Abstract vs Concrete Clabjects
in Dual Deep Instantiation

Bernd Neumayr and Michael Schrefl

Department of Business Informatics — Data & Knowledge Engineering
Johannes Kepler University Linz, Austria
firstname.lastname@jku.at

Abstract. Deep Instantiation allows for a compact representation of
models with multiple instantiation levels where clabjects combine object
and class facets and allow to characterize the schema of model elements
several instantiation levels below. Clabjects with common properties may
be generalized to superclabjects. In order to clarify the exact nature of su-
perclabjects, Dual Deep Instantiation, a variation of Deep Instantiation,
distinguishes between abstract and concrete clabjects and demands that
superclabjects are abstract. An abstract clabject combines the notion of
abstract class, i.e., it may not be instantiated by concrete objects, and
of abstract object, i.e., is does not represent a single concrete object but
properties common to a set of concrete objects. This paper clarifies the
distinction between abstract and concrete clabjects and discusses the
role of concrete clabjects for mandatory constraints at multiple levels
and for coping with dual inheritance introduced with the combination
of generalization and deep instantiation. The reflections in this paper
are formalized based on a simplified form of dual deep instantiation but
should be relevant to deep characterization in general.

1 Introduction

What is represented as instance data in one application may be represented as
schema data in another application. For example, in an application for managing
a product catalog, product category car is represented by a class Car which is
instantiated by objects representing particular car models, such as BMW Z4. In a
customer service application, the same car model may be represented by a class
which is instantiated by objects representing individual cars, such as PetersZ4.

Potency-based Deep Instantiation [1] allows for a compact and integrated
representation of such scenarios. For example, clabject BMW Z4 in our running
example (see Fig. 1), which makes use of a simplified and relaxed version of
Dual Deep Instantiation [9], represents both: an object, namely the car model
BMW Z4, and a class, namely the class of individual cars of model BMW Z4.
Further up in the product hierarchy, the clabject Car with potency 2 represents
product category car as well as the classes of individual cars and of car models.
Finally, the whole product hierarchy is represented by clabject Product with
potency 3.

Clabjects with common properties may be generalized to a superclabject. In
Dual Deep Instantiation, superclabjects are abstract and are not considered as
objects in their own right. For example, concrete clabjects Car and Motorcycle are
generalized to an abstract superclabject Vehicle which defines properties shared
by Car and Motorcycle, e.g., MsBlack is the category manager of the two product
categories represented by Car and Motorcycle.

In the remainder of the paper we introduce, in Sect. 2, a simplified form of
Dual Deep Instantiation along which we discuss, in Sect. 3, the distinction be-
tween abstract and concrete clabjects. In Sect. 4, we define an inheritance mech-
anism and describe the role of concrete clabjects in dealing with dual inheritance
stemming from the combination of generalization and deep instantiation. Sect. 5
introduces support for defining mandatory constraints over concrete clabjects
at multiple levels in order to control the stepwise instantiation process. Sect. 6
gives a brief overview of related work and Sect. 7 concludes the paper.

Product® Currency?
S categoryMgr'™ = Person § value”* = Number
o producer®® = Company 3 exchRate = Number
3-1
owner>™" = Person A ™
soldPrice®? = Currency ’ .
G —) [E
y———" \ exchRate”® = 0.03 A
ehicle \ -
categoryMgr®® = MsBlack \\ 5
soldPri;:zez'1 = EuropeanCurrency \ Euro® Pound?
engine”” = Engine \
9) 9 \ exchRate®’= 1.0 exchRate®®= 1.32
!
> B N AR N
8’ ! L 0 \\ y 0
= Car? | Motorcycle? MobilePhone? E € 38,200 £132
O |soldPrice?*= Euro : engine®? categoryMgr”® S |value™ = 38,200 value®® = 132,0
engine®? | |_=MotorcylceEngine = MrWhite
= CarEngine
— N
l \ 2
/ | \ S A I
| ! \ > |
/ BMW Vehicle! \\ T — | —
I/ producer”™ = BMW \ &) | CirEngme | : | Motorcy/cﬂleEng:\lne
, |engine** = BMW Engine \\ /:\ 7t L
\
h | \ | |BMWEngine' | / \
\ 3 I \
| | 5] /
T i I o g A \
3 | | BMW Motorcycle s 1 y A—
s / | | EngineK5" || EngineSs5* ||EngineR121|
/ I i\ i\ i\
|
/ BMW 74" ! F700GS* R1200GS* = ' :
| — - — - S |Engine123°| | Engine235°| | Engine212° |
engine“ = EngineK5 | |engine™™ = EngineS5 | |engine™ = EngineR12 =
I
! ' it B n
\ PetersBMW ° | Bs
y
‘\ owner®? = Peter ,'
>
. \ | = 3 0
g i | g | E
< \ [1 L \
Petersz4° PetersR1200GS° AN
7 <
soIdPrigUe"'D =€38,200 soldPrigs‘“’ =€16,430 - / b S~ ~<
engine”™ =Engine123 engine 0EEnglnele 5 |MsB|ack°| | Sarah® | |MrWhite°| | Peter® |
coowner " = Sarah =

Fig. 1. Multi-level Hierarchies of Abstract and Concrete Clabjects

2 Dual Deep Instantiation and Generalization — Simplified

Dual Deep Instantiation (DDI) [9] allows to relate clabjects at different instan-
tiation levels by bi-directional and multi-valued relationships and allows to sep-
arately indicate the depth of characterization for the source and target of a
relationship (not assuming a strict separation of classification levels). By re-
stricting clabjects to have only one parent, either related by instantiation or by
generalization, it only allows single inheritance. For discussing the distinction
between concrete and abstract clabjects and their role in multi-level models we
introduce, in this section, a simplified and relaxed variant of DDI. It is simpfii-
fied by only considering uni-directional and single-valued property references. It
is relaxed by allowing dual inheritance: a clabject may now have two parents,
one at the same level and connected by a generalization relationship and the
other at the next higher level and related by an instantiation relationship.

A DDI model contains a set of clabjects (see No. 1 in Table 2). Clabjects are
organized in instantiation hierarchies with an arbitrary number of instantiation
levels, where in(z,y) expresses that clabject x is an instantiation of clabject y
(No. 2); we also say y is the class-clabject of x. Clabjects at the same instantiation
level may be organized in specialization hierarchies, where spec(x,y) expresses
that clabject x is a direct specialization of clabject y (No. 3); we also refer to y
as the superclabject of x.

We use the term clabject in a wide sense. It covers what is traditionally mod-
eled as individual objects (tokens, instance specifications), classes, simple values,
and primitive datatypes. In DDI, even individuals may refine or extend their own
schema, e.g., property coowner is introduced at individual PetersR1200GS, and
we assume, in this regard, that every individual comes with its own class facet.
So, in DDI everything is a clabject. Note, in the original DDI approach [9] we
used the terms object or DDI object for what we now call clabject.

Each clabject comes with a clabject potency (No. 4). A potency of a clabject
is given by a natural number (including 0) and indicates the number of instantia-
tion levels of the clabject, where ptcy(x) = n expresses that x has descendants at
the next n instantiation levels beneath. Note, in our previous work [9], clabjects
did not have an asserted potency.

In order to simplify discussion and formalization of the approach, we intro-
duce auxiliary terms, predicates and shorthand notations. We say z isa y if x is
either a specialization or an instantiation of y (No. 5), we also say y is a parent
of . We say z is a member of y if = relates to y by a chain of isa with exactly
one instantiation step (No. 6). We say z is an n-member of y if x relates to y
by a chain of isa with n instantiation steps (No. 7). We use .™ and .* to denote
the transitive and transitive-reflexive closure, respectively, of a binary relation.
We say, is a descendant of y and y is an ancestor of z if isa™ (x,y). We say,
x is a specialization of y and y is a generalization (or is a superclabject) of x if
spec™ (x,y).

When a clabject = instantiates a clabject ¢ then the potency of z is the
potency of ¢ decremented by one (No. 8). Clabjects in generalization hierarchies
all have the same clabject potency (No. 9).

Table 1. Instantiation and Generalization Hierarchies of Clabjects

Sorts & Asserted Predicates:

(1) C: clabjects (representing individuals, classes, datatypes and values)
(2) mCCxC

(3) specCCxC

(4) ptey : C — N (N is the set of natural numbers including 0)

Auxiliary Predicates:

(5) isa(z,y) = in(z,y) V spec(z,y)
(6) member(z,c) < Is3d : spec™(x,s) A in(s,d) A spec”(d, c)
(7) nmember(z,c,n) = (n = 0A spec*(x,c)) V

Im3d : ((n = m + 1) A nmember(z, d, m) A member(d, c))

Well-formedness Criteria and Syntactic Restrictions:

(8) in(z,y) — ptey(x) = ptey(y) — 1
9) speC(:m y) = ptey(z) = ptey(y)
(10) isa™ (w,c) > xz # ¢
) in(z,c) Ain(z,d) > c=d
(12; spec(x, s) A spec(z,2) = s =z
)

(13) spec(zx,s) A in(x,c) — Ty : isa™(s,y) A isa™(c,y)
(14) spec* (z,y) A in(x,c) A in(y,d) — spec*(c, d)

In DDI every clabject hierarchy comes with its own set of instantiation levels
which is introduced by the potency of the root clabject (a root clabject is a
clabject without parent). For example, root clabject Product with potency 3
introduces a clabject hierarchy with three instantiation levels (not counting the
instantiation level of the root clabject). These instantiation levels may be given
labels. For example, root clabject Product has three instantiation levels, labelled
Category, Model, and Individual. Instead of saying “BMW Z4 is 2-member of
Product” one may now say “BMW Z4 is a Product Model”.

We assume acyclic clabject hierarchies (No. 10) with single classification, i.e.,
every clabject has at most one class-clabject (No. 11), and single generalization,
i.e., every clabject has at most one direct superclabject (No. 12).

In the original formalization of DDI [9], in order to avoid multiple inheritance,
every clabject had at most one parent, either a class-clabject or a superclabject.
We now relax this global restriction and allow clabjects to have both a class-
clabject and a superclabject. Class-clabject and superclabject of a clabject must
have a common ancestor (No. 13). Further, if a clabject x, which is an instanti-
ation of ¢, specializes a clabject y, which is an instantiation of d, then ¢ needs to
be a specialization of d (No. 14). In the forthcoming sections we will introduce
further constraints on the combined use of generalization and instantiation.

Two clabjects may be related via property references. A quintuple R(z, 1, p, J,y)
is an asserted property reference of source clabject x via a property p to target
clabject y with source potency ¢ and target potency j (No. 16), we also say
there is a p*~7 reference from z to y. The source potency and the target potency

Table 2. Deep Characterization of Clabjects via Property References

Additional Sorts & Asserted Predicates:

(15) P: properties
(16) RCCxNxPxNxC

Additional Well-formedness Criteria and Syntactic Restrictions:
(17) R(=,4,p,7,y) A R(s,k,p,1,t) = IcImInd : R(c,m,p,n,d) A
isa™(z,c) A isa™ (s, c)
(18) R(z,,p, 4, 4) A R(w, kypylyd) i = kA j =1 Ay =d
(19) R(z,i,p,J,y) — ptey(x) > i A ptey(y) > j
(20) R(z,4,p,j,y) A R(c, k,p,l,d) A\ nmember(xz,c,n) =>n=%k—1i
))
))

(21) R(z,i,p,J4,y) A R(c, k,p,1,d) A nmember(y,d,n) > n=101—3j
(22) R(z,i,p,5,y) A R(c, k,p,1,d) Aisa™ (z,¢) — isa™(y, d)

indicate how many instantiation levels below the source clabject and the target
clabject, respectively, the property is to be ultimately instantiated. For example,
the soldPrice?~3 reference from Product to Currency is ultimately instantiated by
the soldPrice®?—9 reference from PetersZ4 to 38,200.

Well-formed property references obey the following constraints. Every prop-
erty is introduced with a single clabject, i.e., if two clabjects have the same
property, then they must have a common ancestor which introduced that prop-
erty (No. 17). For simplicity (and space limitations) we only consider single-
valued properties, that is, there may only be a single property reference per
source clabject and property (No. 18). The source and target potency must
be lower or equal to the potency of the source and target clabject, respec-
tively (No. 19). When instantiating and refining properties, source and target
potencies must be reduced according to the number of instantiation steps be-
tween the source clabjects (No. 20) and target clabjects (No. 21), respectively.
A clabject ¢ with a reference to clabject d via property p with a target potency
higher than 0 or if d is abstract introduces a range referential integrity constraint
for all descendants of ¢: descendants of ¢ may only refer via p to descendants of
d (No. 22). This is akin to co-variant refinement and, in terms of the UML, to
redefinition of association ends.

3 The Abstract Superclass Rule in the Context of
Abstract and Concrete Clabjects

In this section we clarify the distinction between abstract and concrete clabject.
We revisit the abstract superclass rule and adapt it to the setting of multi-level
modeling with abstract and concrete clabjects.

Abstract clabjects combine aspects of abstract classes and abstract objects.
Concrete clabjects combine aspects of concrete classes and concrete objects. The
distinction between abstract and concrete class is described as: ‘A class that has
the ability to create instances is referred to as instantiable or concrete, otherwise

it is called abstract.’ [3] The distinction between abstract objects and concrete 0b-
jects is heavily discussed in Philosophy [13] and there are many different ways to
explain it. In this paper we follow ‘the way of abstraction’ which is also followed
by Kiihne [4]: ‘An abstract object represents all instances that are considered to
be equivalent to other for a certain purpose [...] An abstract object captures
what is universal about a set of instances but resides at the same logical level
as the instances’. In DDI, clabjects are either asserted as abstract (No. 23 in
Table 3) or derived to be concrete (No. 24).

Table 3. Abstract and Concrete Clabjects and the Abstract Superclabject Rule

(23) abstract C C

(24) concrete(z) < x € C A —abstract(x)

(25) spec(x,y) — abstract(y)

(26) abstract(c) A in(x,c) — abstract(zx)

(27) concrete(x) A member(x,y) — Iz : concrete(z) A member(x, z)

In the literature it has been proposed that only abstract classes may be
specialized:

Abstract Superclass Rule: All superclasses are abstract [3] in that they have
no direct instances.

Obeying this rule improves the clarity of object-oriented models, especially
when the extension (set of instances) of classes is of interest. Despite the trade-
off of additional classes to be modeled and maintained, we feel that obeying
the abstract superclass rule in multi-level modeling is beneficial because of the
increased clarity. That is why in the original DDI approach [9] only concrete
clabjects could be instantiated. We now relax this restriction as follows:

Abstract Superclabject Rule: All superclabjects are abstract in that they have
no direct concrete instances (but they may have abstract instances).

This is formalized as: All superclabjects are abstract (No. 25). If an abstract
clabject acts as class in an instantiation relationship, then the clabject playing
the instance role must be abstract as well (No. 26). Every concrete clabject that
is member of some clabject must be member of a concrete clabject (No. 27).

The meaning of the allowed kinds of instantiation relationships depends on
the abstractness of the related clabjects. An instantiation relationship between
a clabject x in the role of the instance and a clabject ¢ in the role of the class,
denoted as in(z, c), can be classified as one of the following:

— An immediate concrete instantiation relationship is between a concrete clab-
ject in the instance role and a concrete clabject in the class role. For example,
the relationship between BMW Z4 and Car is an immediate concrete instan-
tiation relationship, meaning that BMW Z4 is an instance of Car, or, more

exactly, that the object facet of BMW Z4 is an instance of a class-facet of
Car.

— A shared concrete instantiation relationship is between an abstract clabject
x in the instance role and a concrete class ¢ in the class role. For example, the
relationship between BMW Motorcycle and Motorcycle is a shared concrete
instantiation, meaning that all concrete specializations of BMW Motorcycle,
such as F700GS and R1200GS, are instances of Motorcycle.

— A shared abstract instantiation relationship is between an abstract clab-
ject x in the instance role and an abstract clabject ¢ in the class role. For
example, the relationship between BMW Vehicle and Vehicle is a shared ab-
stract instantiation relationship, meaning that all concrete specializations
of BMW Vehicle are instances of a concrete specialization of Vehicle, e.g.,
BMW Z4 is an instance of Car.

4 Coping with Dual Inheritance

In this section we define the mechanism for inheritance of property references
along generalization and instantiation relationships. A clabject inherits both
from its class-clabject and from its superclabject. We refer to this specific form
of multiple inheritance as dual inheritance. Dual inheritance leads to potential
conflicts. We propose one way to guarantee that concrete clabjects are conflict-
free and, thus, satisfiable.

Table 4. Dual Inheritance

(28) R°(w,4,p,5,y) ¢ R(z,4,p,5,y) V (3s : spec(x, s) A R*(s,4,p, 5, y))
V (Je:in(z,c) AR (c,i+1,p,5,y) At > 0)

(29) R*(,4,p,5,y) < R°(x,4,p,7,9) A (35’ Fy :isa™ (v, y) A R°(z,4,p,5,)
— isa®(y,y') Visa*(y',y) vV 353" : R(z,i,p,5",y"))

Inheritance of property references is defined using the following predicates:
predicate R (No. 16 in Table 2) holds asserted property references of all clab-
jects. Auxiliary predicate R° (No. 28 in Table 4) holds asserted and inherited
property references. Derived predicate R* (No. 29) holds effective property ref-
erences which are the most-specific property references out of the asserted and
inherited property references.

We first look at asserted and inherited property references (No. 28). From
its superclabject a clabject inherits all effective property references. From its
class-clabject it inherits all effective property references with a source potency
of 1 or above. When inheriting property references from the class-clabject, the
source potency is decremented by 1. For example, clabject BMWZ4 inherits
from its superclabject BMW Vehicle a soldPrice reference to Euro and from its
class-clabject Car a soldPrice reference to EuropeanCurrency.

An inherited or asserted property reference of a clabject x at source potency
1 for property p to target object y is effective if x has no inherited or asserted
property reference for property p to a target object which is a descendant of y
(No. 29). For example, the reference to Euro is the effective soldPrice reference for
clabject BMW Z4 since it is more specific than the reference to EuropeanCurrency.

We now discuss the role of concrete clabjects in resolving or detecting con-
flicts introduced by dual inheritance along generalization and instantiation re-
lationships. If a concrete clabject inherits from its superclabject and from its
class-clabject references for property p to y and g, respectively, we demand that
one of the references is a descendant of the other. If this is not the case the mod-
eler needs to resolve the potential conflict by asserting a reference of property p
to some clabject y” (No. 30) which needs to be, due to the previously introduced
constraints, a descendant of both y and y/. If this is not possible, the modeler
detects a conflict. This guarantees that concrete clabjects that obey this con-
straint are satisfiable at the instantiation levels beneath. Conflicts are resolved or
detected at concrete objects. For example, BMW Z4 inherits for property engine
via specialization from BMW Vehicle and via instantiation from Car references to
BMW Engine and CarEngine, respectively. To avoid a potential conflict, BMW Z4
asserts for property engine a reference to EngineK5.

Other approaches to detecting and resolving conflicts are (1) to ignore the
problem and accept the possiblity of unsatisfiable properties, (2) to use more so-
phisticated techniques to decide whether two conflicting property references are
satisfiable or not, or (3) to make the above check not only for concrete clabjects
but also for abstract clabjects, for example it would make necessary to add a
property reference from BMW Motorcycle to a to-be created clabject, e.g., called
BMW MotorcycleEngine, that specializes BMW Engine and instantiates Motorcy-
cleEngine and which is a generalization of BMW F700GS and BMW R1200GS.
With regard to the effort associated with such an immediate conflict resolution,
delaying conflict resolution to concrete clabjects, as introduced above, seems to
be a good compromise.

5 Mandatory Constraints at Multiple Levels

By now, it is up to the modeler to decide whether properties are to be instan-
tiated and at which levels they are to be instantiated. In this short section we
introduce support for defining mandatory constraints at multiple levels. Manda-
tory constraints allow to control the stepwise instantiation process by demanding
that concrete source clabjects at a given level of the domain of the property need
to refer to a concrete clabject at a given level of the range of the property or to
a clabject that is a descendant of a concrete clabject at the given level.

In more formal terms, a mandatory constraint total(7, p, j) (No. 31 in Table 5)
expresses that property p, which is introduced between clabject ¢ and d with
potencies n and m, is mandatory for potencies i and j, with potencies ¢ and j
being lower or equal to potencies n and m, respectively (No. 32). This means

10

Table 5. Mandatory constraints

(31) total CN x P x N
(32) total(i,p,j) — IcInIm3d : R(c,n,p,m,d) Ni <nAj<m
(33) R(c,n,p,m,d) A total(i,p,j) A j < m A nmember(x,c,n — i) A concrete(x)
— 37’ Jyy : R (x,4,p,5",y") ANisa™ (v, y) A concrete(y) A nmember(y,d, m — j5)

that concrete (n — i)-members of ¢ must refer via property p to a clabject that
is a (descendant of a) (m — j)-member of d (No. 33).

For example, property engine is introduced at clabject Vehicle by a reference
with source potency 2 and target potency 2 to clabject Engine. The multi-level
domain of property engine is given by the 0-, 1-, and 2-members of Vehicle and
its multi-level range is given by the 0-, 1-, and 2-members of Engine. Mandatory
constraint total(2,engine, 2) demands that every concrete O-member of Vehicle
refers to some concrete O-member of Engine or to a descendant of Engine.

6 Related Work

DDI is heavily influenced by the classical work on deep instantiation of Atkinson
and Kiihne [1]. Kithne and Schreiber [5] introduced the notion of superclabject
and propose the use of metaclass compatibility rules and represent the abstract-
ness of clabjects by giving them potency 0. De Lara et al. [7] propose to declare
abstract clabjects as such. In both approaches, abstractness of clabjects only
refers to the inability to create instances; abstract clabjects in the dual sense
of abstract object and abstract class are not discussed. Kiithne [4] provides an
in-depth discussion of the distinction between generalization and classification
together with a discussion of abstract objects.

From M-Objects and M-Relationships [8], DDI takes the idea that instantia-
tion (then called concretization) levels have a label and that every instantiation
(or concretization) hierarchy has its own set of instantiation levels. M-Objects
do not come with the possibility to model generalization hierarchies of m-objects
at one instantiation level. A comparison with different techniques for deep char-
acterization, then called ‘multi-level abstraction’, is given in [10]. DDI is further
influenced by Pirotte et al’s work on Materialization [12]. Similar to M-Objects,
materialization does not come with support for generalizing objects at the same
abstraction level and does not come with the distinction between concrete and
abstract classes. Many aspects of clabject hierarchies with deep instantiation
may be alternatively modeled using powertypes [11] or the powertype pattern [2]
(see [9]). It is, however, unclear how generalization of clabjects may be modeled
using powertypes or the powertype pattern.

The most important related work is that of de Lara et al. [6] on the uniform
handling of inheritance at every meta-level, which however does not come with
the simplicity and conceptual clarity provided by the abstract superclabject rule.
It is open to future work to analyze the trade-offs of both approaches and to
combine the advantages of both approaches.

11

7 Conclusion

We have discussed the distinction between abstract and concrete clabjects as one
way of clarifying the meaning of superclabjects in multi-level models. In a sim-
plified setting (only considering single-valued and uni-directional property refer-
ences) we have introduced and relaxed the abstract superclabject rule, showed
how the distinction between abstract and concrete clabjects helps to cope with
dual inheritance, and introduced support for mandatory constraints over con-
crete clabjects at multiple levels. We currently work on extending the full DDI
approach (also considering bi-directional and multi-valued relationships) and its
ConceptBase implementation [9] along the lines discussed in this paper, espe-
cially on extending DDI with full-fledged multi-level multiplicity constraints.

References

1. Atkinson, C., Kiihne, T.: The Essence of Multilevel Metamodeling. In: Gogolla,
M., Kobryn, C. (eds.) Proceedings of the 4" International Conference on the UML
2001, Toronto, Canada. LNCS, vol. 2185, pp. 19-33. Springer Verlag (Oct 2001)

2. Eriksson, O., Henderson-Sellers, B., Agerfalk, P.J.: Ontological and linguistic meta-
modelling revisited: A language use approach. Information & Software Technology
55(12), 2099-2124 (2013)

3. Hiirsch, W.L.: Should superclasses be abstract? In: Tokoro, M., Pareschi, R. (eds.)
ECOOP. LNCS, vol. 821, pp. 12-31. Springer (1994)

4. Kiihne, T.: Contrasting classification with generalisation. In: Kirchberg, M., Link,
S. (eds.) APCCM. CRPIT, vol. 96, pp. 71-78. Australian Computer Society (2009)

5. Kiihne, T., Schreiber, D.: Can programming be liberated from the two-level style:
multi-level programming with deepjava. In: Gabriel, R.P., Bacon, D.F., Lopes,
C.V., Jr., G.L.S. (eds.) OOPSLA. pp. 229-244. ACM (2007)

6. de Lara, J., Guerra, E., Cobos, R., Moreno-Llorena, J.: Extending deep meta-
modelling for practical model-driven engineering. Comput. J. 57(1), 36-58 (2014)

7. de Lara, J., Guerra, E., Cuadrado, J.S.: Model-driven engineering with domain-
specific meta-modelling languages. Software & Systems Modeling pp. 1-31 (2013)

8. Neumayr, B., Griin, K., Schrefl, M.: Multi-Level Domain Modeling with M-Objects
and M-Relationships. In: Link, S., Kirchberg, M. (eds.) APCCM. CRPIT, vol. 96,
pp. 107-116. ACS, Wellington, New Zealand (2009)

9. Neumayr, B., Jeusfeld, M.A., Schrefl, M., Schiitz, C.: Dual deep instantiation and
its conceptbase implementation. In: Jarke, M., Mylopoulos, J., Quix, C., Rolland,
C., Manolopoulos, Y., Mouratidis, H., Horkoff, J. (eds.) CAiSE. Lecture Notes in
Computer Science, vol. 8484, pp. 503-517. Springer (2014)

10. Neumayr, B., Schrefl, M., Thalheim, B.: Modeling techniques for multi-level ab-
straction. In: Kaschek, R., Delcambre, L.M.L. (eds.) The Evolution of Conceptual
Modeling. LNCS, vol. 6520, pp. 68-92. Springer (2008)

11. Odell, J.: Power types. JOOP 7(2), 8-12 (1994)

12. Pirotte, A., Zimanyi, E., Massart, D., Yakusheva, T.: Materialization: A Powerful
and Ubiquitous Abstraction Pattern. In: Bocca, J.B., Jarke, M., Zaniolo, C. (eds.)
VLDB. pp. 630-641. Morgan Kaufmann (1994), 0605

13. Rosen, G.: Abstract objects. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of
Philosophy. Fall 2014 edn. (2014)

12

