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Abstract. The behavior of agents in multi-agent systems is hard to con-
trol without restricting the agents’ autonomy. Normative organizations
have been deployed successfully to deal with this. A core requirement of
a normative organization is that norm violations can be observed and
dealt with. Due to the distributed nature of multi-agent systems it is of-
ten fitting that this is done decentrally. In this paper we discuss a decen-
tralized method to monitor whether norms are violated in a multi-agent
system. The setting we consider is one where the organization depends
on a network of monitors that share observations among each other.

1 Introduction

The behavior of multi-agent systems (MAS) is hard to predict. This makes
it challenging to guarantee that agents behave according to preset guidelines.
Norms are a popular candidate to deal with this [5]. The enforcement of norms
requires that violations are detected, and that sanctions are applied to com-
pensate for those violations. We will focus on the detection of norm violations.
Because a MAS is highly distributed by nature, it is often fitting to also deploy
a decentralized monitor to detect norm violations. Advantages of using decen-
tralized monitoring include better scalability, graceful degradation in the face
of system failures and parallel processing of sense data to increase the system’s
performance.

Formal methods for decentralized monitoring help to better analyze and de-
sign decentralized monitors. There are different models in related work (sec-
tion 2) which are proposed under different assumptions. Our aim in this paper is
to provide complementary work to analyze generic scenarios with assumptions
that are not covered in other works. The basis of our method is a network of
monitors of which each has its own local view on the environment. Each monitor
is assigned a set of norms which concern the MAS that is being monitored. Be-
cause of the local view of monitors, it might be necessary that they communicate
in order to detect violations. In our method this is done through the propagation
of observations. Propagation causes delays in violation detection. The proposed
method is aimed at detecting a violation in the number of computation steps
that it maximally takes for an observation to be propagated across the network.
We shall specify a formal framework for analyzing decentralized monitors that
are based on our method.



As an example scenario we use a smarts roads use-case. We utilized the same
use-case in earlier work to highlight different concepts in distributed organiza-
tions [10]. In smart roads applications highways are enriched with intelligent
monitoring and control to increase safety and throughput. We use norms as a
specification of the traffic laws and policies.

In our scenario, a highway segment has a special priority lane for situations
where the traffic density is high (e.g. traffic jams due to accidents or rush hours).
This is a lane to increase the throughput of high priority vehicles such as public
transport or cars with special permits like taxis. One norm concerning the use
of this priority lane is as follows: if an agent is on the priority lane, then it is
obliged to get off it or have a permit, before the traffic density becomes high.

We use three different kinds of monitors in our scenario. Lane monitors ob-
serve whether a specific car is on a priority lane. Traffic density monitors observe
whether the traffic density is high. And a permit monitor can observe whether
a specific car has a permit to use the priority lane. The traffic density monitors
can communicate with the lane monitors and the permit monitor. The norm vi-
olation in this scenario cannot be locally observed by any of the monitors. Data
has to be transferred between monitors in order to detect the violation.

In section 2 we discuss related research on (decentralized) monitoring. In
section 3 we explain the formal setting of our method. In particular we define
the notions of norms, monitors and violation detection for (decentralized) mon-
itors. We discuss the example scenario in section 4. In section 5 we provide the
algorithms for how norm violations can be detected distributively by a set of
monitors that observe the environment properties with delay.

2 Related Approaches

In earlier work [10] we discussed different aspects of distributed organizations.
In this work, we focus on the monitoring aspect of distributed organizations
and provide a formal framework to analyze distributed monitoring systems. Our
approach is conceptually related to multi-institutions as proposed in [7]. Their
proposed language InstAL can be used to specify systems where agents are sub-
jected to the norms of multiple institutions at once. This approach mainly fo-
cuses on the analysis of multi-institute systems, not on the runtime monitoring
of them.

Linear temporal logic (LTL) and computational tree logic (CTL) are com-
monly used to describe whether possible system traces are violating a norm
(cf. [1]). The traditional approach is to define whether the norm is violated or
not given an infinite trace description of a system. This works well for deter-
mining a priori whether a system behaves correctly with respect to the norms.
However, many practical applications, such as monitoring at runtime, should
deal with finite traces. For an overview of the usage of LTL to monitor system
constraints see [4].

There are two main flavors of monitors. One option is to create a finite state
machine (FSM) given a norm. As a system evolves over time, observed events
are processed in the monitor. If the monitor reaches a forbidden state, then it



detects a violation. Such an approach can be found in for instance the proposed
monitors for RV-LTL [4] and in [12]. In these approaches the monitors themselves
are not distributed. The advantage of FSMs is that one can label states with
additional information. This is done in [12], and creates a system that allows
the user to determine not only whether a rule is violated, but also exactly which
transition caused this. However, a disadvantage with the FSM approach is that
the creation of the FSM is exponential given a set of LTL formulas and the
amount of different possible events in the system. The creation of FSMs is not
our the first choice as we aim for large distributed systems with sets of norms
and many different events.

The other flavor for monitoring LTL properties is the use of progression
functions. The progression function proposed in [2], originally deployed in a
goal planning system, has been an inspiration for related works on monitoring
such as hyMITL± [8], [3] and [9]. The core idea is to produce for a given
state in a trace the formula which the next future state of the trace has to
satisfy. The work in [8] and [9] does not deal with decentralized monitoring.
The algorithm in [3] concerns decentralized LTL monitoring, but differs on some
important aspects w.r.t. our work. For example, [3] assumes that all monitors
can pairwise communicate while we assume that monitors can communicate
based on predefined communication channels. Another difference is that in their
algorithm all monitors are monitoring one and the same global system norm. In
our framework each monitor will be assigned its own set of norms to monitor.
The monitors have to cooperate to detect the violations of their norms.

Our method neither builds a FSM, nor does it use a progression function,
but it resembles most the progression method. The reason why progression is
not needed, is that our method, in contrast to [3], monitors share observations
among each other, instead of formulas representing a norm. Our method could
be enhanced with a progression function as a practical improvement. Ideas on
this are provided in section 6.

3 Formal Framework

We will explain decentralized monitoring in various steps. Our framework builds
on LTL which we shall discuss first. Second we define norms and norm violations.
Third we explain the notion of a monitor and norm violation detection. Fourth
we discuss different types of monitors, that depend on their violation detection
capability. Finally we discuss decentralized monitors.

3.1 Preliminaries

To determine whether a norm violation has occurred in a system we start with
standard LTL with a weak until operator. We assume there is a finite set of
atoms A and environment states S. An infinite trace σ = s0s1 . . . is a trace of
environment states s.t. si ∈ S. The valuation function V : S → 2A returns, given
a state s, the set of atoms that hold in s. We use Σω to notate the set of all
infinite traces, and Σ∗ for the set of all finite traces. The syntax we use is as
follows:



ϕ = p|¬ϕ|ϕ ∨ ψ| © ϕ|ϕUψ where p ∈ A.
Given a trace σ = s0s1 · · · ∈ Σω, and an environment state si in σ, entailment

�ltl is as follows:

σ, si �ltl p ⇔ p ∈ V (si)
σ, si �ltl ¬ϕ ⇔ σ, si 6�ltl ϕ
σ, si �ltl ϕ ∨ ψ ⇔ σ, si �ltl ϕ or σ, si �ltl ψ
σ, si �ltl ©ϕ ⇔ σ, si+1 �ltl ϕ
σ, si �ltl ϕUψ ⇔ ∀j ∈ [i,∞] : σ, sj �ltl ϕ, or:

∃j ∈ [i,∞] : (σ, sj �ltl ψ and ∀k ∈ [i, j − 1] : σ, sk �ltl ϕ)

Runtime monitoring concerns finite traces only. For formulas such as ϕUψ it
might be the case that ϕ is always true in a finite trace and ψ is always false.
In such cases it is not possible to evaluate the formula as it is unclear whether
the formula is true in the future of the trace. Therefore we will use common
finite trace semantics for LTL that evaluates formulas as being true, false or
inconclusive.

We notate a finite trace of length k+ 1 as σk and σk ·Σω is the set of infinite
traces s.t. σk is a prefix. Given a finite trace σk ∈ Σ∗, and a state si, i ∈ [0, k],
finite trace LTL entailment �f is defined as follows:

σk, si �f ϕ =

> if ∀σ ∈ σk ·Σω : σ, si �ltl ϕ
⊥ if ∀σ ∈ σk ·Σω : σ, si 6�ltl ϕ
? otherwise

For a trace σk if ϕ is true/false in state si, i ∈ [0, k], then it is true/false in
si for any finite extension of σk.

Proposition 1. Let σk ∈ Σ∗ be a prefix of σj ∈ Σ∗, ϕ a formula, and i ∈ [0, k]:
If σk, si �f ϕ = v then σj , si �f ϕ = v, for v ∈ {⊥,>}.
Proof sketch: This follows from the definition of �f , as future states cannot

change a conclusive valuation.

3.2 Norms

Norms can have different forms. For instance some norms are state-based whereas
others are event-based. Also, norms can have temporal aspects in the form of
conditions and deadlines. In this paper, we use conditional norms with deadlines
that are state-based [11]. A norm consists of a condition, obligation and deadline.
Each of those norm parts is a system state for which we use propositional logic.
Note that if a deadline is the passing of time, then the state of a clock can be
seen as part of the system state.

Definition 1. Norm. A norm is specified by a tuple of propositional formulas
〈ϕc, ϕo, ϕd〉 s.t. ϕc, ϕo and ϕd are the norm’s condition, obligation and deadline,
respectively.



We use N for the set of possible norms and AN for the set of all atoms that
occur in norms from a set N . Conditional norms with deadlines are related to
temporal logic (cf. [6]). We shall use temporal logic to define the violation of a
norm. The intuitive reading of a norm is that if the condition holds, that then
the obligation must be fulfilled before the deadline occurs. Therefore, a norm is
violated in a finite trace if after its condition, the deadline holds earlier than the
obligation.1

Definition 2. Norm violation. Let σk be a finite trace, a norm 〈ϕc, ϕo, ϕd〉
is violated in σk iff there exists an i ∈ [0, k] s.t.:

σk, si �f ϕc ∧ ¬(¬ϕdUϕo) = >

If a norm is violated in a trace σk, then it is violated in any finite extension
of σk.

Proposition 2. If a norm 〈ϕc, ϕo, ϕd〉 is violated in a trace σk, then it is vio-
lated in all σj ∈ Σ∗ s.t. σk is a prefix of σj.

Proof sketch: The violation is a conclusive formula evaluation on σk and a
state si. Following proposition 1, the evaluation is the same for σj and si.

3.3 Monitors

A monitor has a set of norms that it monitors. Monitors can observe some atoms
with a delay and therefore have a delay function. This function returns, given
an atom, the time that it takes to observe whether that atom holds. The delay
of an observation is measured in abstract time units that correspond with the
time between two states in a trace. For the following definition, recall that A is
the global set of atoms.

Definition 3. Monitor specification. A monitor is specified by a tuple 〈N, δ〉,
where N ⊆ N is a set of norms and δ : A→ N∞ is a delay function.

As we shall see in section 3.5 the delays in this paper are caused by com-
munication. However delays can also originate from for instance sensors that
make observations some time after they happen. Extending the framework with
additional causes of delay (e.g. delayed sensors) will impact some of the results
regarding the delays of when norm violations are detected. The main limitation
for extending the model’s delay specification is that the delay must be measured
in equal time units.

We use M to notate the set of possible monitor specifications. A monitor is
a function that given a trace returns a set of traces that it cannot distinguish
according to its specification. Consider a scenario with a set of atoms A =
{c, o, d} and a monitor m that is specified by 〈{〈c, o, d〉}, δ〉, where δ(c) = δ(d) =
0, and δ(o) = 2. Furthermore S = {sa, sb, sc}, s.t. V (sa) = {c, o}, V (sb) = {c}
and V (sc) = {d}.
1 Note that given a finite trace σk and a norm n = 〈ϕc, ϕo, ϕd〉, σk is compliant with
n iff for each i ∈ [0, k] : σk, si �f ϕc → (¬ϕdUϕo) 6= ⊥



Because δ(o) = 2, m’s view on the environment trace at moment k does not
inform m whether o is true at moment k and k − 1. Consider the environment
trace σ = sascsc. At the initial time step m does not observe o to be true or
false. Instead, m observed that c is true and that d is not true. So all possible
initial states are sa and sb. At the second time step m determines that the second
state can only be sc, because it observed d and not c. At the third time step m
observes o and d. Because of the delay, this means that o was true in the initial
state. Therefore m observes that indeed in the initial time step the state was sa.
Hence the possible environment traces per time step are:

1. Possible traces given σ0 = sa are sa or sb.
2. Possible traces given σ1 = sasc are sasc or sbsc.
3. The possible trace given σ2 = sascsc is sascsc.

We define in definition 4 when a monitor m cannot distinguish between two
traces w.r.t. the atoms that occur in norms that m monitors. These are the
traces where for every state the valuation of atoms for which the delay has
passed coincides. Because those are the atoms for which m has certainty.

Definition 4. Trace indistinguishability. A monitor m specified by 〈N, δ〉
cannot distinguish between s0 . . . sk and s′0 . . . s

′
k, notated as s0 . . . sk ∼m s′0 . . . s

′
k,

iff for all i ∈ [0, k], p ∈ AN , δ(p) ≤ k − i: p ∈ V (si) iff p ∈ V (s′i).

Given a monitorm and a trace σk,m(σk) is the set of indistinguishable/equivalent
traces given m’s view on the environment.

Definition 5. Monitor. Let m : Σ∗ → 2Σ
∗

be a monitor specified by 〈N, δ〉
and σk be a trace. The set of equivalent traces for m given σk is notated by
m(σk) = {σ ∈ Σ∗|σk ∼m σ}.

A monitor m specified by 〈N, δ〉 has uncertainty of atoms in AN as far in the
past as the delay of the atoms. If the delay of an atom has passed for a state s′i
in a trace σ ∈ m(σk), then its valuation equals that of the state si in σk.

Proposition 3. Let m be a monitor specified by 〈N, δ〉 and σk be a trace s0 . . . sk.
For all s′0 . . . s

′
k ∈ m(σk), p ∈ AN , i ∈ [0, k − δ(p)]:p ∈ V (si) iff p ∈ V (s′i).

Proof sketch: This follows from definitions 4 and 5.
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Fig. 1. A trace σk and a monitor’s indistinguishable traces m(σk), where all traces in
m(σk) share a prefix of length k − x in which there is certainty for a set of atoms.



For a monitor m specified by 〈N, δ〉 let x be the maximum delay for atoms in
AN . If a trace σk is longer than x, then all possible traces in m(σk) have a prefix
of length k − x where formulas concerning atoms in AN all evaluate equally in
those prefixes. This is also illustrated in Figure 1.

Proposition 4. Let m be a monitor specified by 〈N, δ〉, σk be a trace, ϕ be a
formula of which all atoms occur in AN , q = arg maxp∈AN δ(p) and x = k−δ(q).
For all σ, σ′ ∈ m(σk), their prefixes σx = s0 . . . sx and σ′

x
= s0 . . . s

′
x, i ∈ [0, x]:

σx, si �f ϕ⇔ σ′
x
, s′i �f ϕ.

Proof sketch: Because all atoms evaluate equally up until k − δ(q) (prop. 3),
any verdict of a formula in the prefix up until k − δ(q) with those atoms is the
same.

Continuing with our earlier scenario, the monitor can reason about the vio-
lation of the norm as follows:

1. If σ0 = sa then the violation is inconclusive.

If σ0 = sb then the norm is satisfied.

So there is no violation of the norm.

2. If σ1 = sasc then the norm is violated.

If σ1 = sbsc then the norm is satisfied.

So there is no certain violation of the norm.

3. σ2 = sascsc so the norm is satisfied so far.

Any trace is per definition indistinguishable from itself, so σk ∈ m(σk). A
violation is detected by a monitor if a norm is violated in all possible environment
traces, because then the norm is also violated in σk.

Definition 6. Violation detection. Monitor m specified by 〈N, δ〉 detects a
violation of n ∈ N in a trace σk at state sk iff n is violated in all σ′ ∈ m(σk).

A property of violation detection is that there is a maximum delay x for each
monitor s.t. if a norm is violated, and a monitor m can detect that violation,
that then this violation is always detected within x steps. This delay x depends
on the delay function of m.

Proposition 5. Let m be a monitor specified by 〈N, δ〉, q = arg maxp∈AN δ(p)

s.t. δ(p) 6= ∞, and σk be a trace s.t. a norm n ∈ N is violated in σk. If m can
detect the violation, then it does so within δ(q) steps.

Proof sketch: Because the violation will be detected, it means that the monitor
gains enough information of the environment trace up until σk to determine
the violation. After δ(q) time steps, no more certainty can be gained for atoms
(prop. 3 & 4). Hence the violation must be detected within δ(q) steps.



3.4 Monitor Types

We distinguish between different types of monitors. These types indicate how
well a monitor can detect norm violations. A perfect monitor detects violations
whenever they occur.

Definition 7. Perfect monitor. A monitor m specified by 〈N, δ〉 is perfect iff
for all σk ∈ Σ∗ if there is a violation of a norm n ∈ N in σk, then m detects
the violation in σk at sk.

A delayed monitor detects violations with some delay. This means that if a
norm is violated, then the monitor may not immediately detect this. But it is
guaranteed that the monitor will detect the violation in the future.

Definition 8. Delayed monitor. A monitor m specified by 〈N, δ〉 is delayed
iff for all σk ∈ Σ∗ if there is a violation of a norm n ∈ N in σk, then for all
σ ∈ σk ·Σω, there is a prefix σj of σ, j ≥ k, s.t. m detects the violation of n in
σj at sj.

There is a connection between the delay function of a monitor and its type. If
the delays of all atoms which are relevant for a monitor’s norms are not infinite,
then m is perfect and/or delayed. Also, a perfect monitor is a special case of a
delayed monitor, as a perfect monitor is a delayed monitor where the delay of
detecting violations is 0.

Proposition 6. Let m be a monitor specified by 〈N, δ〉. If ∀p ∈ AN : δ(p) = 0
then m is perfect, if ∀p ∈ AN : 0 ≤ δ(p) <∞ then m is delayed.

Proof sketch: Following propositions 4 and 5: if a norm is violated in σk

and ∀p ∈ AN : δ(p) < ∞, then the valuation of all atoms in AN becomes
equal in prefixes of indistinguishable traces for m. If ∀p ∈ AN : δ(p) = 0 then the
maximum delay for detecting a violation is 0, thus a violation would immediately
be detected, hence m would be perfect. If ∀p ∈ AN : 0 ≤ δ(p) < ∞ then the
maximum delay x is finite and m will always detect the violation after x steps ,
hence m would be delayed.

A flawed monitor may never detect some violations.

Definition 9. Flawed monitor. A monitor m specified by 〈N, δ〉 is flawed iff
m is not delayed.

For a flawed monitor there is a trace σk where a norm is violated and there
is an infinite trace σ ∈ σk ·Σω s.t. there is no prefix of σ longer than k in which
the monitor detects the violation. This has as a consequence that the delay
function cannot determine whether a monitor m specified by 〈N, δ〉 is flawed. To
illustrate this, consider the extreme case where for an environment there is no
trace σk ∈ Σ∗ s.t. a norm n ∈ N is violated in σk. If no norm can be violated,
then there is no violation that m can miss, and hence m cannot be flawed. Even
if for each atom p ∈ AN the delay is infinite (δ(p) = ∞). This extreme case is
unlikely to occur in practice, because if the norms in N cannot be violated, then
there is also no use for a monitor to monitor them.



3.5 Decentralized Monitors

A decentralized monitor is a network of monitors that can propagate observations
among themselves. The setting we assume is that like in [3] the network ticks at
synchronous intervals that coincide with the states in the system trace. Between
each tick messages can be send between monitors that are directly connected to
each other. We do not assume full connectedness, i.e. the network can have any
topology. Also, as seen in definition 3, each monitor has its own set of norms.

Delays arise because it takes time to propagate observations. The delay func-
tions of monitors therefore depend on the topology of the network. We assume
that if a monitor m observes an atom p to hold in the environment, that it
then sends this information to each connected monitor m′ in the network. If m
receives an observation, then it also sends this information to each connected
monitor m′. The propagation delay between two directly connected monitors is
one. Each monitor has a visibility of the set of atoms A which it can observe
directly in the environment, without delay. The delay of an atom p is therefore
either zero if p is visible for m, or the length of the shortest path to a monitor for
which p is visible, or infinite if there is no path to a monitor m′ s.t. p is visible
for m′.

Definition 10. Decentralized monitor. A decentralized monitor is specified
by a tuple 〈G,Π〉, where G = (M,C) is a graph of monitors M ⊆ M with
communication lines C ⊆M ×M , and Π : M → 2A is a visibility function. For
all m specified by 〈N, δ〉 ∈M,p ∈ A :

δ(p) =


0 if p ∈ Π(m)
x if p 6∈ Π(m) and x is the length of the

shortest path between m and some
m′ ∈M given G s.t. p ∈ Π(m′).

∞ otherwise

A decentralized monitor detects violations of norms if any of its monitors in
the network detects a violation.

Definition 11. Decentralized violation detection. Let 〈(M,C), Π〉 be the
specification of a decentralized monitor. The violation of a norm n ∈ N in a
trace σk is decentrally detected in σk at sk iff there is a monitor m ∈M specified
by 〈N, δ〉 s.t. n ∈ N and m detects a violation of n given σk at sk.

For a decentralized monitor D specified by 〈(M,C), Π〉, C and Π determine
whether a monitor m ∈ M is perfect, delayed or possibly flawed. For instance
if for a monitor m specified by 〈N, δ〉 ∈ M it holds that AN ⊆ Π(m), then
δ(p) = 0 for any p ∈ AN , which by proposition 6 makes the monitor perfect.
Also if C = ∅, i.e. if monitors cannot communicate, then there are no shortest
paths among monitors. Therefore δ(p) is either 0 or ∞ for any p ∈ AN . Thus all
monitors would be either perfect or flawed.

If all monitors in the network are perfect, then any decentrally detected norm
violation will occur instantaneously as the violation occurs. But the detection can



also be instantaneous if for instance all monitors are flawed. To illustrate this,
consider two monitors m and m′ that are specified by 〈{n}, δ〉 and 〈{n}, δ′〉,
where n = 〈a ∨ b, o, d〉. Let the environment states S be the set {sa, sb} s.t.
V (sa) = {a, d} and V (sb) = {b, d}. In both sa or sb the norm will be violated,
because in those states the condition and the deadline occur at the same time,
but not the obligation. If δ(a) = δ(o) = δ(d) = 0 and δ(b) = ∞, then m is
flawed, because in the event that the trace always is a repetition of sb, then m
will never detect the violation. Equally for m′ if δ′(b) = δ′(o) = δ′(d) = 0 and
δ′(a) = ∞, then m′ is flawed because of the possible repetition of sa. However,
in whatever trace occurs, one of the flawed monitors detects the violation of the
norm instantaneously.

If a violation of a norm n is decentrally detected, then the maximum time
that it took to detect the violation depends on the maximum time of a local
monitor m specified by 〈N, δ〉 with n ∈ N to detect the violation. Following
proposition 5 this maximum is the maximum delay of atoms. In a decentralized
monitor, the delay of an atom is the time it takes to propagate an observation,
which corresponds to the shortest distance of one monitor to another monitor.
Given the set of monitor specifications M , this maximum delay is thus |M |.

Proposition 7. Let 〈(M,C), Π〉 be a decentralized monitor specification, n ∈
N , and σk be a trace. If n is violated in σk and it is decentrally detected, then
the detection was within |M | steps.

Proof sketch: For all monitors the maximum delay for an atom aside from ∞
is |M |, which is the case if the network has the form of a linear list. Therefore any
local monitor that detects the violation does this within |M | steps (proposition 5).

4 Example Formalized
permit monitor

observes p

density monitor
observes d

lane monitor
observes l

m


m


m


Fig. 2. Example decentralized monitor.

We continue with the earlier mentioned smart roads scenario. To simplify the
following we only consider one lane, density and permit monitor as depicted in
Figure 2. We also assume the system monitors a single vehicle. The atoms with
which we model our example are as follows:

– l stands for the vehicle is on a priority lane.
– d stands for traffic density is high.
– p stands for the vehicle has a permit.

For each possible combination of l, d and p there is a state in the set of possible
environment states S s.t. that combination holds. The complete setup is as
follows:



– A = {l, d, p}, and ∀A′ ⊆ A,∃s ∈ S : V (s) = A′.
– D = 〈(M,C), Π}〉, where:
M = {m1,m2,m3},
m2 = 〈{n}, δ〉,
n = 〈l, p ∨ ¬l, d〉,
C = {(m1,m2), (m2,m3), (m2,m1), (m3,m2)},
Π(m1) = {l}, Π(m2) = {d}, Π(m3) = {p}.

– δm1
(l) = 0, δm1

(p) = 2, δm1
(d) = 1.

– δm2(l) = 1, δm2(p) = 1, δm2(d) = 0.
– δm3

(l) = 2, δm3
(p) = 0, δm3

(d) = 1.
– σ2 = s0s1s2, where:
• V (s0) = {l}
• V (s1) = {d, l}
• V (s2) = {p, d, l}

Monitor m2 is a delayed monitor. The environment trace indicates that the
car drove on the priority lane and obtained a permit too late when the traffic
density became high. The norm is violated at the state s1, because the car is
on the priority lane during high traffic density, without having a permit. We
first determine m2’s observations about the environment trace per time step as
depicted below.

1. d 6∈ V (s0)
2. d 6∈ V (s0), l 6∈ V (s0), p 6∈ V (s0),d ∈ V (s1).
3. d 6∈ V (s0), l 6∈ V (s0), p 6∈ V (s0),d ∈ V (s1), l ∈ V (s1), p 6∈ V (s1),d ∈ V (s2).

For any of the traces σ = s′0s
′
1s
′
2 ∈ m2(σ2) the observations of time step 3

must hold. This means that for all those traces it holds that:
σ, s′1 �f l = >, because l ∈ V (s1)
σ, s′1 �f d = >, because d ∈ V (s1)
σ, s′1 �f ¬(p ∨ ¬l) = >, because l ∈ V (s1) and p 6∈ V (s1).
Therefore: for all σ = s′0s

′
1s
′
2 ∈ m2(σ2) there is a i (i.e. i = 1) s.t.

σ, s′i �f l ∧ ¬(¬dU(p ∨ ¬l)) = >
So m2 detects the violation given σ2 at s2. Therefore the violation is also

decentrally detected. The norm was already violated when the trace was σ1 =
s0s1 , but at that moment m2 did not have certainty about whether l or p were in
s1 or not. Had the norm been assigned to m1, then it would have taken another
time step for the decentralized monitor to detect the violation.

5 Translation to Local Monitors

A monitor that is part of a decentralized monitor may have no perfect view on
the environment. We shall show it can construct a set of possible environment
traces, with which it can check whether a norm is violated. For the shown algo-
rithms we assume that monitors execute in a synchronous manner and execute
the algorithms instantaneously. For space reasons, we do not provide details on
communication protocols. A monitor’s input is a set of observations O ⊆ A,



which includes communicated observations. Observations for an atom p from
monitors which are not the closest connected monitor that can observe p are not
part of O.

Recall that the environment is always in a state from S. A monitor m main-
tains a set of possible environment states per time step which is updated given
the observations of the next time step. In particular m maintains a vector of
sets of environment states S = S0, . . . , Sk, s.t. all states si ∈ Si are the possible
environment states at time i. Given a set of observations O ⊆ A, this vector is
expanded with S and then all impossible states given the observations are filtered
out. For every atom p ∈ A if p is or is not in O then the monitor knows whether
the atom was or was not true in the environment state at moment k−δ(p). If for
instance p ∈ O then all si ∈ Si, k − δ(p) = i, where p 6∈ si have to be removed
from Si. This algorithm is given below.

Algorithm 5.1: ProcessObservations(O)

global S
local δ,S = S0, S1, . . . , Sk−1
Sk ← S
S ← S0, S1, . . . Sk−1, Sk
for each Si, 0 ≤ i ≤ k

do


for each si ∈ Si

do


if ∃p ∈ O ∧ p 6∈ V (si) ∧ k − δ(p) = i

then Si ← Si \ {si}
if ∃p 6∈ O ∧ p ∈ V (si) ∧ k − δ(p) = i

then Si ← Si \ {si}

The following algorithm is for detecting norm violations. For each possible
environment trace up until now a norm is checked based on �f entailment. If
there is a time step where in all possible traces the norm is violated, then it must
be true that in the actual environment trace the norm is violated. If a violation
is detected then ViolationProcedure() could be used to for instance execute
a sanction.

Algorithm 5.2: CheckViolation(〈ϕc, ϕo, ϕd〉)

local S = S0, . . . , Sk
violAll← >
for each σk = s0 . . . sk, s.t.si ∈ Si

do


violatedInTrace← ⊥
for each j ∈ [0, k]

do

{
if (σk, sj �f ϕc ∧ ¬(¬ϕdUϕo) = >)

then violatedInTrace← >
violAll← violAll ∧ violInTrace

if violAll
then ViolationProcedure()



Algorithm 5.1 mirrors for the monitor the construction of the set m(σk) at
moment k. Algorithm 5.2 relates to the definition of violation detection, because
the monitor checks whether in all indistinguishable traces up until now the norm
is violated at some time point given finite LTL semantics. Note that in theory
following proposition 7 a monitor needs to store a maximum the last |M | states
of the trace, where |M | is the amount of monitors in the network.

6 Discussion and Future Research

We considered norms with obligations. The counterpart of obligations, prohi-
bitions, can straightforwardly be used as well. Instead of checking for ϕc ∧
¬(¬ϕdUϕo), one would check for ϕc ∧ ¬(¬ϕfUϕd), where ϕf is a propositional
formula denoting a forbidden state, and ϕd is the deadline.

The presented algorithms for local monitors are prototypical and are designed
to correspond with the definition of delayed monitoring. Working with the set
of possible states is often exponential in the number of atoms. For a better per-
formance, the monitors could use a progression function as it is used in related
work. Also the algorithms are made under the assumption that monitors are
fully synchronized. In a MAS there is a high level of distribution so this assump-
tion may not always be realizable in practice. However, many critical real life
monitoring systems work with synchronization in order to be more predictable,
and hence safer. It remains an important topic to see what happens if various
assumptions are changed or dropped.

We will further develop our monitoring method by optimizing the algorithms
for local monitors. This includes an analysis of which communication needs to
take place given a specification of a decentralized monitor. Aside from runtime
concerns, we also want to investigate how we can design efficient decentralized
monitors. We saw in our example scenario that the delay with which violations
are detected depends on which monitors monitor what norms. But a faster de-
tection may require more communication.

The presented decentralized monitoring method is a step in a longer research
endeavor where we aim to investigate different aspects of distributed organiza-
tions. For the near future we aim to connect this work to decentralized control
of a multi-agent system, so that we have a complete picture of how norms can
be enforced in distributed organizations.

With this we can continue to develop a practical framework for the design and
development of distributed organizations. This in turn can be used to construct
complex norm enforcement systems. Example target domains are service oriented
architectures and large scale simulations based on autonomic computing and/or
multi-agent systems.

7 Conclusion

We have presented a decentralized norm monitoring method. The proposal is to
deploy a decentralized monitor that consists of a network of local monitors. Each
of the local monitors has its own view on the environment state. Observations



can be propagated among monitors in the network. We provided the formal tools
to analyze a decentralized monitor and a prototype algorithm for how a local
monitor can detect a norm violation.

Local monitors in our method maintain a set of possible environment traces
based on their (possibly delayed) observations. If in all those traces a norm is
violated, then it is guaranteed that the norm was also violated in the environment
trace.The proposed method guarantees that the violation of a norm is detected
within the time that is equal to the maximum propagation delay of observations
between two monitors. With this decentralized monitoring method we continue
our investigations in distributed organizations.
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