. It has no ability to specify and handle
timing information at design time, such as component worst case execution time.
AUTOSAR does not distinguish between data and control flow, as well as be-
tween inter and intra node communication. Contrariwise, RCM was specifically
designed taking timing requirements into account. As shown in Section 3, RCM
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clearly separates data and control flow; also, it has been recently extended with
special network interface components for modeling inter-node communication
[2]. The AUTOSAR sender receiver communication mechanism is very similar
to the RCM pipe-and-filter communication mechanism. In short, AUTOSAR
focuses on hiding the information which RCM highlights.

5.2 TIMMO/TIMMO-2-USE

TIMMO [3] is a large EU research project, which aims to provide AUTOSAR
with a timing model [4]. To this end, it provides a predictable methodology and
language TADL [5] for expressing timing requirements and constraints. TADL is
inspired by MARTE [6], which is an UML profile for model-driven development of
real-time and embedded systems. The TIMMO predictable methodology makes
use of the EAST-ADL and AUTOSAR interplay, where the former is used for the
software structural modeling, while the latter is used for the implementation. Al-
though the TIMMO project has been evaluated upon prototype validators, from
the best of our knowledge, there is no concrete industrial implementation of
the TIMMO project. TIMMO-2-USE [7] follows-up on the TIMMO project. It
presents a major redefinition of TADL and new functionality for supporting the
AUTOSAR extensions regarding timing model. Arcticus Systems has been in-
volved in TIMMO-2-USE project as one of the industrial partners. Both TIMMO
and TIMMO-2-USE attempt to annotate AUTOSAR with a timing model. This
may be hard to accomplish as AUTOSAR aims at hiding implementation details
of execution environment and communication using the Virtual Function Bus,
as shown in Section 4. That is, at the modeling level, there is no information
in AUTOSAR to express low level details, e.g., linking information, which is
necessary to extract the timing model from the software architecture. There is
no focus in these initiatives on how to extract this information from the model
or perform timing analysis or synthesize the run-time framework.

5.3 ProCom

ProCom [8] is a two-layered component model for the development of distributed
embedded systems. It is the result of a research project conducted at Mälardalen
University. The upper layer, ProSys, models the system and concurrent sub-
systems communicating by means of asynchronous messages. The lower layer,
ProSave, models each subsystem in terms of functional components implemented
as a piece of code. Being inspired by RCM, ProCom presents several similarities
with it. Both CMs have passive components, clearly separate the control flow
from the data flow and use the pipe-and-filter communication mechanism for
components interconnection. However, ProCom does not differentiate between
intra- and inter-node communication which is unlike RCM. As for AUTOSAR,
also ProCom hides communication details, making hard the extraction of timing
model and the execution of timing analysis [12].

6 Conclusions and Future Works
In the last decades, CBSE has enhanced the software development for vehicu-
lar embedded systems. Nevertheless, industry needs to move further towards a
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seamless development chain for reducing software development costs and time-to-
market. In this respect, one of the major challenge is the definition of a method-
ology and accompanying technologies. In this work we proposed the adoption
of a methodology exploiting the crossplay of MDE and CBSE and took initial
steps towards the realization of the aforesaid seamless chain. We i) motivated the
usage of RCM within the vehicular domain, by highlighting its unique features
against existing CMs, ii) formalized a metamodel based on RCM and ii) proved
the metamodel validity by means of the RCM2AUTOSAR model transforma-
tion. The formalization of the metamodel not only serves as base for embracing
the MDE vision, but it also aims in restoring the separation of concerns which
has been lost during the evolution of the RCM. For sake of space we omitted a
comparison between RCM and its metamodel. As future works, we will investi-
gate further metamodel refinements targeting the enhancement of vehicular tool
chaining while preserving the current expressive power. The RCM2AUTOSAR
transformation outlines the potential benefits gained in having a proper meta-
model for RCM, in terms of automation, interoperability and traceability. As
future investigation direction we will also, together with our industrial partners,
cover the identification of additional languages used along the software devel-
opment for the vehicular embedded systems, with the aim of formalizing their
metamodels and hence enable model transformations for supporting a more ex-
tensive tool chain.
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Abstract. The end-to-end response-time and delay analysis can verify
timing requirements specified on vehicular distributed embedded systems
without performing exhaustive testing. For this purpose, the timing re-
quirements and constraints should be unambiguously translated among
several models, methodologies and tools that are used at various abstrac-
tion levels and phases during the industrial development of these systems.
Within this context, we translate timing constraints that are specified at
higher abstraction levels using the Timing Augmented Description Lan-
guage (TADL2) to an industrial model the Rubus Component Model
(RCM). We also discuss corresponding extensions in RCM and perform
a case study to validate our approach.

Keywords: Distributed embedded systems; component-based develop-
ment; end-to-end timing analysis.

1 Introduction

With the recent advancement in computer controlled functionality, the software
has immensely increased in size and complexity in vehicular embedded systems.
For example, the embedded software in a modern premium car may consist of as
many as 100 million lines of code that may occupy up to 1 GB of memory. This
software may be realized by more than 2000 software functions. Moreover, it may
be distributed over 100 Electronic Control Units (ECUs) [1, 2]. The model- and
component-based development appears as a promising approach to deal with the
complexity of these systems [3, 4]. This approach uses the principles of Model-
Based Software Engineering (MBSE) and Component-Based Software Engineer-
ing (CBSE). It supports the use of models to describe functions, structures and
other design artifacts. It also supports the development of large software sys-
tems by reuse and integration of software components and their architectures.
Hence, it raises the level of abstraction for software development. The model- and
component-based development of software architectures for vehicular embedded
real-time systems has had a surge the last few years [5–8].

1.1 Objective and Paper Contribution

There are a number of models, methodologies and tools that are used at various
abstraction levels1 and phases during the development of vehicular distributed

1 An abstraction level provides a complete definition of the system for a given purpose.
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embedded systems. Intuitively, timing requirements and constraints can be spec-
ified using one modeling technology, whereas the detailed end-to-end timing
analysis can be performed using the tools accompanying another. The end-to-
end response-time and delay analyses [9–11] is one of the predominant techniques
used in the industry to provide guarantees that the distributed embedded system
is going to meet its deadlines when executed. In order to support the analysis, the
timing information should be unambiguously translated among several modeling
approaches, languages and tools.

Within this context, we consider TIMMO methodology [12] at higher abstrac-
tion levels and an existing industrial model the Rubus Component Model (RCM)
[13] at the lower level. The TIMMO methodology makes use of EAST-ADL [14]
for modeling of software architecture and Timing Augmented Description Lan-
guage (TADL2) [15] for annotation of timing constraints. TADL2 is intended
to provide AUTOSAR with a timing model. At the lower abstraction level, we
consider modeling and timing analysis support of RCM and accompanying tool
suite Rubus-ICE [16]. We provide translation of those timing constraints, from
TADL2 to RCM, that impose restrictions on end-to-end delays. We discuss cor-
responding extensions in RCM to carry out these translations. We also discuss
the semantics and viewpoint of analysis engines about these constraints. In order
to provide a proof of concept, we conduct a case study.

We choose RCM instead of AUTOSAR at the lower abstraction level because
AUTOSAR lacks a complete timing model, e.g., control flow is not specified un-
ambiguously. This work is first step towards a bigger goal, i.e., development of a
seamless tool-chain for model-based development of vehicular real-time systems;
and support for inter-operating various modeling and analysis tools [8].

2 Background and Related Works

There are several frameworks that support timing modeling such as AADL [17],
SCADE [18], MARTE [19], MAST [20], SysML, CHESS [21, 22]. However, the
focus in the vehicle industry today is on EAST-ADL and AUTOSAR; RCM is
also being used. In this work, we focus only on the vehicular domain.

2.1 Abstraction Levels Considered by Various Methodologies

Various models and methodologies used for the development of vehicular dis-
tributed embedded systems [14, 15, 5, 23] consider four abstraction levels shown
in Fig. 1. At the vehicle level, features and requirements on the end-to-end func-
tionality of the vehicle are captured in an informal and solution-independent
way. At the analysis level, the requirements are formally captured in allocation-
independent way. Functionality of the system is defined based on the require-
ments and features without implementation details. A high-level analysis may
also be performed for functional verification. The artifacts at this level are devel-
oped in an implementation-independent way. These artifacts also contain mid-
dleware abstraction, hardware architecture and software functions to hardware
allocation. The implementation level contains software-based implementation of
the system functionality. The EAST-ADL methodology defines a system at this
level in terms of AUTOSAR elements. However, in this work, our focus is on
using RCM. Hence, the artifact at this level consists of software architecture of
the system defined in terms of Rubus components and their interactions. In this
work, we focus on the design and implementation levels.
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Fig. 1. Abstraction levels considered during the development

2.2 Models and Methodologies in the Vehicular Domain

Rubus Component Model (RCM) and Rubus-ICE Rubus [24] is a col-
lection of methods and tools for model- and component-based development of
dependable embedded real-time systems. It is developed by Arcticus Systems 2 in
close collaboration with several industrial partners. Rubus is today mainly used
for the development of control functionality in vehicles by several international
companies, e.g., BAE Systems, Volvo Construction Equipment, Knorr-bremse,
Mecel and Hoerbiger. The Rubus concept is based around RCM and its develop-
ment environment Rubus-ICE which includes modeling tools, code generators,
analysis tools and run-time infrastructure. The overall goal of Rubus is to be
aggressively resource efficient and to provide means for developing predictable,
timing analyzable and synthesizable control functions in resource-constrained
embedded systems. The timing analysis supported by Rubus-ICE includes dis-
tributed end-to-end response-time and delay analyses [10]. Rubus methods and
tools mostly focus at the implementation level in Fig. 1. The lowest-level hier-
archical component in RCM is called Software Circuit (SWC). Its purpose is to
encapsulate basic functions. Fig. 2 shows an example of a software architecture
in RCM composed of SWCs; interconnections between SWCs; and their interac-
tions with external events and actuators with regard to data and triggering.
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Fig. 2. Example of software architecture of a system modeled in RCM.

AUTOSAR AUTOSAR [25] is an industrial initiative to provide standardized
software architecture for the development of embedded software. It is used at the
implementation level in Fig. 1. It describes software development at a higher level
of abstraction compared to RCM. The timing model in AUTOSAR is introduced
fairly recently compared to RCM. AUTOSAR is more focussed on the functional
and structural abstractions, hiding the implementation details about execution
and communication. AUTOSAR hides the details that RCM highlights.

2 http://www.arcticus-systems.com
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EAST-ADL, MARTE, TIMMO, TIMMO-2-USE, TADL and TADL2
TIMMO [6] is an initiative to provide AUTOSAR with a timing model [26]. It is
based on a methodology and TADL [23] language which expresses timing require-
ments and constraints. It is inspired by MARTE [19] which is a UML profile for
model-driven development of real-time and embedded systems. TIMMO method-
ology uses EAST-ADL language [14] for structural modeling and AUTOSAR for
the implementation. TIMMO and EAST-ADL focus on the top three levels in
Fig. 1. In TIMMO-2-USE project [7], a major redefinition of TADL is done and
released in TADL2 specification [15]. TADL2 can specify timing information at
all the abstraction levels. Most of these initiatives lack the support on expressing
low-level details at the higher levels such as linking information in distributed
chains. These details are necessary to extract the end-to-end timing model from
the architecture. Furthermore, there is no support on how to extract this infor-
mation from the model or perform timing analysis. In our view, the end-to-end
timing model includes enough information from the systems to be able to per-
form certain type of timing analysis, e.g., end-to-end response-time analysis.

Previous Works In [27], we presented a method to automatically extract the
end-to-end timing models only at the implementation level. In [28], we extended
our previous method to raise the models extraction at the design level3. In [29],
we discussed the basic idea for translation of timing constraints.

3 Interpretation of TADL2 Timing Constraints in RCM

Timing requirements in TADL2 are modeled by means of timing constraints
specified on events and event chains. We discuss those timing constraints that
impose restrictions on the end-to-end delays, i.e., reaction and age constraints in
Subsections 3.1 and 3.2 respectively. In each subsection, first we discuss semantics
of the constraint according to TADL2 specification [15]. Then we provide its
translation in RCM and propose corresponding extensions in RCM. Finally, we
discuss it with the view point of analysis engines.

Definitions and Notations An event represents a distinct form of state change
in a running system. It is used to trigger an analysis- or design-level function.
When the function is triggered, input data is consumed followed by its processing,
transformation and finally production at the output. An event takes place at
distinct points in time which are called its occurrences. The occurrences of an
event are denoted, e.g., by attributes s and r. These attributes are basically
time points showing when instances of the event occur. They can be added,
subtracted and compared with each other. A constraint often puts limits on the
occurrences of events. These limits can be specified in terms of time distances
using minimum and maximum attributes. The occurrences of the events are
required to lie within these limits. We use object-oriented notation to define the
attributes of a constraint, e.g., TC.response refers to the response event on which
the timing constraint TC is specified. In multi-rate systems (see Fig. 3 and 4),
components in an event chain can be triggered with independent clocks. Hence,
there can be multiple response occurrences to a single occurrence of stimulus

3 This is an unpublished work and is provided as a technical report for referencing.
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in an event chain. In these chains, multiple response occurrences due to each
consecutive stimulus occurrence are differentiated by means of colors.

3.1 Reaction Constraint

TADL2 Description It constrains the occurrence of a response event after the
occurrence of a corresponding stimulus event in an event chain. It specifies “how
long after the occurrence of a stimulus a corresponding response must occur”
[15]. Both reaction and age constraints differ from the delay constraint in a way
that they can only be applied to event chains and not to individual events. In
order to satisfy the reaction constraint, the earliest occurrence of the response
with same color as that of stimulus must take place within the limits specified
by this constraint as shown in Fig. 3(a).

Semantics A system behavior satisfies the specified Reaction constraint de-
noted by ReaC if and only if for each occurrence s of the event ReaC.stimulus,
there is an occurrence r of the event ReaC.response such that

(r.color = s.color) and (r is minimal in ReaC.response with that color)
and

(minimum ≤ (r- s) ≤ maximum)
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Fig. 3. Graphical illustration of (a) Reaction constraint, (b) Age constraint

Interpretation in RCM We introduce a new modeling entity in RCM de-
noted by DataReaction (DR for short) to specify the reaction constraint. This
constraint can be specified on an event chain, event chain segment and dis-
tributed event chain (distributed over more than one node) by means of DR
Start and DR End objects as shown in Fig. 4. The DR End object supports the
specification of maximum” attribute by means of a deadline parameter associ-
ated to it. However, the minimum parameter is zero. In order to be consistent
with TADL2 Reaction constraint, we propose to associate a parameter with DR
End object to specify a non-zero minimum value of the constraint.
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Fig. 4. Modeling objects in RCM to specify Reaction and Age constraint
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Interpretation by the Analysis Engines The analysis engines provided by
Rubus-ICE support calculations for the corresponding Reaction delay. Consider
the example of an event chain in a multi-rate system in Fig. 4. Fig. 5 shows a
time line depicting the execution of this chain (assuming each SWC corresponds
to a task denoted by τ at run-time). τB is deliberately given an offset of 15 time
units to maximize the delays. This delay is equal to the time elapsed between the
previous non-overwritten release of task τA (input of the chain) and first response
of task τC (output of the chain) corresponding to the current non-overwritten
release of task τA. Assume that a new value of the input is available in the input
buffer of task τA “just after” the release of the second instance of task τA (at
time 8ms). Hence, the second instance of task τA “just misses” the read of the
new value from its input buffer. This new value has to wait for the next instance
of task τA to travel towards the output of the chain. Therefore, the new value is
read by the third and forth instances of task τA. The first output corresponding
to the new value (arriving just after 8ms) appears at the output of the chain at
34ms. This results in the delay of 26ms as shown in Fig. 5. This phenomenon
is more obvious in the case of distributed embedded systems where a task in
the receiving node may just miss to read fresh signals from a message that is
received from the network. The analysis engines calculate the Reaction delay as
shown in Fig. 5 and compare it with the specified constraint parameters. We
refer the reader to [10] for further details about the analysis.

5 10 15 20 250 30 40 45 5035

5 10 15 20 250 30 40 45 5035

5 10 15 20 25

τC
0 30 40 45 5035

Age delay = 22
Reaction delay = 26

τB

τA

Fig. 5. Demonstration of Reaction and Age delay calculations by analysis engines

3.2 Age Constraint

TADL2 Description It constrains the occurrence of a stimulus from the occur-
rence of corresponding response looking back through the event chain. Basically
it specifies “how long before each response a corresponding stimulus must have
occurred” [15]. In order to satisfy this constraint, the latest occurrence of the
stimulus with same color as that of the response must lie within the limits spec-
ified by this constraint as shown in Fig. 3(b).

Semantics A system behavior satisfies the specified Age constraint denoted by
AgeC if and only if for each occurrence r of the event AgeC.response, there is
an occurrence s of the event AgeC.stimulus such that

(s.color = r.color) and (s is maximal in AgeC.stimulus with that color)
and

(minimum ≤ (r- s) ≤ maximum)
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Interpretation in RCM We introduce a new modeling entity in RCM denoted
by DataAge. This constraint can be specified on an event chain, event chain
segment and distributed event chain by means of Age Start and Age End objects
as shown in Fig. 4. The Age End object supports the specification of “maximum”
attribute by means of a deadline parameter associated to it. In order to be
consistent with TADL2 Age constraint, we propose to associate a parameter
with Age End object to specify non-zero minimum value of the constraint.

Interpretation by the Analysis Engines The analysis engines support the
calculations for the corresponding Age delay. Consider the example of an event
chain in a multi-rate system shown in Fig. 4. Fig. 5 shows the time line when
this chain is executed. The analysis engines calculate the Age delay as shown in
Fig. 5 and compare it with the specified constraint parameters.

4 Automotive-application case study
In order to show the applicability of our approach, we conduct the Steer-By-
Wire (SBW) system case study. It is an automotive feature that substitutes
most of the mechanical and hydraulic components with electronic components
in the steering system of a vehicle. A partial architecture of the SBW system is
shown in Fig. 6(a). There are two ECUs (rest of the ECUs are not shown for
simplicity) that are connected to a single CAN network. The Steering Control
(SC) ECU receives inputs from steering angle, steering torque and vehicle speed
sensors. It also receives a CAN message from the Wheel Control (WC) ECU.
It sends two CAN messages: one caries steer angle and torque signals; while
the other carries feedback signals. Based on all the inputs, it calculates the
feedback steering torque and sends it to the feedback torque actuator which is
responsible for producing the turning effect of the steering. Similarly, the WC
ECU receives inputs from wheel angle and torque sensors. Depending upon these
signals and CAN messages received from the SC ECU, it calculates the wheel
torque and produces actuation signals for the wheel actuators. It also sends one
CAN message carrying wheel torque signal.

(a) (b)

Fig. 6. Partial architecture of the steer-by-wire system

The internal software architecture of the two ECUs is modeled with EAST-
ADL using EAST-ADLrubusDesigner4 as shown in Fig. 7. There are two timing
constraints namely age and reaction that are specified using TADL2. They put a
restriction of 50 ms on the time between the production of steer angle and torque
by Steer Controller component and their consumption by Wheel Controller com-
ponent. These constraints are internally referenced to the components on which
they are specified. For convenience, the start and end points for these constraints
are identified using the solid-line arrow as shown in Fig. 7.

4 http://www.arcticus-systems.com

63
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The top level model of the SBW system consisting of models of the two
ECUs, a CAN bus and CAN messages in RCM is shown in Fig. 6(b). Whereas,
the internal software component architectures of SC and WC ECUs translated
from the EAST-ADL model in Fig. 7 to RCM are shown in Fig. 8 and Fig. 9
respectively. The clocks corresponding to trigger flows are translated from the
periodic constraints in TADL2 that are specified on the software components
in Fig. 7. We use a one-to-one mapping between the software component (both
functional as well as sensor and actuator components) in EAST-ADL and soft-
ware circuit in RCM. The specified TADL2 timing constraints in Fig. 7 are also
translated to RCM timing constraints as shown in Fig. 8 and Fig. 9.

Age and Reaction ConstraintsSoftware 
component

Sensor 
component

Fig. 7. Software architecture of SBW system modeled with EAST-ADL and TADL2

The run-time allocation of the SBW system results in three distributed chains
(distributed over more than one node) and thirteen tasks. The analysis engines
calculate the age and reaction delays for the distributed chains on which the tim-
ing constraints are specified. The calculated age and reaction delays are 30320 µs
and 40320 µs respectively. A comparison between the specified constraints and
calculated delays shows the system satisfies the specified timing constraints.

Fig. 8. Translated software architecture of SC sub-system in RCM

5 Conclusion

We discussed translation of timing constraints that are specified at higher ab-
straction levels using the TADL2 language to an existing industrial component
model RCM. These translations along with our analysis engines enable the appli-
cation of end-to-end response-time and delay analysis at a higher level of abstrac-
tion and early phases during the development of vehicular distributed embedded
systems. In order to show the applicability of our approach, we conducted an
automotive-application case study. We modeled the software architecture using
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EAST-ADL and specified the age and reaction time constraints using TADL2.
The software architecture and specified timing constraints were translated into
the corresponding models in RCM. The analysis engines automatically analyzed
end-to-end delays for the chains on which timing constraints were specified. Cur-
rently the translations of timing constraints and corresponding timing analysis
is done automatically, however, the conversion of software architecture from the
design model (using EAST-ADL) to the implementation model (using RCM) is
done manually. In the future, we plan to support automatic conversion of the
design-level models to the implementation-level models. Moreover, we plan to
implement and validate automatic translations of other timing constraints from
TADL2 to RCM including synchronization, repetition and pattern constraints.

Fig. 9. Translated software architecture of WC sub-system in RCM
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Abstract. Choreographies are an emergent Service Engineering ap-
proach to compose together and coordinate distributed services. They
represent a global specification of the interactions between the partic-
ipant services. BPMN2 provides a dedicated notation, called Choreog-
raphy Diagrams, to define choreographies. This paper presents a model
transformation to automatically transform a BPMN2 choreography spec-
ification into an automata-based representation called Choreography
LTS (CLTS). The latter is a LTS suitably extended to, on one side
model the complex interactions that can be specified by choreography di-
agrams, on the other provide modelers with a means to precisely extract
the not-easy-to-grasp coordination logic “hidden” into BPMN2 Chore-
ography Diagrams. Dedicated Eclipse plugins, within the CHOReOSynt
tool, have been developed to support the presented transformation.

1 Introduction

Choreographies are an emergent Service Engineering approach to compose to-
gether and coordinate distributed services. They describe the interactions be-
tween the participant services by specifying the way business participants co-
ordinate their interactions from a global perspective. The OMG BPMN2 [18]
Choreography Diagrams are the standard de facto for specifying service chore-
ographies by providing powerful constructs to specify complex interactions where
message exchanges between participants go far beyond simple request-response
interactions that follow a sequential flow. Choreography diagrams permit to spec-
ify inclusive and exclusive conditional branches, parallel branches to be joined
at later execution points, looping tasks, and so on.

BPMN2 specifications can be very complex and the standard specification
introduces constraints that a choreography designer shall obey to achieve well-
formed choreography specifications. Unfortunately, the standard only provides
a textual description for these constraints, hence making their correct under-
standing difficult. In the literature many approaches have been proposed to
deal with the problems of choreography realizability, conformance, and enforce-
ment, e.g., [21,8,4,23,9,2]). These approaches are based on different interpreta-
tions of the choreography interaction semantics in terms of both the subset of
considered choreography constructs and the used formal notation. Moreover, the
adopted notations, although powerful and well known in the formal community,

? This work is partially supported by the EU FP7/2007-2013 under grant agreement
number 257178 (project CHOReOS - www.choreos.eu).

67



do not completely satisfy requirements related to usability and pragmatism that
BPMN2 choreography modelers usually require.

In this paper we overview the model transformation we have adopted within
the CHOReOS EU project (www.choreos.eu) to generate from a BPMN2 chore-
ography diagram an automata-based specification of the coordination logic “im-
plied” by the choreography. The transformation constitutes the core of the overall
methodology we apply in CHOReOS to solve the problem of automatic choreog-
raphy enforcement. The core objective of CHOReOS is to leverage model-based
methodologies [5] and relevant SOA standards, while making choreography de-
velopment a systematic process to the reuse and the assembling of services dis-
covered within the Internet. Our approach has two main advances: (i) most of
the complex constructs of BPMN2 choreography diagrams, e.g., inclusive and
parallel gateways, are handled; (ii) an extension of LTSs, called Choreography
LTS (CLTS), is provided to enable explicit descriptions of the coordination logic
that must be applied to enforce the choreography, by adopting a notation that is
closer to the BPMN2 choreography one; (iii) CLTS makes explicit coordination-
related information that in BPMN2 is implicit. This allows to statically infer the
information needed for enabling distributed coordination that, otherwise, should
be calculated at run time for each choreography instance and for each execu-
tion of it. For instance, the CLTS model specifies the source and target state
from which a task is initiated and terminated, the corresponding transition and
enabling condition.

The paper is structured as follows. Section 2 introduces the considered
BPMN2 choreography constructs. Section 3 briefly outlines the model trans-
formation we have developed and how the introduced BPMN2 constructs are
mapped to CLTS constructs. Related works are discussed in Section 4 and con-
clusions and future directions are given in Section 5.

2 BPMN2 choreography diagram constructs
In the following we leverage the in-depth study of the “meanders” of the BPMN2
standard specification document, and introduce the considered BPMN2 chore-
ography diagram constructs by concisely describing their crucial characteristics.
In Figures 1 and 2, besides the BPMN2 constructs on the left side, we report
the corresponding CLTS translation that will be then discussed in Section 3.

The selection of the considered BPMN2 constructs has been performed by
analysing the intrinsic aspects related to the choreography enforcement problem
and by fulfilling the requirements of all the CHOReOS use cases.
With reference to Figure 1 (a)..(d), a choreography Task is an atomic activity
that represents an interaction by means of one or two (request and optionally
response) message exchanges between two participants. Graphically, BPMN2 di-
agrams uses rounded-corner boxes to denote choreography tasks. Each of them
is labeled with the roles of the two participants involved in the task, and the
name of the service operation performed by the initiating participant and pro-
vided by the other one. A role contained in the white box denotes the initiating
participant. In particular, we recall that the BPMN2 specification employs the
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Fig. 1. From BPMN2 choreography to CLTS

Fig. 2. From BPMN2 choreography to CLTS (Cont’d)
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theoretical concept of a token that, traversing the sequence flows and passing
through the elements in a process, aids to define its behavior. The start event
generates the token that must eventually be consumed at an end event.

Depending on its type (i.e., ChoreographyLoopType in the BPMN2 specifi-
cation), a task may have one of the three markers: sequential multi-instance (b),
standard loop (c), and parallel multi-instance (d).

With reference to Figure 1 (e) & (f), a Parallel Gateway is used to (e)
create and/or (f) synchronize parallel flows without checking any condition. Each
outgoing flow receives a token upon execution of this gateway. For incoming
flows, this gateway will wait for all incoming flows before triggering the flow
through its outgoing arrow. They create parallel paths of the choreography that
all Participants are aware of. With respect to the constraints imposed by the
BPMN2 official specification, the initiator participant(s) of all the tasks after the
gateway must be involved in all tasks that immediately precede such gateway.
The task that precedes the chain must also satisfy this constraint in the case
where there is a chain of gateways with no tasks in between.

With reference to Figure 1 (g) & (h), a Diverging (Decision) Exclusive
Gateway (g) is used to create alternative paths within a choreography. If none
of the conditional expressions (see cond1 and cond2) evaluate to true, a default
path can optionally be specified (see task op4). A Converging Exclusive Gateway
(h) is used to merge alternative paths. Each incoming flow token is routed to
the outgoing flow without synchronization. Being in a fully decentralized setting,
there is no central mechanism to store the data that will be used in the condition
expressions of the outgoing flows. The gateway’s conditions may have natural
language descriptions but, as clarified by the BPMN2 official specification, such
choreographies would be underspecified and would not be enforceable. To create
an enforceable choreography, the gateway conditions must be formal expressions
that can be precisely (and automatically for tool supported approaches) checked.
Still according to the BPMN2 official specification, the initiating participants of
the choreography tasks that follow the gateway must have sent or received the
message that provided the data upon which the conditional decision is made. In
addition, the message that provides the data for the gateway conditional decision
may be in any choreography task prior to the gateway (i.e., it does not have to
immediately precede the gateway). Thus, for the gateway to be automatically
enforced, we assume to have the specification of what messages provide the data
upon which the conditional decision can be actually made.

With reference to Figure 2 (i) & (j), a Diverging Inclusive Gateway (i) can
be used to create alternative but also parallel paths. Unlike the Exclusive Gate-
way, all condition expressions are evaluated. All flows that evaluate to true will
be traversed by a token. Since each path is considered to be independent, any
combination of the paths may be taken, from zero to all. However, it should
be designed so that at least one path is taken. If none of the conditional ex-
pressions (see cond1 and cond2) evaluate to true, a default path can optionally
be specified. A converging Inclusive Gateway (j) is used to merge a combina-
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tion of alternative and parallel paths. A control flow token entering an Inclusive
Gateway may be synchronized with some other token that arrives later.

With reference to Figure 2 (k), a Sub-Choreography is a compound activity
task that defines a flow of other tasks. Each sub-choreography involves two or
more participants.

3 BPMN2-to-CLTS
In this section we discuss how it is possible to derive CLTS models out of BPMN2
choreography specifications. Such a translation can be done in different manners
including the adoption of general purpose programming languages. However,
as previously said, the presented work has been done in the context of the
CHOReOS EU project where model-driven principles and techniques [5] have
been employed to support the development of choreography-based systems.

Before describing the model transformation, we introduce the CLTS meta-
model defined for extending LTSs, and constitutes the foundation of the coordi-
nation logic extracted by the synthesis process. The definition of these metamod-
els is the result of a survey we have conducted within CHOReOS. Specifically,
in the literature a number of valuable approaches have been proposed to trans-
form different kinds of choreography notations into more formal specifications.
For instance, by leveraging the concept of token, alternative models, such as
free-choice Petri Nets, might have been adopted (see Section 4). However, the
deep study we have initially conducted within CHOReOS to precisely define,
at the project level, the integration architecture for the CHOReOS Integrated
Development and Run-time Environment1 (IDRE), led the whole consortium to
agree on the definition of the CLTS model, which best met the (both formal and
technical) requirements of all the software tools now integrated by the IDRE.
Indeed, to the purposes of defining an integrated suite of tools to support the
whole choreography life cycle, the CLTS model brings together many features of
already existing formalisms and notations in the literature, and filters out those
ones not strictly needed. Last but not least, the main requirement was to have
a notation as close as possible to the BPMN2 choreography diagrams, while en-
abling formal reasoning and automatic treatment by all the IDRE components.

A fragment of the CLTS metamodel is shown in Figure 3. The metamodel
extends the basic notion of LTS state by introducing new elements to model
complex states, i.e., initial and final states, fork and join states, as well as,
activity loop and alternative states. The basic notion of labeled transition
has been extended to have the possibility of specifying participants roles,
service operations request/response/fault messages and related types,
as well as, conditions.

As discussed later in the section, the BPMN2-to-CLTS transformation has
been implemented in a model-driven setting by means of the ATLAS Transfor-
mation Language (ATL) [13]. A model transformation takes as input one or more
models conforming to the source metamodels and generates one or more models
conforming to the target metamodels. Thus, to develop the BPMN2-to-CLTS

1 http://www.choreos.eu/bin/view/Documentation/WebHome

71



Fig. 3. CLTS metamodel

transformation, both the BPMN2 and CLTS metamodels are required. The for-
mer is available in the Eclipse ecosystem; the latter consists of the following
elements (see Figure 3):
. the metaclass Model and its composition relations represent a choreography;
. plain states are represented by means of the metaclass State;
. initial and final states are represented by means of the metaclasses
InitialState and FinalState, respectively;
. loop and alternative elements are represented by means of the metaclasses
ActivityLoop and Alternative, respectively;
. fork and join elements are represented by means of the metaclasses Fork and
Join, respectively;
. the set or roles played by the different participants in the choreography are
represented by means of the metaclass RoleDefinition, which consists of a
number of Role elements.
. the set of transition labels is represented by means of the metaclass
OperationDefinition, which contains Operation elements.
. transition relations are represented by means of the metaclass
LabeledTransition. The references initiatingParticipant, and
participant are defined to represent the participants involved in the
considered interactions;

In the remaining of the section we discuss how BPMN2 choreography diagram
constructs can be mapped to CLTS model element. The discussion is based on
the representative cases shown in Figure 1 and Figure 2.
(a)..(d) – As previously said, depending on its type (i.e.,
ChoreographyLoopType in the BPMN2 specification), a task may have
one of the three markers: sequential multi-instance (b), standard loop (c), and
parallel multi-instance (d). Accordingly, a task is transformed into a basic
state-to-state transition if no marker is specified (a), a CLTS ActivityLoop

transition with a fixed number |n| of possible iterations if a BPMN2 sequential
multi-instance marker is specified (b), a conditional CLTS ActivityLoop
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transition if a BPMN2 standard loop marker is specified (c), and a CLTS
state-to-state transition that can be forked (and then joined) a fixed number
|n| of times if a BPMN2 parallel multi-instance marker is specified (d). In the
corresponding CLTS fragments, the transition label p1.m2::op1(m1).p2 specifies
that the participant p1 initiates the task op1 by sending the message m1 to the
receiving participant p2 which, in turn, returns the message m2.

Note that the BPMN2 graphical elements do not show, neither the condition
expressions nor the specified fixed number, which can only be internally specified.
In/out messages (i.e., request/response messages) are reported in the CLTS tran-
sitions on the right-hand and left-hand sides of the operation name, respectively.
To bound the number of times a loop is repeated, either the condition expressions
must be evaluated (based on the data contained in the exchanged messages) in
the case of a standard loops, or counters must be employed (updated upon the
observed message exchanges) in the case of sequential and parallel multi-instance
loops. In any case, the task must be performed at least once, before checking the
condition or the counter. In this respect, it is worth to mention that one of the
reported critical issues (issue number 16554 - published in the official web site) is
about “underspecification of ChoreographyLoopType”. The reported issue basi-
cally says that it is mandatory to specify either the number of loop repetitions
or the expression that must be evaluated, on what messages and (for reasons
of enforceability) by which participant(s). In our model transformation we have
anticipated the resolution of this issue.

(e) & (f) – When used to create parallel flows, the parallel diverging gateway is
transformed using a CLTS Fork state that splits into all the outgoing flows. Note
that, in order to enforce the coordination logic implied by a parallel gateway, the
Fork state is used in a CLTS to model real parallelism (and not abstract par-
allelism by means of interleaving). Complementarily, when a parallel converging
gateway is used to join parallel flows, a CLTS Join state is used.

The sequences for the remaining cases (g)..(k) can be easily obtained by fol-
lowing the same method as for the previous cases.

(g) & (h) – When used to create alternative paths, a diverging exclusive gate-
way is transformed using a CLTS Alternative state. Note that the conditions
cond1 and cond2 are suitably combined to achieve exclusivity. When used to
merge alternative paths, a converging exclusive gateway is transformed using
state-to-state transitions that, by modeling the flows immediately preceding the
gateway, collapse into a further state-to-state transition that models the flow
immediately following the gateway. As a further clarification, the very same
converging exclusive gateway behavior can be equivalently specified in BPMN2
without using the gateway construct. That is, with reference to the figure, it is
sufficient to have three arrows that directly connect the tasks on the left to the
task on the right.

(i) & (j) – Similarly to a diverging exclusive gateway, diverging inclusive gate-
way is transformed using a CLTS Alternative state. However, to model that all
combinations of the paths may be taken, combined forking and joining paths are
used. To conform with this characteristic, the conditions cond1 and cond2 are
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Fig. 4. BPMN2 choreography diagram example

suitably combined to achieve exclusivity between not only single paths, but also
between the combined forking and joining paths and single paths. Considering
the previous explanations for the converging exclusive gateway and the diverging
inclusive gateway, the transformation for a converging exclusive gateway, when
merging combinations of alternative and parallel paths, is rather intuitive.

(k) Compound activities tasks are transformed by recursively applying the pre-
vious rules. In Figure 2, only a very simple case is shown.

All the previously discussed mappings have been automatized by means an
ATL [13] model transformation consisting of about 4.000 lines of code. By apply-
ing the transformation rules described above, the BPMN2 choreography diagram
of Figure 4 is transformed to the corresponding CLTS diagram in Figure 5 (the
CLTS diagram has been drawn by means of the GMF-based editor we have
developed in CHOReOS). It is worth to clarify that the choreography in the
figure has been aptly created to highlight, in one choreography, most of the
crucial subtitles the transformation needs to handle. Therefore, it looks arti-
ficial from a use case point of view. For a set of realistic use cases, provided
by the CHOReOS industrial partners, and for downloading the Eclipse plug-

Fig. 5. CLTS derived from the BPMN2 choreography diagram in Figure 4
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ins implementing the model transformation the interested reader can refer to
http://choreos.disim.univaq.it/.

4 Related Work
The approach presented in this paper is related to a number of other valuable
approaches in the literature that, to different purposes, transform different kinds
of choreography notations into more formal specifications.

The definition of our approach required the consideration of valuable ap-
proaches in the literature (most notably [21,8,4,23,9,2]) and state-of-the-art lan-
guages, systems, and techniques that have emerged in different contexts including
SOA, model-transformations, and seminal work on distributed coordination [15].
Their consideration within the same research and development space [1] is so far
being representing the opportunity for us to harness our knowledge towards the
systematic development of choreography-based systems.

The common idea underlying the approaches in [6,7,16,17,20] is to assume a
high-level specification of the requirements that the choreography has to fulfill
and a behavioral specification of the services participating in the choreogra-
phy. From these two assumptions, by applying data and control-flow analysis, a
BPEL, WSCI or WS-CDL description of a centralized choreographer specifica-
tion is automatically derived. This description is derived in order to satisfy the
specified choreography requirements.

The works described in [22,24,3,11,4] address the problem of checking
whether a choreography can be realized by a set of interacting services, each
of them synthesized by projecting the choreography specification on the role to
be played. This problem is known as choreography realizability check. The focus
is on verifying whether the set of services, required to realize a given chore-
ography, can be easily implemented by simply considering the role-based local
views of the specified choreography. That is, this verification does not aim at
extracting the global coordination logic that, as we do in CHOReOS, is needed
to check whether the collaboration among the discovered services leads to global
interactions that violate the choreography behavior.

In [9] the authors presents a framework for verifying choreographies using
model and equivalence checking techniques. Leveraging a translation of the
choreography into LOTUS NT algebra, the framework enables the verification
of some analysis tasks, i.e., repairability, realizability, conformance, synchroniz-
ability, and control for enforcing the choreography. In order to check in sequence
the system synchronizability and realizability using equivalence checking, dis-
tributed controllers are generated through an iterative process presented in [10].

In [19], the authors show how to automatically generate a partial DAML-S
process model out of a WSDL description. The generated process model can be
then possibly completed manually by the developer. Although the aim of this
work is completely different from ours, it shows that DAML-S can be considered
as another possible notation BPMN2 choreographies could be mapped to.

The work in [14] presents an approach that generates a set of related or-
chestrations from a choreography specification. Specifically, a transformation to
derive a set of BPEL specifications out of a CDL specification of the choreogra-
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phy is formalized. Similarly to us, the transformation mappings is implemented
as transformation rules in ATL.

In [12] the authors propose a model-driven method to develop collaborative
systems. The methods uses a graph transformation to derive a flow-local chore-
ography from a flow-global choreography. UML Activity Diagrams are used to
specify both the source model and the target model.

Most of the previous approaches consider as input choreography specified by
using different notations and formalisms. Only few of them uses BPMN2 Chore-
ography Diagrams, notably, [9] and [21]. Depending on the specific purposes, the
different approaches transform the choreography into different (formal) represen-
tations such as Petri Net, LOTUS NT, various state machines, etc. Moreover, all
these approaches are based on different interpretations of the choreography in-
teraction semantics and consider different subsets of choreography constructs. A
weakness here resides on the fact that all the adopted formal notations are dis-
tant from BPMN2.

5 Conclusions and Future Work
This paper presents a model transformation to extract from a BPMN2 choreog-
raphy specification the global coordination logic and codify it into an extended
LTS, called Choreography LTS (CLTS). The expressiveness of the CLTS meta-
model allows us to fully automate the approach and to transform very complex
choreography specifications into rigorous descriptions. The presented approach is
implemented as a REST service and it part of a model-based tool chain (named
CHOReOSynt2) released to support the development of choreography-based sys-
tems in the CHOReOS EU project.

The approach has been applied to real-world use cases, provided by the
CHOReOS industrial partners, in the Airport, Marketing and Sale, and Taxy
Transportation domains. Interested readers can refer to the CHOReOS project
and CHOReOSynt web sites for documentation. The application of our approach
to these use cases has shown that the method is viable and practical. However,
although our preliminary validation has been carried out in a context in which
the presence of relevant to the approach stackholders are present, a real quan-
titative assessment of the method needs further investigation. This is part of
our ongoing work together with an industrial partner of the CHOReOS project.
Another direction of future work will address the extension of the implemented
transformations to transform also BPMN2 choreography specifications contain-
ing events, as well as event-based and complex gateways.
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Abstract. Rigorous development and quality assurance are inherent
parts in the engineering of safety-critical systems. Many standards that
address the development and certification of these systems provide a col-
lection of various types of tests that have to be conducted to achieve
the desired level of quality. Further, they recommend to perform most
of these tests on the target embedded system, rather than on develop-
ment hosts for example. For specific architectures, such as those used in
component-based systems, this requirement is often difficult to achieve,
mostly because of lack of available test frameworks that can support such
specific architectures.
In this paper, we propose a framework for testing component-based sys-
tems on their embedded targets. The test framework allows to deploy
software components in their binary form onto such targets. Further,
it allows to build compositions out of deployed components so that
complete applications can be tested. The compositions are build using
the techniques for webservice composition, since interfaces to deployed
software components are exposed as webservices. With this lightweight
framework, it is possible to conduct some relevant tests required by the
safety standards in early development phase, because it only requires
software components to be implemented to test complete applications.

Keywords: safety-critical embedded systems; component-based systems;
software testing

1 Introduction

Safety-critical systems can cause serious consequences such as harm on humans
or equipment and environmental damages, if they malfunction. A rigorous devel-
opment and quality assurance are therefore required to reduce the risk of such
malfunctioning. To this end, standards for functional safety such as IEC 61508
and ISO26262 provide guidelines and methods on how to reduce the risk of fail-
ures and how to evaluate the quality of systems [8]. One set of these methods are
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tests that have to be performed in order to provide an evidence about the oper-
ational profile of the system i.e., to show the conformance with the functional,
safety, and other non-functional requirements. These tests are usually aligned
with the well-known V development model, which comprises tests on different
levels, i.e., from tests on module/unit level, integration on software and system
level, to the final systems validation. One important aspect of this test chain
within a V-model is that the evidence provided in reports has to conform to the
real context in which the system shall operate, i.e., the safety standards require
to perform tests on the real target hardware and considering the real environ-
mental conditions [2], [8]. In many cases, this is difficult to realize, because of a
variety of used target processors, used systems and software architecture and also
because of a lack of specific test platforms for embedded systems. Especially, for
component-based systems, which have separated development for the (software)
components and for the system1, this can be a tedious task. Many features have
to be prepared in order to reach the point where software integration can be
tested. For example, communication mechanisms, middleware for coordination
of components and adequate interfaces to the development host are required to
just test the integration between components, i.e., their composition.

In this paper, we describe a lightweight framework to perform tests of soft-
ware components and their compositions on an embedded target. The distin-
guishing advantage of our approach is that only software components have to be
provided to perform such tests. This allows developers to perform certain types
of tests on complete component-based applications in the early development
phases, i.e., before any middleware service for the coordination and communica-
tion of software components is developed. The framework utilizes the technique
for webservice composition in order to build applications out of such compo-
nents. To allow for building compositions, software components are deployed
within an embedded target as standalone webservices. One of the major contri-
butions in this paper is the mapping between specific component technology and
webservices. In the end of paper, we discuss the applicability of the framework
to different component technologies used in the industry.

Section 2 provides a brief overview of studies related to testing component-
based systems on embedded targets. Section 3 summarizes a motivation behind
the work. The proposed framework is described in Section 4, and its concrete
implementation and used tools are described in Section 5. A brief discussion and
concluding remarks are given in Sections 6 and 7 respectively.

2 Related Work

Now we turn to a brief overview of related studies. We outline here some relevant
articles that describe test frameworks for component-based embedded systems.

Currently, the introduced problem of testing software components and their
compositions on embedded targets is very important topic for automotive sys-
tems. In the last decade, several frameworks have been developed to support

1 In the context of Component-based Software Engineering (CBSE) [1]
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rapid prototyping, simulation and testing of automotive systems which imple-
ment a complex component-based architecture – AUTOSAR [3], [6], [9]. Among
these frameworks, the DaVinci Component Tester [3] is the one with most fea-
tures to test complete component-based systems. It is an emulated environment,
with unit testing facilities for atomic and composite AUTOSAR software com-
ponents. An emulated runtime environment (RTE) of the framework implements
basic communication and coordination services for software components so that
all necessary interaction scenarios between those components can be emulated.
For the purpose of testing, the components have to be compiled for the target
where the RTE is operating. Usually, the development host is used to execute
RTE, rather than an embedded target. Similar to DaVinci Component Tester,
the framework in [6] provides test support for compositions. In contrast to previ-
ous work, fault injection tests are applied here to evaluate the reliability of AU-
TOSAR systems. Finally, the Artop ARUnit framework [9] provides AUTOSAR
RTE services to perform unit testing for single software components.

In general, described frameworks perform the testing on development host
only. Therefore, for systems qualification, safety-relevant software components
and related compositions need to be tested again on their real embedded target.
As mentioned in the previous section, to realize this deployment and a support
for building compositions such as RTE of the DaVinci Component Tester for
embedded targets may require much effort. One option to overcome this issue is
to use the standardized techniques for the deployment and composition, such as
those provided by service-oriented architectures (SOA) for example. Currently,
there are many approaches that use SOA to expose embedded devices with
the purpose of testing [7] or integrating devices to implement certain business
processes [4]. Another advantage of using SOA for this purposes is that many
mature tools and methods exist that provide various generation facilities or test
frameworks. Similar to work in [4], we use SOA to build compositions, but instead
of exposing device functions as webservices, we expose the deployed software
components. Thus, for every software component, there is a single container, a
server, which provides a webservice interface to its function.

3 Motivation

Mastering complexity of today’s embedded systems is one of the major challenges
in safety engineering. In addition to rapid increase of software complexity, many
application fields are confronted with the issues coming from the concurrent engi-
neering, where different organizations are contributing to systems development.
In the automotive industry for example, many system parts are delivered by
the suppliers, including devices, OS services and libraries, while the automotive
companies, i.e. manufacturers, are focusing on software applications. Developing
such applications is challenging for manufacturers, because for testing purposes
they need a system in which all required parts from suppliers are integrated.

Providing a test support for the application-level software without a need to
consider supplier’s parts would leverage rapid development for the manufactur-
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Fig. 1. Test framework architecture: a Development Host – modelling component-based
system, definition and execution of tests (left) and an Embedded Target – execution
of software components (right)

ers, and would allow them to achieve many test objectives earlier. In summary,
the manufacturers would be able to (i) qualify the application-level software com-
ponents according to regulations of safety standards, and (ii) to early conduct
the functional tests, which can be used later in the verification and validation
part of the V-model to complement the remaining test activities.

4 Proposed Framework

In this section, we introduce the proposed test framework. We first give an
overview of its main components, and then we describe how the test process is
conducted using the framework.

Fig. 1 shows the simplified architecture of the framework. Basically, the
framework consists of the two main components: the Development Host and the
Embedded Target, which has to be used in the operation of the safety-critical
system. This Embedded Target provides services to deploy software components
and to manage their lifecycle during the tests. The Lifecycle Manager component
shown in Fig. 1 is responsible for these purposes. One of the main characteristics
of the framework is that software components are executed in isolation and do
not interfere with each other within the Embedded Target. That means, the in-
teraction between those components is not possible within the Embedded Target.
Thus, software components can just execute their functions, based on input data
provided by the Execution Context component, which also collects the results
from that component after the execution. The Execution Context corresponds to
a simple middleware or a container that implements the lifecycle management
for a single software component. To communicate with the rest of the frame-
work, it exposes the interfaces of its software component as a webservice (the
Webservice Interface WSI in figure).
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On the other side, the Development Host comprises a collection of various
tools in order to (i) to map a particular component technology on webservices,
i.e., to build the Execution Context (see Section 5 for more details), (ii) to build a
component-based application by composing software components running on the
Execution Context, and (iii) to conduct the test process on those applications.

4.1 Framework Components

Virtual Composition corresponds to a modelled component-based applica-
tion. In its simplest form, it corresponds to a concrete software component,
which runs on the Embedded Target. Therefore, for every software component,
there is a corresponding Virtual Composition which runs on the Development
Host. From the technical viewpoint, a Virtual Composition is a webservice in-
stance which points to a concrete software component on the Embedded Target.
In a more complex form, the Virtual Composition can comprise multiple soft-
ware components, i.e., a composite of multiple Virtual Compositions, so that
complete component-based applications can be modelled. For this purpose, a
technique for webservice composition is used (see Section 5 for more details).

Composition Execution Component. This component of the framework ex-
ecutes Virtual Compositions. Based on their descriptions, it simulates the ap-
plication behavior while executing the involved components on the Embedded
Target.

Test Execution Component is a bundle consisting of the test cases, stubs
and drivers to conduct the complete test on modelled Virtual Compositions. It
executes Virtual Compositions against provided test cases and reports the test
status.

Execution Context. The Execution Context is a standalone component con-
tainer that provides the lifecycle management for a single component. Further-
more, it exposes the component interfaces through webservices (WSI) in order to
allow to build Virtual Compositions. It also provides the state isolation function-
ality for stateful components, which is relevant if a particular component is used
multiple times by the Virtual Composition (see Section 4.2). Fig. 2 shows the
architecture of Execution Context. In short, a software component is wrapped by
the webservice, which is generated and linked with the standalone SOAP2 server
that hosts the service. The code on the left in figure shows the concrete method
body of the webservice and its link with the concrete software component. We
explain this link in Section 5 in more detail.

Generator Component is a part of the deployment process. It comprises a
collection of tools (i) to generate the required artifacts for the modelled Virtual

2 Simple Object Access Protocol: application-layer protocol for webservices.
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1  int tps1__execute(struct soap *soap, 
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int& out)

2  {
3                                               
4  out = execute(in0, in1, g); //sw-c link
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1  int execute(int in0, int in1, bool g); //header

Fig. 2. Execution Context: artifacts used for the mapping between CBSE and SOA
(left) and the architecture (right)

Compositions and to deploy them onto the Development Host, and (ii) to gen-
erate the Execution Context, i.e., to map CBSE on SOA, and to deploy it onto
the Embedded Target.

Lifecycle Management manages the lifecycle of all Execution Contexts within
the Embedded Target. It provides services for the deployment, removal and roll-
back3 of software components.

4.2 State Isolation

The presence of the stateful components is an issue if multiple instances within
a single Virtual Composition exist and if several Virtual Compositions share the
software components simultaneously. It is therefore necessary to protect such
software components from transition into an inconsistent state, i.e., the state
influenced by one Virtual Composition shall not be used or compromised by
another Virtual Composition. This feature is a part of the Execution Context. It
isolates the state by identifying the Virtual Composition that owns the currently
active request. For this purpose, the context-dependent state is queued within the
Execution Context for each stateful component. Based on the incoming request,
the corresponding state is accordingly restored.

4.3 Test Workflow

After software components are developed, they are compiled for the Embedded
Target and deployed there, using the Generator Component. To perform the tests
on software components or on their compositions, a component-based system is
modelled first, by defining Virtual Compositions and by deploying them onto the

3 Required to reset the component state for new test iteration.
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Development Host. Finally, test cases are defined and executed on the modelled
Virtual Compositions, using the Test Execution Component.

Development Host

VCs (Netbeans 6.7 BPEL Editor)Test Execution Comp. (soapUI 3.x)

Composition Execution Component (Glassfish ESB 2.x)

VC ... VC

Embedded Target (ARM926EJ-S Freescale imx28)

Operating System (Arch Linux 2.6)

gSOAP Server

EC ...

gSOAP Server

EC

gSOAP Server

EC

Lifecycle Manager

Fig. 3. Implementation of the framework and used tools and configurations (EC -
Execution Context, VC - Virtual Composition)

In the following section, we introduce the concrete implementations and tools
used to realize the mentioned components (see Fig. 3).

5 Implementation

In order to apply the framework in the domain of embedded systems, we use the
gSOAP4 webservice library, which offers the SOAP stack dedicated to resource-
constrained systems. The gSOAP webservices host the Execution Context and
the Lifecycle Manager directly on the Embedded Target. For every software com-
ponent, there is a dedicated gSOAP server that hosts that particular component.
All gSOAP servers are running as Unix processes within an Arch Linux operat-
ing system. In our test setup shown in Fig. 3, we deploy software components
on an ARM9 target (Freescale imx28 with 454MHz, 128MB of RAM).

For modeling and executing the Virtual Compositions, we use an XML-based
WS-BPEL (WS Business Process Execution Language) [5]. This technology is
widely applied in enterprise applications to seamlessly integrate webservices or

4 gSOAP Homepage: http://gsoap2.sourceforge.net/
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legacy applications wrapped by webservices into a business process. Thus, every
Virtual Composition is represented as a BPEL process and therefore consists of
a workflow, which describes the sequence on how the software components have
to be executed. In addition to the workflow, every Virtual Composition describes
the integration between software components as a structure, i.e., in a composite
diagram (see Fig. 3, Netbeans 6.7 BPEL editor).

From the front-end viewpoint, we use the soapUI Tool5 to define the test
cases and to drive the test process. This tool allows to perform various test
strategies on webservices, such as functional tests, load tests and security tests.
It also enables the automated test execution for given test suites. In our context,
it plays the role of the Test Execution Component. We manually specify the test
cases, define a test suite and execute it on the deployed Virtual Compositions.

Another tool which is used as part of the front-end is the Netbeans BPEL
Editor. We used it to graphically define Virtual Compositions in terms of the
structure and the workflow and to generate the necessary artifacts for the de-
ployment, such as WSDLs and assembly descriptions for Virtual Compositions.
In order to deploy Virtual Compositions as webservices on the Development
Hosts, we use the Sun Glassfish Enterprise Service Bus (ESB).

5.1 Webservice Interfaces for Software Components

As illustrated in Fig. 3 webservice interfaces of the Execution Context are hosted
by the gSOAP servers. Except of the SOAP stack, the gSOAP library consists
of a generator toolchain, which allows to build webservice stubs and skeletons
from the WSDL specifications. We use the wsdl2h tool to generate the header
files that are in turn used to link the object code of software components with
the Execution Context. The generation of the Execution Context is supported
by the soapcpp2 skeleton compiler (see Section 5.2). This is one of the most
challenging parts of the framework, because here, a mapping from the used
component technology to webservices is performed. An excerpt of this mapping
is depicted in Fig. 2. Here, a software component is represented using just a
single C/C++ method. This method is used by the Adapter, which routes the
data from the Development Host to the component, and returns the results
from that component. To establish this link, we define a header file, which is
implemented by the software component, and which is used by the Adapter to
find a proper symbol after linking the adapter with the component. Both the
adapter code and the headers are generated based on interface description of
a software component. In the following, we describe the process of generating
artifacts used to build the Execution Context.

5.2 Deployment Process

The essential part of the deployment process in which the Execution Context is
generated is depicted in Fig. 4. The process starts by submitting the software

5 soapUI Homepage: http://www.soapui.org/ – in this work used for specifying func-
tional tests only.
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component in form of the object code and its interface description to the Life-
cycle Manager on the Embedded Target. The Lifecycle Manager in turn starts
the deployment by generating the necessary skeleton code based on component
interface description, i.e., it generates a header file that describes the component
interface for the linking with the Execution Context, and the required libraries
for the SOAP stack. In the next step, the Execution Context is generated. At
this point, all artifacts for the deployment are ready. They are, in the final step,
compiled and linked to a single image of the Execution Context, which is then
bootstrapped by the Lifecycle Manager. The Execution Context in turn takes
the control over the component lifecycle and publishes its WSI. After this last
step is completed, the software component is ready for tests.

Generator 
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Lifecycle 
Manager

gSOAP
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Deploy software component (interface description, object code)

Generate interface
skeletons

skeleton.h

adapter-code.lib

Generator 
Component

ExecutionContext
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Fig. 4. Generation process for the Execution Context

6 Discussion

We showed in this paper how component-based systems can be tested on em-
bedded targets. With the introduced framework, the functional tests can be
performed on a level of software components and their compositions. Although
the framework allows testing just on a functional level (compared to introduced
frameworks where also middleware is part of a test), it allows to conduct the early
qualification of software components on embedded targets and to test potential
component-based applications.

We also described the link between SOA and CBSE, using plain C/C++
methods as component technology. To apply the framework to other component-
based systems, similar adapters to SOA have to be realized. For instance, to
test AUTOSAR systems, the adapters for Runnables have to be implemented.
Runnables are execution units within AUTOSAR software components, and are
triggered by specific events by the AUTOSAR RTE. The events have to be re-
alized with BPEL, and AUTOSAR software component have to be realized as
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Virtual Compositions. In contrast to CBSE to SOA mapping introduced here,
a composition of AUTOSAR software components would be represented as a
Virtual Composition that consists of further Virtual Compositions, each repre-
senting a single AUTOSAR software component. On the other side, for data-flow
synchronous systems such as Matlab Simulink and IEC61131, the mapping to
SOA can be realized as described in this paper. That means, in case of specific ex-
ecution semantics such as request-response and sender-receiver interaction styles
in AUTOSAR, additional layers of Virtual Compositions are required.

7 Conclusion

Testing safety-critical systems in their real context, i.e., on embedded targets
and under real environmental conditions, is recommended by safety standards.
However, there are many challenging factors to perform this task, such as variety
of available target processors, lack of test frameworks for embedded systems and
used specific systems architecture.

In this paper, we introduced a framework to test safety-critical component-
based systems on embedded targets. With the framework, the functional tests
can be performed on a level of software components and their compositions. The
distinguishing advantage of our approach is that only software components have
to be provided to perform such tests. This allows developers to perform func-
tional tests on component-based applications in the early development phases.

Currently, the framework can host software components with the primitive
data types on their interfaces only. As part of the ongoing work, we will pro-
vide a support for specific complex data types, to enable to host some existing
component-based systems such as AUTOSAR or IEC61131 systems for example.

References

1. Crnkovic, I., Larsson, M.: Building Reliable Component-Based Software Systems.
Artech House Publishers, ISBN 1-58053-327-2 (2002)

2. Grünfelder, S.: Software-Test for Embedded Systems. dpunkt.verlag (2013)
3. Informatik, V.: Davinci component tester - user manual. Tech. rep., VI GmbH (2011)
4. Karnouskos, S., Baecker, O., de Souza, L., Spiess, P.: Integration of soa-ready net-

worked embedded devices in enterprise systems via a cross-layered web service in-
frastructure. In: IEEE ETFA. pp. 293–300 (Sept 2007)

5. Louridas, P.: Orchestrating Web Services with BPEL. IEEE Softw. (Mar 2008)
6. Piper, T., Winter, S., Manns, P., Suri, N.: Instrumenting autosar for dependability

assessment: A guidance framework. In: 2012 42nd Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN). pp. 1–12 (June 2012)

7. Rusli, H.M., Ibrahim, S., Puteh, M.: Testing Web Services Composition: A Mapping
Study. Communications of the IBIMA 2011(598357) (2011)

8. Smith, D., Simpson, K.: A Straightforward Guide to Functional Safety, IEC 61508
(2010 Edition) and Related Standards, Including Process IEC 61511 and Machinery
IEC 62061 and ISO 13849. Elsevier Science (2010)

9. Wong, D., Wengler, T., Asmus, R., Rudorfer, M.: Artop: Developing autosar tools
in the community. ATZextra worldwide 18(9), 34–36 (2013)

87


