Multilevel Modelling for Interoperability

Andreas Jordan, Wolfgang Mayer, and Markus Stumptner

University of South Australia, Australia,
{andreas. jordan}@mymail .unisa.edu.au,
{wolfgang.mayer,mst}@cs.unisa.edu.au

Abstract. Model-driven approaches to establishing interoperability be-
tween information systems have recently embraced meta-modelling frame-
works spanning multiple levels. However, no consensus has yet been
established as to which techniques adequately support situations where
heterogeneous domain-specific models must be linked within a common
modelling approach. We introduce modelling primitives that support
the multilevel modelling paradigm for information integration in het-
erogeneous information systems. We extend standard specialisation and
instantiation mechanisms to enable the propagation of semantic and
schema information across model levels and compare our approach us-
ing a suite of criteria to show that our approach improves modularity,
redundancy, query complexity, and level stratification.

1 Introduction

The core idea of conceptual modelling since the ER-Model [1] is the notion of
defining a particular language that can be used to effectively construct concise and
clear domain models. Carrying over conceptual model characteristics into object-
oriented software models (such as UML), led to rich design methods including
meta-modelling frameworks: models that can define the languages used to produce
the actual conceptual and design models for information systems. For example,
Atkinson and Kiihne [2] analyse the way in which design/product relationships
cause inconsistencies with the fixed meta-model hierarchy of the UML standard.
However, advanced application domains, such as those requiring the in-depth
modelling of products, e.g. engineering standards, online catalogues, reference data
libraries, continue to present a particular challenge to meta-modelling frameworks.
This is further exacerbated when investigating appropriate multilevel modelling
abstractions suitable for applications in an interoperability setting.

In this paper we discuss the multi-level modelling extensions that we believe
will enable automated, model-driven transformation of data between two of the
major data standards in the Oil & Gas industry [3,4]. A key concern is the
notion that the same component in a real system can be subject to multiple
classifications. This is to allow a multi-dimensional view of the modelled data,
from recording specific technical solutions and constraints to be used for technical
access as well as to serve business/ERP requirements.

The contribution of this paper is a set of modelling extensions to overcome
limitations of existing approaches, such as the “heterogeneous level” issue of [5].

93

Classes | Instances

o .
g gn ProductCatalogue| _ | | | o pr —Pmduc“"
K] TS Product Catalogue.
8s
as

]

«Singleton»
PumpCategory
g2
29| [productcategory «Singleton» | | _____________| _ |Pump : UNSPSC-PumpTypes
3] < UNSPSC
] PumpTypes
C12 KerosenePump:

g3 ProductModel PumpModel «Singleton» C12 Kerosene Pump Model
3 3 — - type : String C12KerosenePump <+ — —- listPrice : 1200AUD
°2 - listPrice : Int - maxDeliveryVol : Int Model - type : Horizontal
& - maxDeliveryVol : 1000It\min

Z T
8E _ pump_1:
Su ysica " " C12KerosenePump -
EE] Entity I PumpPhysicalEntity L_{ C1. C Pump }<_ -~ ™ PhysicalEnti
&S| [Teeral:suing - deliveryVol: Int | ' [~Serialf ; 400560

& - deliveryVol : 1000It\min

Product Catalogue Product Category Product Model

Fig. 1: Product catalogue modelled in plain UML, using generalisation, instantia-
tion and aggregation (adapted from [5])

2 Motivating Example and Multi-Level Modelling

There are several important aspects and complexities to the domain that need
to be modelled. We identify three levels of data: business level, specification
level, and physical entity level. Firstly, both designs and the physical entities of
a product catalogue must be represented and have their own life-cycles which
forms the physical entity level. Secondly, a second level of classification provides
the specifications of the physical entities. Thirdly, a third level of classification, or
categorisation, must be imposed on the designs. This third level of classification
also consists of complex taxonomies relevant from the business/ERP perspective.
The modelling approaches taken by established related standards demand a
flexible approach to support mappings and model transformations between them.

A UML-based approach to modelling this situation is shown in Figure 1, in
which ProductCatalogue, ProductCategory, ProductModel, and ProductPhysicalEntity
are modelled as an abstraction hierarchy using aggregation. Specialisation is used
to distinguish categories (i.e. business classifications), models (i.e. designs), and
physical entities of pumps and motors.

Modelling complex domains using UML suffers from what Henderson-Sellers
et al. describe as enactment (see [6]). Moreover, the model in Figure 1 contains a
number of redundant classes as discussed in [5,7]; the misuse of the aggregation
relationship to represent a membership and/or classification relation; and the
result that the physical entities are not intuitively instances of their product
models, but rather are part-of their models. Basically, a domain model that seems
to naturally have multiple levels of classification is forced into a 2-level modelling
framework so that all aspects of the product data exist at the instance level. In
an attempt to resolve such issues, multi-level modelling (MLM) techniques have
been developed.

94

Pump Model? 02 Pump Model | Pump
partitions >
temp.? : int name : String temp. : int
maxTemp. : int maxTemp. : int
A) Kind .
......................... 01 Ceinstance.ofy
motor’ H o1 X
- + Pump
ontological -
instantiation : :Pump Model
motor’ : name = Kerosene Pump
——— Kerosene Pump' maxTemp. = 150
temp.’ = 50
maxTemp.” = 150 Kerosene Pump
ontological {temp. = 50}
instantiation : ~
......................... cinstance-ofy |
: 00 :
. _motor® | KP-S/N 400560° KP-S/N 400560
temp.® = 65 temp. = 65
(a) (b)

Fig. 2: Deep Instantiation (a) and Power Type (b) models of a product catalogue

The concept of potency [7] was originally introduced for Deep Instantiation
(DI) to support the transfer of information across more than one level of instanti-
ation. DI introduced the concept of ontological instantiation, which is a domain
specific instantiation relationship (different from standard linguistic instantiation
in UML meta-modelling).

Using DI techniques, which works within the boundaries of strict meta-
modelling, invariably results in relationships (other than instantiation) crossing
level boundaries, which is not permitted under strict meta-modelling. For ex-
ample in Figure 2a, if the attributes temp? and mazTemp' were modelled as
associations to values of the type DegreeCelsius (rather than just integers that
must be interpreted as such), no matter at what level DegreeCelsius is placed
it would result in an association crossing a level boundary at some point [8].
Moreover, if an additional level of instantiation was introduced into a DI-based
model, global changes to the potency values of all concepts in the model (as
opposed to just the subhierarchy directly affected) are required.

The concept of power types [9] has also been applied in the context of
MLM frameworks [10]. Basically, for a power type t of another type u, the
instances of ¢ must be subtypes of u. In contrast to potency, power types do not
necessarily provide deep instantiation semantics; they provide semantics closer
to the conceptual situation being represented by clearly identifying the concepts
involved, their relationships, and their properties.

For example, Figure 2b shows one instance of the Power Type pattern, where
type and instance facets of a concept are depicted within the ellipse. The power
type Pump Model for the type Pump is displayed; the concept ProductCategory
would be represented as cascading uses of the power type pattern.

M-objects (multi-level objects) and m-relationships (multi-level relationships)
were introduced in [11] along with the concretization relation which stratifies
objects and relationships into multiple levels of abstraction. The m-objects

95

Ory i subset by .
E Model specification Equipment .
ST - Membership
Classification - taxRate :Int ~serialff ; Int
- listPrice :Int
e S Specification R
by Enumeration
Rotating
UNSPSC 4
. Mechanical
EquipmentTypes Equipment

PumpModel

. subset by
- type: String specification
- maxDeliveryVol : Int

~deliveryVol : Int
A T

Instantiation
with Extension

C12KerosenePump
- taxRate : 15
- listPrice : 1200AUD
- maxDeliveryVol : 1100It\min A
4 Specialisation
I L 1 i by Refinement
C12KerosenePump rev. 1 Cl12KerosenePump rev. 2
- maxDeliveryVol : 1105It\min
..... ! . .
|
' A
KP-S/N 400560 Specialisation
- serial#f : 400560 by Extension
- deliveryVol : 1100It\min

Fig. 3: Product catalogue example modelled in our framework

technique allows for the encapsulation of the different levels that relate to a
specific domain concept in the m-object representing that concept. Furthermore,
it combines the different abstraction hierarchies for specialisation, instantiation,
and aggregation into a single concretization hierarchy. As such, the example
situation would be modelled with a top-level concept ProductCatalogue containing
the definition of its levels of abstraction: category, model, and physical entity.
The lower levels would then include objects for the different PumpCategories,
PumpModels, and PhysicalPumps, respectively.

While the m-objects technique produces concise models with a minimum
number of relations, they hide complex semantics. This can lead to difficulties in
interpreting the models as the concretization relation between two m-objects (or
two m-relationships) must be interpreted in a multi-faceted way.

3 Modelling Extensions to Support Multilevel Modelling

Recently, the notion that every part of an object model is an object (embraced in
certain OO programming and conceptual modelling [2] approaches) has regained
popularity [8,6]. We follow this approach and treat all model elements as objects
that can include both type and instance facets.

The MLM approaches summarised in the previous section place the emphasis
on a clear and consistent layering of the levels in the model. However, when applied
to ontological instantiation in information modelling for systems interoperability,
the level construct actually becomes an artefact of the modelling outcome. Domain
engineers do not think in levels; they work in terms of semantic relationships, and
there can be arbitrary many levels for each of them. Capturing these in terms
of potency is useful if the originating models are available for reorganisation

96

according to the strictness criterion and if solid estimates exist on the expected
number of levels that future developers may want to add in a particular domain.
In the interoperability space this is generally not the case. We will now examine
the specific relationships used in our framework.

3.1 Instantiation vs. specialisation relationship

In MLM, the existence of two basic relationship types for increasing specificity is
commonly assumed: (1) instantiation which can be broadly defined by the confor-
mance of instances to types in which specificity is increased by assigning distinct
values to attributes (if they exist); and (2) specialisation (or generalisation),
which makes a concept more specific by including finer distinction (based on the
Liskov Substitution Principle (LSP) [12]). Intuitively our modelling extensions
are compatible with the intuition of the LSP, however formal proof to verify such
a claim is left for future work.

Viewed in terms of increasing specificity it becomes obvious that what we
have generally referred to as specificity, and what MLM approaches measure by
potency, actually represents two different conceptual relations: One is the reference
of a specification to the specified item. This captures the powertype aspect of
the relationship and is also at the core of the materialization relationship in the
conceptual modelling literature. The other is the definition of the vocabulary
used in the specification. It should be clear that this distinction is of fundamental
importance for interoperability mappings, since they rely on being able to treat
the specification of a system separately from its runtime state.

We characterise specialisation relationships along the lines of [13] to distin-
guish a relationship that extends a class (by adding attributes, associations, or
behaviour) from one that refines a class (by adding granularity to the description).
We call a specialisation relationship that extends the parent class a Specialisation
by Extension (SOE) and adopt standard monotonic specialisation semantics. As
such it can include but does not necessitate refinement. Most importantly, this
form of specialisation introduces a new model level (as opposed to standard
meta-modelling and MLM techniques where modelling levels are fixed a priori).

In contrast, a specialisation relationship that only refines the parent class
is called Specialisation by Refinement (SpecR), which allows the introduction
of subtypes that restrict the domain of the specialised class (e.g., by restricting
the domains of properties and associations, or adding domain constraints on
properties) but without introducing additional model levels. This allows for an
arbitrary number of subtypes that simply refine the level of granularity.

We characterise instantiation as either Instantiation with Extension (InstX)
or Standard Instantiation (InstN). Both forms of instantiation introduce addi-
tional model levels; however, standard instantiation means that all attributes of
the type being instantiated must be assigned a value from their domain, while
InstX allows for additional attributes, behaviour, etc. to be added to the concept
that can then be instantiated or inherited further to lower model levels.

The Subset by Specification (SbS) relationship represents the existence of a
class of specification construct that identifies particular subtypes of another type.
The specification (for example EquipmentModel) exists at the same level as the
type it refers to, because the specification can only refer to properties of that

97

type (and not to properties of individual subtypes). It is, however, possible to
define subtypes of this type of specification to reference particular properties (so
EquipmentModel can be specialised to PumpModel which can refer to properties
of Pumps). Together with InstX, this relationship can be used to construct
the powertype pattern [9]. In Figure 3, PumpModel could be modelled as the
powertype of EquipmentModel since it specialises EquipmentModel and the instance
of PumpModel, i.e. C12KerosenePump, is an indirect subtype (by extension) of
Equipment.

Different to UML associations, most conceptual models permit general associ-
ations that represent domain specific relationships. We identify two particular
such associations. The first we call Member. In contrast to the instantiation
relation which it otherwise resembles, member does not have any constraints
on the assignment of values to attributes as it is purely a basic set membership
relation. However, this does not preclude the specification of membership criteria,
or constraints, for allowing or disallowing the possible members of a set. Member
does require the existence of a “primary” instantiation relation. The second such
association is Specification by Enumeration SbE, which represents a relationship
between concepts A and B that describes how the extensions of the sets of entities
that they represent are related. Specifically, it means that the members of A
are instances of B. These relations permit us to emulate multiple inheritance
by establishing statements about categories, without defining the attributes or
associations of the included object or the category itself.

Below we present the formal properties of our model. The first argument
denotes the instance or specialised concept, whereas the second argument repre-
sents the type or general concept. Relations Member and SbE are jointly used to
specify a classification scheme that subdivides the instances of a concept. Model
elements are organised in levels numbered such that the type-level number is
one less than the instance-level. Function level returns the level number of each
element. Each element is described by a set of typed attributes, some of which
may have assigned values, and a constraint expression stating necessary properties
of the object’s instances. Function attr maps each object to a set of attribute
names, function type associates a data type to each object-attribute pair, and
partial function val returns the value associated with a given object-attribute
pair (if one has been assigned). We implicitly assume that primitive data types
and their possible values are implicitly modelled as concepts and instances, re-
spectively. Function desc maps each concept to a constraint expression capturing
the properties that all instances of the object must satisfy, and names returns
the attribute labels used in said description.

Domains:

(@) Set of objects L Set of attribute labels

N Natural numbers S Constraint language over attributes in L
Functions:

level: O— N The level at which an object is defined (zero is top level)
attr: O — 2% The set of attribute labels for an object

type: O X L~ O The type of an attribute of an object

val : O x L+~ O The value of an attribute of an object

desc: O~ S Constraint expression instances of an object must satisfy
names : S — 2L The attribute labels used in a constraint expression

98

Relations:

InstN COxO InstN(z,c): xis an instance of ¢

InstX COxO InstX(xz,c): zis an instance-with-extension of ¢
SpecR C O x O SpecR(c,d'): cis a specialisation-by-refinement of ¢’
SpecX COxO SpecX(c, c): cis a specialisation-by-extension of ¢/
Member CO x O Member(z,c): x is in a Member relation with ¢
SbE COxO0O SbE(c,d): cis a Specification-by-Enumeration of ¢’
SbS COxO0O SbS(c,d): cis a Subset-by-Specification of ¢’

We use (p*) p* to denote the (reflexive-)transitive closure of relation p.

Definitions
The Spec relation generalises the two forms of specialisation

Spec(c, ') +» (SpecR(c, ") V SpecX (c, ')
An object is a leaf iff it has no specialisations Leaf(c) «» Bz : Spec(z, c)
The Inst relation generalises the two forms of instantiation

Inst(z,c) <> InstN(z,c) V InstX(z, c)
Object x is a general instance of ¢ iff it is instance of or specialises an instance of (a
specialisation of) ¢

Genlnst(z,c) < 32’3’ : Spec* (z, ") A Inst(z’, ") A Spec* (', c)

Axioms for specialisation and instantiation

Inst, Spec, Member are jointly acyclic (Inst U Spec U Member)*(z,c) = x # ¢
InstN and InstX, SpecR and SpecX are mutually exclusive
InstN(z,c) — A : InstX (z,c) InstX(x,c) — A : InstN(z,c)
SpecR(x,c) — fc’ : SpecX (x,c) SpecX (z,¢) — Bc’ : SpecR(z,)

Inst, Spec restricted to a unique parent object

p(z,c) A p(z,c') = c = for p € {Inst, Spec}
Only leaf objects can be instantiated Inst(z,c) — Leaf(c)
Level consistent with Inst, Spec

Inst(z,c) — level(z) = level(c) + 1

SpecR(x,c) — level(z) = level(c) SpecX (x,c) — level(c) < level(x)
Axioms for schema consistency
Attribute type must be consistent with level order

a € attr(z) At = type(z, a) — level(t) < level(x)
SpecR does not change attribute set SpecR(x,c) — attr(c) = attr(z)
SpecX extends attribute set SpecX (z,c) — attr(c) C attr(z)
Spec may specialise attribute types

Spec(z,c) A a € attr(z) Nattr(c) At = type(z,a) At = type(c,a) — Spec*(t,t')
InstN does not change attribute set InstN(x,c) — attr(c) = attr(x)
InstX extends attribute set InstX(x,c) — attr(c) C attr(z)
Inst does not change attribute type

Inst(z,c) A a € attr(z) Nattr(c) — type(x, a) = type(c, a)
Inst instantiates all attributes of ¢

Inst(z,c) Aa € attr(c) ANt = type(x,a) = Fv : v =wval(x,a) A GenInst(v,t)
Axioms for Member and Specification-by-Enumeration
Member relation must be consistent with level order

Member(z, c) — level(c) < level(x)
Specification-by-Enumeration must be consistent with level order

SbE(c,t) — level(t) < level(c)
Specification-by-Enumeration classifies general instance of the type

SbE(c,t) A Member(x,c) — Genlnst(x,t)

Axioms for Subset-by-Specification

99

Subset-by-Specification must be consistent with level order
SbS(c, ') — level(c) = level(c')

Instances of each subset specification must be a specialisation of the partitioned type
SbS(c,c') A Inst(z,c) — Spect (z,¢)

The specification may refer only to the attributes of the partitioned type
SbS(c, ') A ¢ = desc(c) — names(¢) C attr(c)

Axioms for Descriptions

Constraints can use only attributes defined in its associated object
¢ = desc(c) — names(¢) C attr(c)

Constraints must respect the specialisation hierarchy
Spec(c,) A ¢ = desc(c) A ¢' = desc(c') — (¢(x) — ¢'(x))

Instances of a object must satisfy its constraint
GenlInst(z,c) A ¢ = desc(c) — ¢(z)

Members in a Member relation must satisfy its classifier’s constraint
Member(z,c) A ¢ = desc(c) — ¢(x)

4 Comparison of MLM Techniques

A comparison of MLM approaches was performed in [5] based on a number
of criteria from the perspective of reducing accidental complexity; that is, mis-
matches between what is being modelled and the modelling formalism being used.
These criteria are: (1) Compactness, (2) Query Flexibility, (3) Heterogeneous
Level-Hierarchies, and (4) Multiple Relationship-Abstractions. These criteria are
important for modelling the domain in a concise, flexible, and simpler way. How-
ever, they do not cover certain aspects of particular importance to our domain
and application in the OGI Pilot. We consider two additional criteria:

(a) Locality of Attributes € Relationships refers to what model elements
attributes and relationships are defined on. Attributes/relationships are
defined locally if they are defined on the model elements closest to where
they are used. For example, an attribute relevant to product designs should
be situated on the concept ProductModel rather than a related concept such
as Product. This is in contrast to the modularity aspect, which attempts
to minimise the different locations at which attributes and associations are
located; however, it is particularly important in terms of interoperability
as the different domain models exhibit different modelling approaches and
scope, and attributes and associations may not have been grouped together
consistently across the information system ecosystems. Having a flexible
framework that can handle such a situation elegantly is important.

(b) Clarity of Relations’ Semantics is concerned with whether the relations
of the approach have clearly delineated semantics from other relations, or
if they combine the semantics of multiple, commonly understood, relations
together. For example, while a relationship that combines both the semantics
of specialisation and instantiation may simplify the graphical representation of
the model, the confounding of multiple relations in one could cause difficulties
for constructing model transformations. Moreover, a number of issues can
arise if the distinctions between relations are de-emphasised. Weakening the
intrinsic differences between established relations comes at a significant cost
such as “sanity checks regarding the integrity of metamodelling hierarchies
that otherwise would not exist” [14].

100

In applying the criteria to our approach we conclude that it:

— is modular as it treats the class and object facets of a concept together
allowing the specification of information regarding a concept in one place;

— allows redundancy-free modelling by using a range of relations that include
various attribute propagation, inheritance, and assignment semantics;

— supports query flexibility through the different relationships and concepts in
a domain model, e.g. different pump models can be accessed by retrieving the
instances of PumpModel, the models in a particular category can be retrieved
by accessing the members of the desired PumpCategory, and the physical
pumps can be accessed through the instances of Pump;

— allows heterogeneous level-hierarchies through its flexible and dynamic nature
of level stratification;

— supports specialisation and instantiation of domain and range of relationships;

While it is a balancing act to not produce too many relations, many of the
relations in our approach are special cases of well known relations, alleviating
possible issues with understandability and adding information of finer granularity.
Moreover, existing domain models could be analysed to identify such distinctions,
improving the identification of model transformations for interoperability.

There are three potency-based approaches in the comparison, the latter two
of which are newly added to the comparison: Deep Instantiation [7], MetaDepth
[15], and Dual-Deep Instantiation (DDI) [8]. MetaDepth allows the specifica-
tion of different views (similar to the modelling spaces proposal of [2]), which
allow for heterogeneous level-hierarchies. DDI extends DI with explicit levels
based on “sort” hierarchies and attributes and associations with 2 potencies
(source and target) rather than the single potency of DI and MetaDepth. DDI
supports query flexibility (i.e. descendents of an object at a particular (sort) level
can be queried in ConceptBase), heterogeneous level-hierarchies and multiple
relationship-abstractions.

All three potency-based techniques can support locality of attributes and
relations; however, it comes at the cost of not taking advantage of potency, i.e.
restricting the possible potencies to zero or one. Similarly, under this restriction,
standard DI and MetaDepth have clear cut relations, while using higher potency
starts to mix instantiation with specialisation semantics. Finally, DDI more
strongly combines the instantiation and specialisation relations and, hence, does
not support the last criteria at all.

Assessing the power type approach (both simple and extended) with respect to
the new criteria reveals that it supports locally specified attributes and relations.
Whether the approach supports clarity of relation semantics is unclear as it
depends on whether or not the partitions relation is provided with instantiation
semantics [10]. However, the power type approaches only partly support compact-
ness and only the extended power type approach fully supports query-flexibility
while the simple approach only provides partial support. In terms of relationship
abstraction, both approaches require OCL to provide this support.

The application of the additional criteria to m-objects show that the clarity
of relation semantics is low, due to the combination of the relations aggregation,
specialisation, and instantiation. In addition, as the intention of the M-Objects
technique is to encapsulate all of the attributes and relationships of a concept on a
single m-object, it does not support locally specified attributes and relationships.

101

5 Conclusion

Effective exchange of information about processes and industrial plants, their
design, construction, operation, and maintenance requires sophisticated informa-
tion modelling and exchange mechanisms that enable the transfer of semantically
meaningful information between a vast pool of heterogeneous information sys-
tems. This need increases with the growing tendency for direct interaction of
information systems from the sensor level to corporate boardroom level. One
way to address this challenge is to provide more powerful means of information
handling, including the definition of proper conceptual models for industry stan-
dards and their use in semantic information management. In this paper we have
described our modelling framework for large scale ecosystem handling and the
extended relationship types that help to succinctly express data models across a
heterogeneous information system ecosystem.

References

1. P. Chen. The entity-relationship model - toward a unified view of data. ACM
Trans. Database Syst., 1(1):9-36, March 1976.
2. C. Atkinson and T. Kiihne. Processes and products in a multi-level metamodeling
architecture. IJSEKE, 11:761-783, 2001.
ISO. ISO 15926 — Part 2: Data Model. 2003.
Open Systems Architecture for Enterprise Application Integration. MIMOSA, 2012.
5. B. Neumayr, M. Schrefl, and B. Thalheim. Modeling techniques for multi-level
abstraction. In The Evolution of Conceptual Modeling. Springer LNCS 6520, 2011.
6. B. Henderson-Sellers, T. Clark, and C. Gonzalez-Perez. On the search for a level-
agnostic modelling language. In Proc. CAISE’13, pages 240-255, 2013.
7. C. Atkinson and T. Kithne. The Essence of Multilevel Metamodeling. In Proc. of
UML 2001, LNCS 2185, pages 19-33. Springer, 2001.
8. B. Neumayr, M. A. Jeusfeld, M. Schrefl, and C. Schiitz. Dual deep instantiation
and its ConceptBase implementation. In Proc. CAISE ’1/. Springer, 2014.
9. J. J. Odell. Power types. JOOP, 7:8-12, 1994.
10. C. Gonzalez-Perez and B. Henderson-Sellers. A powertype-based metamodelling
framework. Software & Systems Modeling, 5(1):72-90, 2006.
11. B. Neumayr, K. Griin, and M. Schrefl. Multi-level domain modeling with m-objects
and m-relationships. In Proceedings APCCM ’09, pages 107-116, 2009.
12. Barbara Liskov and Jeannette M. Wing. A behavioral notion of subtyping. ACM
Trans. Program. Lang. Syst., 16(6):1811-1841, 1994.
13. M. Schrefl and M. Stumptner. Behavior consistent specialization of object life
cycles. ACM TOSEM, 11(1):92-148, 2002.
14. T. Kiihne. Contrasting classification with generalisation. In Proceedings APCCM
’09, pages 71-78, Australia, 2009.
15. J. de Lara, E. Guerra, R. Cobos, and J. Moreno-Llorena. Extending deep meta-
modelling for practical model-driven engineering. Computer, 57(1):36-58, 2014.

- w

102

