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Abstract. Managing models requires extracting information from them
and modifying them, and this is performed through queries. Queries can
be executed at the model or at the persistence-level. Both are comple-
mentary but while model-level queries are closer to modelling engineers,
persistence-level queries are specific to the persistence technology and
leverage its capabilities. This paper presents MQT, an approach that
translates EOL (model-level queries) to SQL (persistence-level queries)
at runtime. Runtime translation provides several benefits: (i) queries are
executed only when the information is required; (ii) context and meta-
model information is used to get more performant translated queries;
and (iii) supports translating query programs using variables and depen-
dant queries. Translation process used by MQT is described through two
examples and we also evaluate performance of the approach.

Keywords: Model-Driven Development, Large-Scale Models, Runtime
Query Translation, Model Queries

1 Introduction

Managing models encompasses tasks such as model validation, constraint check-
ing, model analysis, etc. These tasks require executing queries over the models
for getting information from them and also for modifying them. Model queries
can be classified on two levels: model-level and persistence-level. Queries from
both levels are complementary, but each level provides different benefits and
limitations.

On the one hand, model-level queries are closer to modelling engineers since
they are expressed in languages focused on interacting with models, indepen-
dently of the persistence mechanism. Model-level query languages are for exam-
ple Epsilon Object Language (EOL), Object Constraint Language (OCL), EMF
Query, IncQuery, etc. Model-level query languages typically require the user to
load the relevant models into memory first (e.g. using the Resource provided by
EMF), before queries can be executed.

On the other hand, persistence-level queries are specific and dependent on
a particular persistence mechanism. Some persistence-level query languages are
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for example: SQL for querying information persisted in relational databases; or
MorsaQL [1] for querying models persisted using Morsa [2]. Persistence-level
queries are typically executed directly over persisted models, without requiring
to load model information first. Moreover, persistence-level languages leverage
capabilities of persistence mechanisms for which they were created.

In this paper, we present the Model Query Translation layer (MQT), an
approach that translates EOL queries (model-level) to SQL queries (persistence-
level) at runtime. Runtime translation allows to translate imperative model-level
queries that make use of variables and dependant queries. Moreover, runtime
translation produces more performant queries through context and metamodel
information.

The main contribution of this paper is MQT, a prototype that translates EOL
queries to SQL. Using MQT, queries are translated and executed at runtime. We
have evaluated it and the results show that the translation mechanism provided
by MQT performs better (in terms of execution speed) than using the naive
translation provided by Epsilon Model Connectivity Layer (EMC). Modification
queries are not supported at this stage but we plan to add support for them in the
future. Moreover, although currently MQT only translates EOL queries to SQL,
in the future, we aim to extend it to support more model and persistence-level
query languages.

The rest of the paper is organised as follows. In Section 2 we provide some
background and motivation for this work. Section 3 presents MQT and illustrates
the translation process through two examples. The approach is evaluated in
Section 4, and Section 5 compares our approach with related work. We conclude
the paper on Section 6 providing conclusions and directions for further work.

2 Background and Motivation

XMI is commonly used as a model persistence format in Eclipse Modelling
Framework (EMF). Although other alternative file-based persistence solutions
such as binary (supported by EMF) or JSON? exist, file-based persistence entails
memory and performance problems with large models. When trying to solve scal-
ability problems, most recent approaches [3,4,5,6] propose leveraging databases
for large-scale model persistence. These approaches provide persistence-level
query languages that leverage capabilities of these databases. This results in
queries that are expressed at a low level of abstraction and tightly couples the
queries with the specific model persistence mechanism used.

This scenario motivates us to provide a solution that automates query trans-
lation from persistence-agnostic model-level queries that are widely-used by mod-
elling engineers to persistence-level queries that leverage the capabilities of the
persistence layer to improve efficiency.

3 Read more at http://ghillairet.github.io/emfjson/
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3 MQT: Runtime Query Translation From EOL to SQL

Our work is focused on the implementation of a mechanism that allows querying
models in a transparent way and using query languages closer to modelling en-
gineers. Following these directions, we present MQT, an approach that provides
automatic query translation from EOL, a model-level query language, to SQL,
a persistence-level query language.

On the one hand, we have chosen EOL at model-level since it is an impera-
tive OCL-like language that allows querying and modifying models of arbitrary
modelling technologies. EOL provides interesting features such as: use of vari-
ables and methods, use of query chains and syntactic checking. Moreover, it
is the base language of Epsilon Languages which provide different functionali-
ties: model validation, model transformation, code generation, etc. On the other
hand, we have chosen SQL at persistence-level since it is a structured and mature
language widely used for performing queries in relational databases. However, it
can be also used to query some NoSQL databases (e.g. using Unity JDBC* for
running SQL queries against MongoDB databases).

We base our work on [7], where EOL is used to efficiently query large datasets
stored on a single relational table. MQT supports translation of EOL query
programs to SQL, and translated queries are only executed when the result is
required. EOL is imperative and allows specifying variables and query chains.
SQL does not support these features, which means that the expressive power of
EOL and SQL is different. Consequently, the query translation cannot be total.
Being so, in this case where the translated language (EOL) provides constructs
that have no direct mapping in the target language (SQL), translation should
be performed partially. The partial translation mechanism of MQT is based
on the EMC, an API that provides abstraction facilities over modelling and
data persistence technologies. To support the query translation, MQT prototype
provides different classes that are described below:

— MQTModel It extends the IModel class provided by EMC and is the main
class of the approach. Using this class MQT is able to interact with models
conforming EMF in a uniform manner. In order to execute the SQL queries
over databases where models are persisted, this class also implements a jdbc
driver.

— MQTResultObject class. It implements the IModelElement interface of EMC
and allows to work with each model element persisted within the database.
This class translates, executes and get results of queries that ask about model
elements and its features.

— MQTResultSetList class. This class translates, executes and get results of
queries returning a list of MQTResultObjects.

— MQTPrimitiveValueList class. It implements the IModelElement interface
and it is used to translate, execute and get results of SQL queries returning
lists of primitive values (e.g. names).

4 Read more at http://www.unityjdbc.com/mongojdbc/mongo_jdbc . php
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Using these classes the approach is able to translate and execute at run-
time EOL queries to SQL, and then get the results from a database where the
queried model is persisted. However, the translation provided by EMC is naive:
each query expression is translated and executed by the MQTModel and results
of the SQL query are returned using MQTResultObject, MQTResultSetList or
MQTPrimitiveValueList. Each query expression is translated and executed one-
by-one. This occurs for example in the query ‘‘EClass.all.select(...)’’:
first ¢ ‘EClass.all’’ is translated, returning a MQTResultSetList class with
the result. Then, the ‘¢.select(...)’’ part of the query is translated, but
using the MQTResultSetList. This requires to execute a SQL query for each
result of the list to check the condition of the select.

But the previously described translation mechanism does not exhibit a good
performance when translating and executing complex queries over large mod-
els, since it executes a lot of SQL queries. To improve scalability within query
translation, MQT provides a mechanism that adapts translated SQL queries
at runtime. To support the adaptive query translation MQTResultSetList class
implements the IAbstractOperationContributor interface. In this way, naive
translation of more complex queries such as selects, collects or rejects is replaced
by our own translation mechanism. Using this mechanism MQT is able to group
related and dependant EOL queries within a single translated SQL query. Being
so, MQT executes fewer SQL queries (they are more accurate) and are executed
only when the results are required.

We now explain the runtime query translation mechanism, by demonstrating
the execution of the translation of different EOL programs. To avoid introduc-
ing a custom metamodel, sample query programs are executed over models that
conform to the Ecore metamodel. As we have chosen SQL persistence-level query
language, we have provided a metamodel-agnostic mechanism that persists mod-
els in a relational database. Relational databases require the specification of a
schema where the structure of the database is defined. However, it is important
to note that this paper is focused on the translation of queries and not on the
efficient persistence of large-scale models. In order to facilitate understanding
of the query translation process, the data-schema of the database is described
previously.

3.1 Data-Schema

As the schema of Figure 1 illustrates, table Object persists elements of the model.
This table contains ObjectID (primary key) identifying each element in the model
and the classID (foreign key) that stores ID of its meta-class. Meta-classes are
stored within the Class table, where ClassID (primary key) and Name are stored
for each one. Feature table persists ids (FeatureID) and Names of all the existing
attributes and references. Values of attributes and references (FeatureID) of each
model element (ObjectID) are stored in the Attribute Value and ReferenceValue
tables (primitive value in case of attributes and id and meta-class in case of
references). These five tables are enough for persisting the information stored in
the models. However, sometimes adding duplicated information has a significant
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Fig. 1: Specified metamodel-agnostic database schema.

performance impact on the execution since the information can be used to get
more effective translated queries (in terms of query execution speed). This is the
case of Feature ValueCount table containing how many values each feature of each
element has. Information of this table is used to get more effective translated
queries: for example if ValueCount is 0, the feature do not exist for the element,
and consequently, there is no need to query value of the feature; if ValueCount
is X, it can be used to add ¢ ‘LIMIT X’’ expression within the translated SQL
query.

To improve query execution speed, MQT loads some information of the
database in the memory during query translation and execution. This is the
case of FeatureIDCache and ClassIDCache (loading ID and name of the exist-
ing features and classes).

3.2 Translation Example 1: Simple queries

The first example, shown in Listing 1.1, illustrates a querying program which:
retrieves all model elements that are instances of EClass and assigns only the
first element of the list to the class variable (line 1); then, the program prints
the value of the name attribute of the selected element (line 2); and finally,
the program iterates elements that are referenced through the eSuperTypes
reference of the selected element (line 3), printing the name of each one of them
(line 4).

In the following paragraphs, we explain how MQT translates and executes
these queries.

var class = EClass.all.first();

class.name.println();

for (superClass in class.eSuperTypes)
superClass.name.println() ;

W N

Listing 1.1: Sample EOL program getting instances and attributes/references.
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— Line 1: EClass.all.first (). This first query is divided in two parts. The
first part is EClass.all and it creates a new instance of MQTResultSet
adding the information required to query for all model elements that are
instances of EClass. As such, behind the scenes, MQTResultSet executes
the following SQL query to retrieve the list of matching elements from the
database: SELECT ObjectID FROM Object WHERE ClassID=7 The parame-
ter of the query is ClassID obtained from memory using the previously
introduced ClassIDCache. Then, the second part is executed (first() expres-
sion), returning only the first element (instance of MQTResultObject) of the
MQTResultSetList, and it is stored in the class variable.

— Line 2: class.name. This query expression prints the name of the previ-
ously selected MQTResultObject. This is provided by a method implemented
within the MQTResultObject (getValue(feature)) that retrieves attribute
and reference values of the related model element from the database. In this
case, the method executes the following query for getting the value of the
name attribute: SELECT Value FROM AttributeValue WHERE ObjectID =
? and FeatureID = 7 LIMIT 1. The query parameters are the ObjectID
known by the MQTResultObject and the FeatureID obtained from memory
(FeatureIDCache).

— Line 3: for (superClass in class.eSuperTypes). This statement is
similar to the previous but instead of returning an attribute value, a list of
ResultObjects is returned and then iterated. The executed query is the fol-
lowing: SELECT Value FROM ReferenceValue WHERE ObjectID = 7 and
FeaturelD = 7.

— Line 4: superClass.name. The execution logic of this statement is similar
to the class.name statement.

3.3 Translation Example 2: Complex queries

Listing 1.2 shows another EOL program with more complex model element selec-
tion queries. In this example, the program first selects all the abstract EClasses
without superclasses, and then computes the number of model elements that
satisfy these conditions. If at least one element satisfies these conditions, the
program prints the name of the first model element of the list.

1 var list = EClass.all.select(c|c.abstract=true)

2 var list2 = list.select(clc.eSupertypes.isEmpty());
3 if(list2.size() > 0)

4 list2.first () .name.println();

Listing 1.2: Sample EOL program with selection.

Figure 2 illustrates the translation mechanism used for translating complex
queries from Listing 1.2. Following, a more detailed description is provided:

— EClass.all. Creates a new instance of MQTResultSetList adding the in-
formation required to query all the model elements that are of the EClass
meta-type.
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EClass.all .select(c | c.abstract=true)

f VOTResaset ~ ' MQTResultSetList N\
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.select(c | c.eSuperTypes.isEmpty()) '
SQL Query
( MQTResultsetList \
SELECT ObjectiD
FROM Object Selection: ObjectID
WHERE (ObjectiD NOT IN (SELECT Object!D FROM REFERENCEVALUE Tables: Object
WHERE FeaturelD = getFeaturelD(“eSuperTypes”))) AND €= Conditions: [ObjectlD NOT IN ( #SELECT_B ),
(ObjectiD IN (SELECT ObjectiD FROM ATTRIBUTEVALUE WHERE ObjectID IN( #SELECT A ), ClassID =7?1]
FeaturelD = getFeaturelD(“abstract”) AND Value= true)) Parameters: [getFeaturelD(“eSuperTypes”),
AND (ClassID= getClassiD(“EClass”)) getFeaturelD("abstract”), true, getClassID(“EClass”)]

#SELECT_A = “SELECT Object!D FROM ATTRIBUTEVALUE WHERE FeaturelD = ? AND Value=?"
H#SELECT_B= “SELECT ObjectiD FROM REFERENCEVALUE WHERE FeaturelD =?"
getFeaturelD(x) and getClassiD(y) are methods that get the Ids from featurelDCache or classiDCache

Fig. 2: Example of the runtime translation of the query from EOL to SQL.

— select(c|c.abstract=true) . This second expression completes the previ-
ous one. Being so, the same instance of MQTResultSetList is completed by
adding a new condition and two parameters to get only the model elements
that have the abstract feature with the true value.

— select(c|c.eSuperTypes. isEmpty ()) . This select expression completes more
the MQTResultSetList instance. It adds a new condition and parameter to
get only the model elements that do not have eSuperTypes.

— Finally, the information that has been added during the previous steps is
used by the MQTResultSetList to get the translated SQL query.

MQT only executes the translated SQL query over the database when the
results are needed. In the case of the previous example (Listing 1.2), the instance
of MQTResultSetList executes the translated SQL in the line 3, where the size
value needs be returned. Once the query described on Figure 2 is executed,
MQTResultSetList instance obtains the results. Then MQTResultSetList pro-
vides size through a method that counts the quantity of the returned elements.
In the case of line 4, MQTResultSetList uses same results but it returns only
the first element of the list.

4 Evaluation

To evaluate MQT, we have executed an EOL query program over five models
of different sizes (from 45MB to 403MB). All experiments have been executed
using an Intel Core i7-3520M CPU at 2.90 GHz with 8GB of physical RAM
running Windows 7 SP1 64bit, JVM 1.7.0 and the Eclipse Kepler SR1 distri-
bution configured with 2GB of maximum heap size. Models have been created
using MoDisco’s Java Discoverer [8] and they specify source code of different
Java plug-ins. These models have been persisted in a relational database with

19



the previously described metamodel-agnostic schema and using the H2°> DBMS
(version 1.3.168). We have specified an EOL Query Program based on the Gra-
Bats’09 reverse engineering contest, where the query identifies singleton classes
within source code of Java plug-ins specified by the models. We have used Gra-
Bats’09 because is widely used by the community on the studies related to model
persistence.

EOL Query program has been executed 100 times over each model and using
the naive translation of EMC and the MQT translation (previously explained
on Section 3). Table 1 shows information of the models used during experimen-
tations: size, number of objects, number of methods and number of singleton
classes that they contain.

Table 1: Singleton query program execution over different models.
Size Objects Methods Singl. Classes Naive trans. MQT trans.

M1 45MB 165741 5366 9 185ms 13ms
M2 72MB 330761 8129 8 302ms 11ms
M3 212MB 875988 11393 6 676ms 10ms
M4 327MB 1343207 15386 0 950ms 3ms
M5 403MB 1566890 19366 0 1243ms 1ms

Average of the query translation and execution times obtained during exper-
imentations are illustrated on Naive translation and MQT translation columns.
As is shown on the table, with naive translation, model size has great impact
on the required time for executing the query program and it increases as the
size of the model increases. However, using MQT translation model size has less
impact over the execution time. We can conclude with these results that MQT
provides more scalability if queries are executed over large-models.

To assess the performance of MQT, we executed the same query against
XMI models (provided by EOL) and obtained the same results. We have also
analysed the execution time spent on the query translation: (M1) 3.35ms; (M2)
4,51ms; (M3) 0.77ms; (M4) 0.8ms; and (M5) 0.64ms. From these results, we have
concluded that as the translation time is only few milliseconds it does not imply
a temporary overload.

5 Related Work

Several solutions have been proposed in terms of generation of queries based
on OCL-like languages. [9] proposes an approach focused on generating SQL
queries from invariants specified using OCL. The approach allows mapping Uni-
fied Modelling Language (UML) models to other data schemas like databases

5 More information about H2 at http://www.h2database.com/
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and then generating queries that allow to evaluate invariants using SQL. [10]
describes an approach that generates views using OCL constraints, and then
uses these view to check the integrity of the persisted data. The approach has
been implemented in OCL2SQLS, a tool that generates SQL queries from OCL
constraints. A similar approach for integrity checking is proposed in [11]. While
these approaches are focused on translating OCL constraints into SQL queries
at compile-time, our approach generates SQL queries from OCL-like expressions
(EOL) at runtime. Comparing with compilation-time translation, main benefits
of runtime translation are: (i) translated queries are executed only when the
information is required; (ii) context and metamodel information can be used
during query translation; and (iii) it supports query chains and variables within
the query program.

[12] presents SPARQLAS, an SPARQL-like query syntax that is translated
to SPARQL and then executed against OWL knowledge base, using results as
input for OCL queries. Using SPARQLAS, queries are executed using SPARQL
(persistence-level) and then query results are the input of OCL queries (model-
level). By contrast, our approach translates queries from EOL (model-level) to
SQL (persistence-level) and then executes the obtained SQL queries.

6 Conclusions and Further Work

In this paper we have presented MQT, an approach that translates at runtime
and automatically model queries specified using EOL (model-level query lan-
guage) to SQL (persistence-level query language). Main benefits of the runtime
translation are: (i) on-demand execution of translated queries; (ii) queries are
translated and adapted at runtime and metamodel and context is used to get
more effective translated queries; (iii) it allows to execute query programs with
variables and dependant queries.

We have evaluated our approach, concluding that with the runtime trans-
lation and adaptation of queries, MQT provides a scalable solution to query
large-models. However, for the future, we plan to perform a more complete eval-
uation that analyses the impact of the characteristics of the used models and
queries.

Presented prototype supports all the EOL expressions that obtain infor-
mation from models, but modification expressions are not supported. For a
next version, we plan to extend the approach with support for: (i) modifica-
tion queries; (ii) additional model-level query languages (e.g. OCL); and (iii)
additional persistence-level query languages (e.g. Cypher). This will provide a
solution that allows engineers to write high-performance queries in a model-level
query language without worrying about the model persistence format. Regard-
ing this point, an open issue to be analysed is how to provide extensibility to
facilitate the integration of query languages at both sides.

5 Read more at http://dresden-ocl.sourceforge.net/usage/oc122sql/
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