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Abstract. In this paper, we discuss the approach based on Social Choice The-
ory and Judgment Aggregation to the definition of collective reasoning. We shall
make explicit the aggregative nature of the notion of collective reasoning that is
defined in the Judgment Aggregation account and we shall stress that the notion
of logical coherence plays a fundamental role in defining collective attitudes. Un-
fortunately, as several results in Judgment Aggregation show, coherence is not
compatible with fair aggregation procedures. On closer inspection, the notion
of coherence that is jeopardized by Judgment Aggregation is based on classi-
cal logic. In this work, we propose to revise the standard view of rationality of
Judgment Aggregation by exploring the realm of non-classical logics. in partic-
ular, we will present possibility results for substructural logics. Those logics, we
argue, provide a viable notion of collective reasoning.

1 Introduction

In the past decades, Social Choice Theory and Judgment Aggregation have been exten-
sively studied in philosophy, welfare economics, and also in AI and multiagent systems,
in order to provide a principled definition of the aggregation of individual attitudes into
a social or collective attitude. The view of Judgment Aggregation (JA) [11] of collec-
tive attitudes is an aggregative view: a number of agents provides their propositional
attitudes (belief, judgments, preference, etc.) to a centralized mechanism that aggre-
gates the individual possibly divergent attitudes into a collective set of attitudes [2].
The collective outcome is supposed to satisfy a number of rationality conditions, usu-
ally expressed as constraints in classical logic. In particular, JA studies the procedures
to aggregate individual attitudes that satisfy a number of normative desiderata, such
as impartiality between agents and rationality of the collective outcome. By exploiting
the insightful methodology of social choice theory [4], JA provides a principled way
to understand collective attitudes and collective rationality, how they can be defined
from a number of possibly conflicting individual attitudes, and how to provide a formal
modeling of them. Unfortunately, the main formal result in Judgment Aggregation is a
negative result. In particular, it is an impossibility theorem that states that there is no
aggregation procedure that can guarantee at the same time both the rationality of the
outcome and the fairness of the aggregation [9]. The impossibility theorem, far from
being a mere mathematical curiosity, is instantiated by situations that have actually oc-
curred in the deliberative practice of important collegial court such as the US Supreme
Court [8]. Those cases of collective irrationality have been labelled doctrinal paradoxes
and discursive dilemmas. A simple example is the following. Take a committee com-
posed by three members, who have to decide whether to implement a policy B: “we
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should increase workers’ salaries” on the grounds of A: “low salaries cause crisis” and
the material implication A → B: “if low salaries cause crisis, then we should increase
workers’ salaries”. The information at issue is here represented by means of proposi-
tional logic and every agent is supposed to be rational, that is, agents respect the rules
of logic. Now suppose members hold different opinions, as follows.

A A→ B B
1 yes yes yes
2 no yes no
3 yes no no

Agent 1 accepts the three propositions, 2 does not accept A, therefore she rejects B,
and 3 agrees on the premise A but she thinks that it is not sufficient to conclude B. If
individuals vote by majority, then the collective accepts A, which is voted by 1 and 3,
it accepts A → B, voted by 1 and 2, but it does reject B. If we assume that rejecting a
proposition is equivalent to accepting its negation, then, even if each individual opinion
is logically consistent, the collective set {A,A → B,¬B} is inconsistent, that is, con-
tradictory. This toy example of collective inconsistency is a case of discursive dilemma
that has received increasing attention in the past decade and has provided the semi-
nal results in the formal theory of judgment aggregation [9,11]. Discursive dilemmas
show that the problem of ascribing reasoning capabilities to groups requires a careful
examination of which procedures that aggregate individual attitudes ensure (at least)
consistency. That is, the definition of collective attitudes is delicate.

Consistency is a crucial feature for defining collective attitudes. One reason is that
consistency is strictly related to agency [10]. By enforcing consistency, we can talk
about the behavior of a single collective agent, who is supposed to be the bearer of
collective attitudes, and distinguish it from the behavior of a number of agents, for
which contradictory positions are simply expressions of possible disagreement. That is,
at least a minimal form of (synchronical) consistency is viewed as a necessary condition
for defining a collective agent.1 For those reasons, an important concept in judgment ag-
gregation is the concept of collective rationality that can be viewed as a preservation
property: the collectivity has to be as rational as its members (i.e. if the individuals are
consistent, then the collectivity has to be consistent). One way of viewing judgment
aggregation impossibility results is that they show that individual rationality is not pre-
served by means of fair aggregation procedures [7]. For instance, discursive dilemmas
show that the majority rule does not preserve consistency. Therefore, we cannot talk
about a collective agent whose attitudes are defined by majority. This is a drawback,
provided we want to ascribe collective agency to many real representative assemblies.
A weaker notion of consistency has been used to define collective agents in [15]. This
notion does not rule out group agents defined by majority, however it still admits possi-
ble (complex) inconsistencies.

Two assumptions are usually endorsed by the Judgment Aggregation model. Firstly,
that individual and collective rationality can be modeled by means of a logic that is

1 For the role of consistency in defining collective agency and for the relationship between con-
sistency and the notion of coherence, we refer to [10] and [12].
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mostly “classical”. 2 Secondly, that individual and collective rationality are of the same
logical type. In this work, we start questioning those two assumptions. Concerning the
first, we ask whether there exist a well-behaved logic that is consistent wrt the proposi-
tions that are obtained by means of a fair aggregation procedure. In order to simplify the
presentation, we focus in this paper on the majority rule, and we ask whether there is a
logic that is consistent with respect to the output obtained by majority. We will carefully
analyze the inference rules that are allowed at individual and collective level and, for
that reason, we shall use an inferential view of logic based on proof-theory. Quite sur-
prisingly, we will show that there is a logic that guarantees consistency for the majority
rule. Concerning the second assumption, we will show that by letting individual reason
by classical logic, as in the standard Judgment Aggregation setting, and by interpreting
collective reasoning in substructural logic, we can provide again possibility results for
consistent collective reasoning.

A strong conclusion one could draw is that the impossibility results in Judgment
Aggregation are threatening only a notion of collective reasoning that is based on a
classical view of logic. There do exist logics of collective reasoning for which consis-
tency is guaranteed for any possible agenda of proposition, that means that, for those
logics, we have a general possibility result.

The remainder of this paper is organized as follows. In Section 2, we present the
relevant background on proof-theory and substructural logics. Section 3 analyses dis-
cursive dilemmas by investigating the reasoning steps that are responsible of collective
inconsistencies. Then, we informally discuss the possible way out provided by substruc-
tural logics. Section 4 presents the formal model for discussing Judgment Aggregation
in a number of non-classical logics and Section 5 presents the main possibility results.
The technical results of this paper are mainly based on the model provided in [14].
Section 6 concludes and indicates possible future work.

2 Background on Sequent Calculi and Substructural Logics

Gentzen’s sequent calculi [17] provides an important theory in logic that allows for
investigating properties of inference rules, deduction, and reasoning. Besides providing
a fine-grained tool to analyse reasoning, sequent calculus can be used to model a number
of logics in an elegant way. Sequents are expressions of the form Γ ` ∆, where Γ , the
premises of the sequent, and∆, the conclusions of the sequent, are made out of formulas
in a given logic. The intuitive meaning of a sequent expression is that the conjunction of
the formulas in Γ entails the disjunction of the formulas in∆. A sequent calculus is then
specified by two classes of rules, cf Table 1. Structural rules determine the structure of
the sequent, for instance, they entail that in classical logic Γ and∆ are sets of formulas.
Logical rules define the behavior of the logical connectives. Sequent calculus then is
capable of characterizing validities in a number of logics, by defining rules that combine
proofs according to the meaning of the logical connectives in a particular logic.

2 That means that the consequence operator of those logics is standard in the sense of Tarski.
Logics used by Judgment Aggregation have a standard consequence operator, including many
modal logics and the “general logic” discussed in [1]. As we shall see, one crucial aspect of
standard consequences is monotonicity.
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A fundamental intuition concerning logic is due to the tradition of substructural
logics and in particular to Jean Yves Girard’s Linear Logic [5]: The structural rules of
the sequent calculus determine the behavior of logical connectives. For instance, clas-
sical logic is imposed, by assuming weakening (W), contraction (C), and exchange (E)
(cf. Table 1). Intuitively, (W) corresponds to the monotonicity of the entailment, (C)
amounts to assuming that identical occurrences of a formula do not matter for deduc-
tion, and (E) entails the commutativity of conjunction and disjunction. We shall use the
standard notation, e.g. A ∧ B and A ∨ B, when we intend to refer to connectives in
classical logic (CL), namely, in case we assume that the structural rules hold.

By disabling one or more structural rules, we enter the realm of substructural logics.
We shall focus here on Linear Logic [5,18] since it provides the tools that we need to
analyze collective reasoning and to state our possibility results.

The motivation for investigating substructural logics is usually related to the idea
of modeling a constructive notion of reasoning that accounts for the computational re-
sources that are required by deduction. Constructivity is neglected by the principles
of classical logic. For instance, contraction (C) allows for an unbounded number of
duplications in proof-search. Note that Gentzen’s surprising insight that shows that in-
tuitionistic logic can be captured by simply forcing the right-hand side of the sequent to
contain at most one formula can also be interpreted in terms of a substructural approach
to logic. This restriction has been interpreted as a manner to disable structural rules
locally [5], that is, on the right-hand side of the sequent. This is sufficient to provide a
sound and complete calculus that captures intuitionistic (i.e. constructive) reasoning.

Linear Logic (LL) rejects the global validity of (W) and (C) both on the left and on
the right hand side of the sequent.3 In Table 1, we present two ways of defining logical
rules: an additive version and a multiplicative version. They depend on how we handle
premises in the deduction: in the case of conjunctions, additives force to share the same
premises, whereas multiplicatives combine different premise. The two formulations are
redundant in classical logic and that is due to structural rules: by assuming (W) and (C),
additive and multiplicative versions are equivalent. If we drop weakening and contrac-
tion, additives and multiplicatives are no longer equivalent, hence we need to account
for two different types of conjunctions and disjunctions. This operators are somehow
invisible in classical logic, because of the structural rules.

Therefore, the rules that define logical connectives in the sequent calculus of LL
have to be split into two classes. Accordingly, in LL there are two different types of con-
junction, a multiplicative conjunction ⊗ (tensor) and an additive conjunction & (with),
and two types of disjunctions, multiplicative ` (parallel) and additive ⊕ (plus). Impli-
cations can be defined by means of disjunctions and negations as usual. For example,
LL implication is A ( B ≡ ¬A ` B. Intuitively, LL captures resource bounded rea-
soning and non-monotonic inferences. For example, suppose the proper axiom e ` c
represents the inference “if I have one euro (e), then I buy one coffee (c)”. In classical
logic, one can infer by means of contraction e ` e∧c, namely, that I still have one euro,
besides having the coffee. By dropping contraction, LL captures a form of causality:
the antecedent has to be consumed during the inferential process.

3 For lack of space, we cannot discuss the rule of exchange (E) here. By disabling it, we are lead
to consider non-commutative logics.
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Given a set of propositional atoms A, the language of LL is defined as follows.4

LLL ::= A | ¬L | L⊗ L | L` L | L⊕ L | L& L

The sequent calculus for LL is presented in Table 1. A sequent is an expression
Γ ` ∆, where Γ and ∆ denote, in the case of linear logic, multisets of occurrences
of formulas.5 LL is sound and complete wrt to its semantics, Moreover, LL enjoys cut
elimination. [6].

3 An inferential analysis of discursive dilemmas

We want to discuss the reasoning steps that are involved in the famous case of doctrinal
paradox emerged in the U.S. Supreme Court case Arizona v Fulminante [8]. We sim-
plify the exposition by reporting the votes of three of the nine judges. Judges i1, i2, and
i3 have to decide whether to revise a trial on the ground of the legal doctrine that entails
that a trial must be revised if and only if both the following conditions hold:

a : the confession was coerced.
b : the confession affected the outcome of the trial.

The matters that the judges had to decide can be represented by means of the agenda
of propositions: {a, b, a ∧ b,¬a,¬b,¬(a ∧ b)}, where negations are used to represent
individuals’ dissent concerning a given matter. The way the judges voted can be fairly
represented by the following profile.

a a ∧ b b ¬a ¬(a ∧ b) ¬b
i1 1 1 1 0 0 0
i2 1 0 0 0 1 1
i3 0 0 1 1 1 0

maj. 1 0 1 0 1 0

Individuals are assumed to be rational and accordingly each judge has a consistent set of
propositions. However, by majority, the collective set {a, b,¬(a ∧ b)} is not consistent.
The fact that {a, b,¬(a ∧ b)} is not consistent means (proof-theoretically) that we can

4 We focus on the multiplicative-additive fragment of LL. Another important part of LL is given
by the exponentials, that allow for retrieving the usual classical inferences in a controlled
way. Therefore, instead of being yet another non-classical logic, Linear Logic is motivated at
least as an analysis of proofs in classical and intuitionistic logic. We leave a discussion of the
exponential for future work.

5 Without W and C, also negation behaves differently. For example, the ex falso quodlibet prin-
ciple is no longer globally valid in linear logic. For sake of simplicity of presentation, we shall
use a single notation for negation. That is, linear logic has a paraconsistent flavor. We have
decided not to discuss the case of paraconsistent logics because we are here assuming that a
possiblity results has to provide a consistent model of collective reasoning. By means of para-
consistency, we would still have an inconsistent notion of collective reasoning, and we may
cope with that by means of paraconsistent logics. A closer inspection of paraconsistent logics
is left for future work.
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actually infer a contradiction from the assumption that a, b and ¬(a ∧ b) hold. We
can infer the contradiction by reasoning in classical logic as follows. Assume that the
proposition of the agenda that are elected by majority can be used as non-logical axioms
(as assumptions) of the deduction.

majority
` a

majority
` b

R∧?` a ∧ b
majority

` ¬(a ∧ b)
R∧` (a ∧ b) ∧ ¬(a ∧ b)

Proof 1

Starting from the assumptions, we introduce the conjunction a ∧ b and that contradicts
the assumption ` ¬(A ∧B). On closer inspection, there is an important difference that
regards the way in which we collectively obtain a∧b and ¬(a∧b): the former is inferred
from other propositions that have been accepted by majority, that is a and b, whereas
the latter is immediately accepted by majority. Moreover, a ∧ b is inferred form two
propositions that have been elected by means of two different coalitions of agents, that
is {i1, i2} for a and {i1, i3} for b, whereas ¬(a ∧ b) holds at the collective level by
virtue of a single winning coalition that supports it, i.e. {i2, i3}.

By means of linear logic, we can keep track of such a distinction, by choosing the
tensor conjunction to model the introduction of the conjunction (cf. step R∧?) in col-
lective reasoning and the additive conjunction to model the assumption ` ¬(a & b).
The multiplicative conjunction ⊗ joins two proofs that have different contexts, i.e. that
have been obtained by exploiting different assumptions, whereas the additive conjunc-
tion would force the assumptions to coincide. In order to illustrate this point, we use
sequent calculus instantiated by non-logical axioms of the following form. We view
winning coalitions of voters as premises of sequents, that act as a sort of ground for
making a proposition collectively true. Then, rules of inference can be instantiated as
follows.

majority
{i1, i2} ` a

majority
{i1, i3} ` b

R⊗{i1, i2}, {i1, i3} ` a ∧ b
Classical inferences cannot per se keep track of the fact that a∧b in Proof 1 is inferred by
two propositions that have been obtained by different winning coalitions. In linear logic,
we can write the following proof that interprets the introduction of the conjunction
multiplicatively.

majority
` a

majority
` b

R⊗` a⊗ b
majority

` ¬(a& b)
R&` (a⊗ b)⊗ ¬(a& b)

Proof 2
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Proof 1 was simply showing how to derive the inconsistency of the discursive dilemma.
By contrast, Proof 2 is a legitimate proof of linear logic, that is, (a ⊗ b) ⊗ ¬(a & b) is
not inconsistent in linear logic. In the coalitional interpretation of sequent calculus that
we suggested above, the conclusion of Proof 2 simply means that there are different
winning coalitions for a and b and that does not contradict the fact that there is a also
a single winning coalition for ¬(a & b). Moreover, from the assumptions above (i.e.
non-logical axioms of Proof 2) it is not possible in linear logic to derive a & b, that
is, it is not possible to infer that there is a single winning coalition supporting a and
b. Therefore, the set of formulas {a, b,¬(a & b)} is not inconsistent in linear logic.
Hence, the interpretation that we have sketched shows that there is room in linear logic
for a consistent view of (majoritarian) collective reasoning. As we shall see, this fact
does not depend on the conjunction. It relies on the distinction between additives and
multiplicatives. Consider a case of disjunctive discursive dilemma.

a a ∨ b b ¬a ¬(a ∨ b) ¬b
i1 1 1 0 0 0 1
i2 0 1 1 1 0 0
i3 0 0 0 1 1 1

maj. 0 1 0 1 0 1

Again, each individual is consistent, whereas the collective set {¬a,¬b, a ∨ b} is not
consistent in classical logic.

majority
` ¬a

majority
` ¬b

R∧` ¬a ∧ ¬b
?

¬a ∧ ¬b ` ¬(a ∨ b)
cut

` ¬(a ∨ b)
majority

` a ∨ b
R∧` ¬(a ∨ b) ∧ (a ∨ b)

Proof 3

Inference step ? is justified by De Morgan duality. Again, we can choose how to inter-
pret the logical operators by means of linear logic.

majority
` ¬a

majority
` ¬b

R⊗` ¬a⊗ ¬b
?

¬a⊗ ¬b ` ¬(a` b)
cut

` ¬(a` b)
majority

` a⊕ b
R⊗` ¬(a` b)⊗ (a⊕ b)

Proof 4

Step ? holds because of De Morgan for multiplicatives in Linear Logic.6 Again, by using
the distinction between additives and multiplicatives, we obtain a consistent collective

6 Duality holds between operators of the same type, i.e. between the multiplicative conjunction
and disjunction, and between the additive conjunction and disjunction. Additives and multi-
plicatives are independent.
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set: since ¬(a` b)⊗ (a⊕ b) is consistent in linear logic, also the set {¬a,¬b, a⊕ b} is
consistent.

4 The model

We proposed to abandon two hypotheses of the standard model of JA, that is, classi-
cal logic as a model of rationality and the homogeneity of individual and collective
rationality. In this section, we restate the model of Judgment Aggregation [11,3] in
proof-theoretical terms, we allow for modeling rationality in non-classical logics, and
for evaluating individual and collective reasoning with respect to different logics. The
formal treatment is based on [14]

Let N be a (finite) set of agents. An agenda XL is a (finite) set of propositions in
the language LL of a given logic L that is closed under complements. i.e. non-double
negations. Moreover, we shall assume that the agenda does not contain tautologies or
contradictions. We slightly rephrase the usual rationality conditions on judgment sets
in terms of sequents derivability.

A judgement set J is a subset of XL such that J is (wrt L) consistent (J 0L ∅),
complete (for all φ ∈ XL, φ ∈ J or ¬φ ∈ J) and deductive closed (if J `L φ and
φ ∈ XL, φ ∈ J). Denote J(XL) the set of all judgement sets on XL. A profile of
judgements sets J is a vector (J1, . . . , Jn), where n = |N |.

We discuss agendas defined in a number of languages and logics. We intend to
model aggregators that take profiles of judgments sets that are rational according to a
given logic L and return a set of judgement which can be evaluated with respect to
a (possibly) different logic L′. In case L and L′ are the same, we are in the standard
situation in JA.

In case the languages of L and L′ are different, we need to define a translation
function from the language of L into the language of L′. In general, a translation is
just a function that maps formulas of one language into the other t : LL → LL′ . An
aggregator is then a function F : J(XL)n → J(X ′

L′) such that F is the composition
of an aggregator in the standard JA sense (F ′ : L(X )n → P(X )) with a function
T : P(XL) → P(X ′

L′) that lifts t to sets of propositions: for J ⊂ XL, T (J) = {t(φ) |
φ ∈ J} ⊂ X ′

L′ . Thus, we have that F (J) = T (F ′(J)) ⊆ XL′ . For example, the
majority rule M : J(X )n → J(X ′

L′) is defined as follows. Let Nφ = {i | φ ∈ Ji},
define M ′ : J(XL)n → P(XL) such that M ′(J) = {φ ∈ XL | |Nφ| > n/2}; then,
given a translation t, M(J) = T (M ′(J)).

Note that our definition allows for aggregators that return sets of judgments that are
inconsistent wrt L and that may not to be inconsistent wrt L′. That is why the codomain
of F ′ is defined by the powerset P(XL).

We shall concentrate on the following additive translation of CL into LL: ADD :
LCL → LLL. ADD is defined as follows: for a atomic, ADD(a) = a and ADD(¬a) =
¬a; for A in LCL, ADD(¬A) = ¬(ADD(A)), ADD(A ∧ B) = ADD(A) & ADD(B),
ADD(A ∨ B) = ADD(A) ⊕ ADD(B) (i.e. we replace each classical connective with
its additive counterpart). The translation reflects our interpretation of LL reasoning as
coalitional reasoning. In particular, M : J(XCL)n → J(XLL) defined by M(J) =
ADD(M ′(J)) embeds classical formulas that are accepted according to the majority
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rule into LL by viewing them as additive formulas (i.e. they are collectively accepted
because of a single winning coalition that supports them). Thus, additives are modeling
propositions accepted because of a winning coalition, whereas multiplicatives can be
used to reason about propositions accepted by different winning coalitions. The general
notion of collective rationality can be stated in our framework as follows.

Definition 1 (Collective rationality). An aggregation procedureF : J(XL)n → P(X ′
L′)

is collectively rational wrt to the logic L′ iff for every agenda XL and every profile
J ∈ J(XL)n, F (J) is consistent, complete and deductively closed wrt L′.

The standard notion of collective rationality [11,3] states that a procedure is collectively
rational iff for every agenda defined in classical logic and every profile, the output of
the aggregation procedure is consistent, complete, and deductively closed wrt classical
logic. The standard definition is just an instantiation of Definition 1.

5 Logics for collective reasoning

The seminal impossibility theorem in [9] proves that there is no fair aggregation pro-
cedure that is collectively rational wrt classical logic. In particular, it follows that the
majority rule is not collectively rationally wrt classical logic, as the profile in the discur-
sive dilemma shows. More precisely, the theorem applies to every agenda that violates
the so called median property [11] that can be restated in our setting as follows: for
every subset S of the agenda XL that is minimally inconstant wrt L, S has to be of
cardinality at most 2. For example, the agenda of the discursive dilemma violates the
median property, as it includes {a, b,¬(a ∧ b)} that is a set of cardinality 3 that is
minimally inconsistent wrt classical logic.

Theorem 1. If the agenda XCL does not satisfy the median property, then the majority
rule is not collectively rational wrt CL.

Unfortunately, the median property basically amounts to disabling classical inferences
in collective reasoning, it is a severe language restriction that does not correspond to the
reasoning capabilities of classical logic. For instance an agenda such as {a∧b,¬(a∧b)}
satisfies the median property, however we cannot reason on such conjunctive statement
by using the rules that define the conjunction, on pain of inconsistency.

By moving to intuitionistic logic (IL), we do not observe any substantial difference
from the point of view of collective rationality.

Theorem 2. If the agenda XIL does not satisfy the median property, the majority rule
is not collectively rational wrt IL.

In order to see that, it is enough to consider that Proof 1 in Section 3 is also a proof in
intuitionistic logic, therefore the (conjunctive) discursive dilemma provides a counter
example to the collective rationality of the majority rule wrt to IL. Hence, the non-
constructivity of classical reasoning is not the cause of paradoxes in judgment aggre-
gation. A general possibility result requires substructural logics and the distinction be-
tween multiplicatives and additives. Define Additive Linear Logic (ALL) as the frag-
ment of linear logic defined by the negation and by additive connectives (¬, &, ⊕). We
can prove the following result.
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Theorem 3. For every agendaXALL, the majority rule is collectively rational wrt ALL.

The proof of this result can be easily adapted from the proof of Theorem 2 in [14].
The argument relies on an interesting property of additive linear logic, that is, every
provable sequent in ALL must contain at most two formulas. That precisely corresponds
to the median property. Note that in case of ALL, it is not a severe language restriction
that guarantees the possibility results, it is the very nature of the inference rules of
additive linear logic. That is, the restriction is grounded on the permitted inferences.7

We propose now to evaluate collective reasoning by means of linear logic and let
individuals reason by means of classical logic, in order to provide a possibility result
for the standard JA setting. As a corollary of Theorem 1, we can prove the following
result.

Theorem 4. For every agenda XCL, the (deductive closure of the) additive translation
of the majority rule (cl(ADD(M ′(J)))) is collectively rational wrt LL.

The theorem depends on the additive translation, that is, on the interpretation we adopted
in Section 3. The result shows that the distinction between additives and multiplicatives
at the level of collective reasoning is capable of guaranteeing collective rationality wrt
linear logic. The aggregation procedure ADD(M ′(J)) translates classical formulas ac-
cepted by majority into additive formulas, then it deductively closes the collective set
of propositions by means of full linear logic reasoning. It is worth noticing that, besides
providing a possibility result, Theorem 4 proposes a consistent model of discursive
dilemmas, that is, it provides a logical diagnosis of discursive dilemmas that reflects the
interpretation we provided in Section 3.

6 In favor of non-classical collective rationality

We discussed the importance of consistency and collective rationality for an aggrega-
tive view of collective reasoning. We have seen that a view of rationality based on
classical logic is not capable of defining a viable notion of collective reasoning. The
challenge of this paper is to give up one assumption that is usually endorsed, that is,
instead of dropping normative properties of the aggregation procedure, we decided to
give up classical logic. We have seen that there do exist well-behaved logics, such as
linear logic, for which majoritarian collective rationality is guaranteed. We claim that
linear logics are a good candidate for developing a theory of collective reasoning. Fu-
ture work has to be done in order to fully motivate this idea. In particular, one direc-
tion is to develop a logical model of the relationship between individual and collective
rationality. A way to approach this problem is to develop a non-classical account of
coalition logic [13] that is based on linear logic. In particular, by interpreting the ax-
iom [C1]A ∧ [C2]B → [C1 ∪ C2](A ∧ B) of coalition logic by using the distinction
between multiplicative and additive conjunctions, we shall provide a logical foundation
of the additive translation and of the interpretation we provided in Section 3. A fist step

7 Note that the proof-theoretical analysis pinpoints what inference rule are responsible for deriv-
ing collective inconsistency. For example, by allowing weakening (W) in collective reasoning,
we lose collective rationality also for ALL.
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for developing a linear coalition logic has been proposed in [16]. Moreover, another
direction is to investigate the rich framework of semantics of linear logic, such as game
semantics, in order to provide an accurate semantic description of collective paradoxes.
Finally, another direction has to investigate whether there are other non-classical logics
for which possibility results can be achieved, a good candidate seems to be relevance
logics.
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Identities

ax
A ` A

Γ,A ` ∆ Γ ′ ` A,∆′

cut
Γ, Γ ′ ` ∆,∆′

Structural Rules

Γ,A,B, Γ ′ ` ∆
E

Γ,B,A, Γ ′ ` ∆
Γ ` ∆,A,B,∆′

E
Γ ` ∆,B,A,∆′

Γ,A,A,` ∆
C

Γ,A ` ∆
Γ ` ∆,A,A

C
Γ ` ∆,A

Γ ` ∆ W
Γ,A ` ∆

Γ ` ∆ W
Γ ` ∆,A

Negation

Γ ` A,∆
L¬

Γ,¬A ` ∆
Γ,A ` ∆

R¬
Γ ` ¬A,∆

Multiplicative presentation of logical connectives

Γ ` A,∆ Γ ′ ` B,∆′

∧R
Γ, Γ ′ ` A ∧B,∆,∆′

Γ,A,B ` ∆
∧L

Γ,A ∧B ` ∆

Γ,A ` ∆ Γ ′, B ` ∆′

`L
Γ, Γ ′, A`B ` ∆,∆′

Γ ` A,B,∆ `R
Γ ` A`B,∆

Additive presentation of logical connectives

Γ ` A,∆ Γ ` B,∆
&R

Γ ` A&B,∆
Γ,Ai ` ∆

&L
Γ,A0&A1 ` ∆

Γ,A ` ∆ Γ,B ` ∆
⊕L

Γ,A⊕B ` ∆
Γ ` Ai,∆ ⊕R

Γ ` A0 ⊕A1,∆

Multiplicatives in Linear Logic

Γ ` A,∆ Γ ′ ` B,∆′

⊗R
Γ, Γ ′ ` A⊗B,∆,∆′

Γ,A,B ` ∆
⊗L

Γ,A⊗B ` ∆

Γ,A ` ∆ Γ ′, B ` ∆′

`L
Γ, Γ ′, A`B ` ∆,∆′

Γ ` A,B,∆ `R
Γ ` A`B,∆

Additives in Linear Logic

Γ ` A,∆ Γ ` B,∆
&R

Γ ` A&B,∆
Γ,Ai ` ∆

&L
Γ,A0&A1 ` ∆

Γ,A ` ∆ Γ,B ` ∆
⊕L

Γ,A⊕B ` ∆
Γ ` Ai,∆ ⊕R

Γ ` A0 ⊕A1,∆

Table 1. Sequent calculi for Classical and Linear Logic


