
Modeling Techniques for Enterprise Architecture
Documentation: Experiences from Practice

Thomas Trojer, Matthias Farwick, and Martin Haeusler

University of Innsbruck, Innsbruck, Austria
firstname.lastname@uibk.ac.at

Abstract. Enterprise Architecture Management (EAM) is an IT-man-
agement process in which the relationships of business services, applica-
tions and the underlying IT-infrastructure is modeled. With dedicated
EA models, activities such as architectural consolidation, planning and
risk analysis are facilitated. A key factor in modeling and document-
ing enterprise architectures is the the underlying meta-model that en-
ables to capture the information demand of an organization. Current
EA tools provide no or only inflexible mechanisms to create and evolve
such organization-specific meta-models. Therefore we present a novel
modeling framework that has been established from a consulting and
a research project with two data centers. It makes use of both, concepts
from multi-level modeling and classical three-level modeling and sepa-
rates structural and ontological model ingredients. A key aspect of the
presented approach is the separation of modeling tasks across different
stakeholders and modeling levels and the favoring of practical usability
over language feature richness.

1 Introduction

In the context of Enterprise Architecture Management (EAM) and (IT-)systems
operation management, specialized modeling tools are typically used to model
the dependencies between the IT-infrastructure, deployed applications and the
business functions they support [14]. These models are then used to analyze the
current architecture, assess risks and plan changes to it.

In our previous work [7] we showed that keeping such a model in-sync with
reality is a major problem in practice. In line with Schweda [16], we argue that
a key aspect of an organization’s ability to effectively utilize and update the
model, is to create an evolvable organization-specific meta-model that matches
the stakeholders current information demand. In the context of EAM we call
this meta-model the information model (i.e. M1 ).

An information model is defined to only capture organization relevant data
and specifies the architectural patterns that occur in the organization’s business
and IT. However, the proper definition of such a model is hard to achieve in
practice: Typically multiple types of modeling artifacts need to be maintained
and different stakeholders use and adjust them. This poses challenges to both,
the underlying modeling framework itself as well as the user interfaces that

113



manage certain stakeholder groups to only model those parts for which they
have expertise.

In this paper we briefly present the EA and IT-modeling tool Txture1 that,
among other features, is capable of a flexible creation of information models
and the maintenance of instances thereof. The main purpose of Txture is to
support the architecture documentation efforts of stakeholders in an enterprise.
It separates the modeling concerns at different modeling layers via dedicated user
interfaces and thus links the different stakeholder groups to their individual area
of expertise and responsibility. The tool is the result of ongoing consulting and
research work in collaboration with two data centers that helped us to identify
modeling challenges in practice.

A central part of this paper is to show how we tackled modeling challenges
with a combination of a classical three-level modeling approach, a type – instance
based modeling approach and flexible extensions for individual model elements.
The goal of work is to share our experiences from practice and to engage in
discussions with the multi-level modeling research community on our approach
and potential alternative methods.

The remainder of this paper is structured as follows: We first provide general
background information for the Txture-tool. We then continue by presenting IT-
architecture modeling requirements and challenges in Section 3. In Section 4, we
describe how our modeling framework tackles these. Finally, we discuss related
work and end with concluding remarks.

2 Background of the IT-Modeling Tool Txture

In 2011 we started a consulting project with a banking data center and subse-
quently a research project with the data center of a large semiconductor manufac-
turer. The overall goal of both projects was to make IT-infrastructure documen-
tation more efficient and effective. Enhanced usability features and stakeholder-
orientation of the implemented tool were generally considered important. Be-
sides, requirements of common work activities on top of an IT-documentation,
such as flexible visualizations of the architecture for planning and risk analysis,
have been elicited.

The key features of the resulting Txture modeling tool are:

– Dynamic and flexible visualizations of IT-architectures via graphs.
– Configurable import mechanisms to automatically use architectural data

contained in external sources such as in Configuration Management Databases
(CMDB), Excel spreadsheets or relational databases.

– Modeling of the architecture via a form-based web-client to support less
technically skilled users.

– Textual architecture modeling via an information-model aware Eclipse-based
text editor [8].

1 http://www.txture.org

114



Fig. 1. The Txture environment showing the architecture browser (left screenshot),
navigable visualizations (top-most) and the ability to view and change the information
model (bottom-most). The tool is fully functional.

– High-performance model queries via optimized persistence of models in a
graph database.

– The ability to define and change the information model at runtime.

In order to exemplify the motivation for such a tool, Figure 1 depicts a
graph-based architecture visualization in Txture. Here, relationships between
application containers, an application and the underlying (clustered) hardware
infrastructure are shown. Such a visualization is used in practice e.g., to perform
impact and risk analysis of application deployments.

Several other key visualization features can be seen in this figure:

– Architectural elements are assigned to configurable layers, hence the visual-
ization automatically shows an intuitive architectural stack.

– The visualization is navigable via a set of traversal, deletion and grouping
operations for depicted documentation nodes (see context menu in Figure 1).

– Nodes are styled based on their type or other attributes, like mission-criticality.

Furthermore, Figure 1 also shows the meta-modeling capabilities for defining
information models via a form-based editor.

In the following section we outline the main modeling challenges that led to
Txture’s underlying modeling framework.

115



3 Modeling Challenges

Related work in the domains of IT-systems modeling as well as in the multi-level
modeling community has mostly focused on modeling software systems (refer to
Section 5). Compared to the modeling of software systems, IT-infrastructure
documentation has unique modeling requirements and its very own challenges.
We can summarize the most important challenges as follows:

CH1: Separation of stakeholders defining the information model and the ones
who are actually responsible for documenting IT-systems: Two main modeling
stakeholder groups were determined in both projects: One group consists of Ex-
pert Architects and the other group are Element Responsibles. Expert architects
have an interest in overseeing the entire IT-architecture of a given organiza-
tion. This group of stakeholders usually works together in order to develop the
organization-specific information model that forms the basis for the actual IT-
systems documentation. Architects are not necessarily the persons who docu-
ment the architecture. This is the task of Element Responsibles, who maintain
dedicated parts of the architecture documentation. Opposed to the architects,
they are mostly experts in a very narrow field that revolves around the items
and technologies they work with. Server responsibles are likely to be experts
in very specific types of virtualizations or hardware. Application responsibles,
on the other hand, often only roughly know the hardware their applications are
deployed on. As one can see, distinct user groups perform modeling on differ-
ent levels. This challenge needs to be tackled by a proper IT-documentation tool.

CH2: Documentation and information models both need to be evolvable: In
cases where the general architectural structure of an organization shifts, it be-
comes necessary to adapt the information model (think e.g. introduction of cloud
computing), or an architectural pattern was discovered that can not be docu-
mented with the current information model. These types of changes should be
applicable while the tool is running and without the help of a modeling expert
(i.e. no recompilation, complex configuration and adherence to certain modeling
patterns is required).

CH3: A documentation tool needs to expose familiar terminology and enter-
prise-aligned concepts to stakeholders: Especially in the more technology-related
parts of an architecture documentation, changes occur frequently and require
updates to modeling artifacts. A documentation tool needs to enable stakehold-
ers to quickly re-establish a useful documentation that is in-sync with the real
world and reflects enterprise-specific terminology.

CH4: Documentations need to be extensible according to individual stake-
holder’s documentation requirements: Different stakeholders typically have dif-
ferent documentation demands. We found out e.g. that components which are
central to an IT-architecture are likely to be documented in a more detailed way
than others. Therefore a documentation tool needs to flexibly cater for docu-
mentation intents of stakeholders that are beyond a defined common model.

116



Fig. 2. A simple IT-infrastructure documentation model.

4 Modeling Solutions

In this section we further outline the Txture modeling framework, first, by pro-
viding an example model on which we base our discussions and second, by pre-
senting our solution approach to tackle the abovementioned challenges.

The documentation model (i.e. M0 ) in Figure 2 shows instances of IT-system
components that are documented. The specific example describes an application
container instance “JBoss Inst T3” which “runs on” a physical server named
“Server Prod T3”. As we have described in the previous section, such a docu-
mentation model can be used e.g., to perform impact analysis (“What happens
if the specific server crashes?”) or to do infrastructure planning (“Is the specific
server appropriately dimensioned to run such software?”). Additional to model-
ing IT-component instances and their structural dependencies, a simple notion
of ontology can be seen on the right side of the figure. Such ontological classi-
fications are modeled as part of the documentation activity (also on M0 ) and
allow Element responsibles to further describe and categorize their documented
instances.

The descriptive concepts which are available are types and tags. Types are
used to provide a (domain-related) classification of instances and may also define
additional attributes for them. In our example case, the application container
instance is of type “JBoss EAP 6.2.0”. Additionally, a set of tags can be as-
signed to instances and types. They provide a simple means to further classify
elements via keywords. In our example the server type is tagged “Servlet Con-
tainer” to indicate its relatedness to Java servlet technology. The typing and
tagging mechanisms are also used in Txture to allow browsing, search and filter
functionality across the IT-systems documentation.

Figure 3 provides an extended picture of our example model by including its
meta-model hierarchy. On the information model level, the expressiveness of the
underlying documentation model is set. At this level the linguistic structure that
architects agreed upon is modeled. Opposed to this, the ontological structure,
which reflects domain expert knowledge, is modeled as part of the documentation
process. This reflects the separation that is demanded in challenge CH1.

The top-level artifact, the meta-meta model (i.e. M2 ), defines all concepts
that are used in Txture and, in line with requirements of our industry partners,
are needed to properly describe their IT-infrastructures. It defines the concepts

117



Fig. 3. The Txture modeling infrastructure. Annotation boxes (black) reflect where
a model element gets instantiated (@IM = Information Model, @Onto = Ontological
model and @DM = Documentation Model).

class, association (i.e. association classes) and property to develop the structure
of an organization-specific architecture modeling language (i.e. the linguistic
model) and the concepts type, tag and mixin that shape the ontological model.

4.1 Classical Hierarchies to separate Modeling Activities

One of the experiences we gained from modeling workshops with our industry
partners is that modeling novices or software developers understand modeling
best when using strict and limited hierarchies in which modeling concepts and
their instantiations are described. In our case the modeling levels that users have
to interact with are manifested by the information model and the documentation
model as its instantiation.

Besides understandability of concepts, having a clear cut between modeling
levels also supports a permission and concern-oriented separation for managing
the IT-documentation and the information model it relies on. This separation is
important as different modeling activities are performed by individual stakehold-
ers with potentially diverse domain expertise. In one of our projects, stakeholder
roles like employees from operations, database administrators, software devel-
opers and also project managers were involved in the documentation process
and a few selected stakeholders of these groups together with the IT-architects
managed the information model.

In our tool the modeling of each level is separated by different user interface
and therefore tackles challenge CH1.

118



4.2 Types to mitigate Invasive Information Model Changes

Another experience we made was that adapting the information model is typ-
ically a recurring activity, triggered by frequent change requests from industry
partners and driven by adjustments, extensions and simplifications to modeled
concepts. It is common to any modeling activity, that changes to models may
involve corresponding changes on dependent models, as part of re-establishing
conformance in the model hierarchy. To minimize the efforts and consequences
of such changes, either well-defined automated model refactoring procedures are
required or an information model needs to be realized in a way so that the
most-common changes to it only minimally interfere. For our industry partners
a manual refactoring after information model changes was out of question. This
is why we settled on a modeling pattern similar to the one of power types [15]
that allows for creating types at the documentation model level and therefore
reduces the need to actually adapt the related information model.

Our original modeling approach made heavy use of inheritance on the in-
formation model level. For example we applied a deep inheritance structure to
model different application containers according to their vendor, software ver-
sion or required runtime platform. This rendered the information model both,
large in size (i.e. number of model elements) and prone to frequent changes (e.g.
on software version changes).

Using types greatly helped to reduce the size of the information model and
therefore maintaining comprehensibility and lowering the frequency in which
changes to it needed to be applied. Based on using types, our new modeling ap-
proach consists of only including generic information model elements like physical
server or application container. The goal was to provide basic, but stable mod-
eling concepts that are invariant to an organization. These concepts span the
structure of the model, i.e. the permissible nodes and relations between them.
This reflects the generic structure that all involved stakeholders can relate to.
E.g. no highly-specific vendor-based product terminology is used that would
only be understood by a minority of stakeholders. Accordingly, in our ontologi-
cal model we allow to extend information model elements with the help of types.
Types are part of the documentation model, but reference elements of the in-
formation model. In the example of Figure 2 and 3 JBoss EAP 6.2.0 extends
the meaning of the documented instance JBoss Inst T3 beyond that of being an
application container. While application container can be considered a stable in-
formation model concept, JBoss-specific server software will likely change from
time to time and by our understanding of types can be easily adjusted within the
documentation model. This is in line with Atkinson and Kühne [2], who describe
the need for changes and newly added types that are possible while the system
is running. Our type concept delivers a light-weight way for dynamic additions
and proved to be intuitively usable in IT-infrastructure documentation practice.

In addition to types, we use tags to further categorize documentation model
elements. Tags are comparable to UML stereotypes2 and can be applied to types

2 cf. UML 2.4.1 infrastructure specification, http://www.omg.org/spec/UML/2.4.1/

119



and individual instances. In Txture both, type and tag elements are modeled by
element responsibles and as part of the documentation model.

Our intention with types is to reduce the amount of changes on the infor-
mation model, tackling challenge CH2. Using types together with tags as a
means to categorize and describe documented instances contributes a solution
to challenge CH3.

4.3 Multi-level Instantiation to support Dynamic Extensions

With the introduction of types on the documentation model level, we are able to
limit the amount of changes that otherwise are applied to the information model.
While this is beneficial, maintaining an information model of only generic con-
cepts bares issues regarding the expressiveness of the documentation: Generic
information model concepts leave out detail and shift the specification of prop-
erties of documentation elements onto types. Our documentation activities re-
quire that types and instances can be managed by the same stakeholders within
the documentation model. For proper infrastructure documentation, types not
only define properties to be instantiated by their related instances, but need to
specify values for certain properties themselves.

Figure 3 shows that the JBoss-example type defines values for the properties
version and vendor, whereas our example application container defines a text
value reflecting its deployment location to be “Shanghai”. In our exemplary
documentation model we assume this property to be dependent on the actual
type, as e.g., not for all application containers the location is known or relevant
to be documented. Because of this, we needed to realize a property-like concept,
so called mixins [5], that can be instantiated on both, the level of types and
documented instances. This is comparable to the concept of deep instantiation [1]
or that of intrinsic attributes in the MEMO meta-modelling language [10].

The mixin concept aligns well with the flexible nature of our type concept
and allows the documenting stakeholders to adapt the documentation model to
cater their particular documentation needs. With mixins we provide a potential
solution to challenge CH4.

5 Related Work

In the context of EAM it is common that tools provide predefined information
models that can often only be adapted in a very limited way. For example,
the EAM tool iteraplan3 only allows for the extension of existing classes via
attributes. No additional classes or relationships can be added. As shown in
the EAM tool survey by Matthes et al.[14] there exist some configurable tools,
their technical foundation, however, is not clear. Other tools work with fixed
information models based on EA modeling standards such as The Open Group
Architecture Framework [11] or Archimate [13]. We argue that these standards

3 http://www.iteraplan.de/en

120



are inflexible as it is difficult to adapt them to the terminology used in an organi-
zation or to evolve. Schweda presents a sophisticated approach for pattern-based
creation of organization-specific information models [16] and shares our model-
ing requirements in his research. However, other than the scope of our work, its
practical applicability was not shown so far. With the MEMO meta-modeling
language, Frank et al. [10] present a language and a tool suite for building mod-
eling languages in the enterprise context. The tool is Eclipse-based and needs
code generation steps in order to react on a changed information model. The
proposed language for IT-infrastructure modeling, ITML [9], provides fixed con-
cepts and can not support organization-specific information models. In line with
Kattenstroth [12], we conclude that although the need for organization-specific
and evolvable EA information models has been identified in literature [7, 16], re-
lated work mostly focuses on formulating generic and fixed information models
that cannot be adapted to the requirements of a given organization.

In the general modeling research much related literature can be identified.
Still, modeling in this area mainly discusses requirements from software engineer-
ing and does not necessarily consider modeling techniques from other domains.
For Txture we mainly built on top of known modeling paradigms, but unified
them in a novel way to contribute a usable EA documentation method. This
includes ideas from UML stereotypes, power types, the proposed separation of
linguistic and ontological models (and instantiations) [2]. Implementation-wise
we rely on Ecore4, an object-oriented meta-modeling framework with reflective
capabilities and a programming interface for Java, which proved to be stable and
reliable. For persisting models we used a custom hybrid repository approach in-
cluding a relational database together with a graph database for permanent
storage and fast model query capabilities respectively. These technologies were
chosen due to prior experience; another promising alternative to be evaluated for
our use case is MetaDepth [6], a framework for supporint arbitrary numbers of
meta levels and advanced modeling concepts. As we implemented custom form-
based modeling user interfaces to ease the IT documentation for non-modelers,
we were unable to rely solely on UML and its provided graphical notations;
despite many UML concepts are used in our work. Txture also consists of a
number of different editors for different stakeholder groups and purposes (cf.
e.g., the approaches described by Atkinson et al. [3, 4]).

6 Conclusion & Outlook

In this paper we presented the modeling framework Txture that offers a flexible
mechanism to create organization-specific architecture models. In the main sec-
tion we described IT-architecture documentation challenges and presented our
solutions. These solutions are derived from practical experiences from two in-
dustry projects. Based on these experiences we claim that proper architecture
modeling requires a hybrid approach, consisting of a classical meta-model hierar-
chy and multi-level modeling methods. The classical modeling part is important

4 http://www.eclipse.org/modeling/emf/?project=emf

121



to make documentation capabilities comprehensible to a wide range of different
stakeholders in an enterprise. Multi-level modeling, like we employ via types and
mixins renders the overall documentation process flexible and extensible. Thus,
many of our design decisions were influenced by the overriding principles of
practical tool usability and intuitiveness. For example, we favored a free tagging
mechanism over type-inheritance.

While we strongly believe that many application domains would benefit
from multi-level modeling concepts, however, corresponding modeling frame-
works that have proven maturity are rare. This is why we built Txture on top of
Ecore, although we needed to heavily deviate from its intended usage (regarding
power types and mixins) to build the here-described framework.

In the future we want to gather additional practical experiences, in order to
further evaluate the flexibility of Txture’s modeling capabilities.

References

1. Atkinson, C., Kühne, T.: The essence of multilevel metamodeling. The Unified
Modeling Language. Modeling Languages, Concepts, and Tools (2001)

2. Atkinson, C., Kühne, T.: Model-driven development: a metamodeling foundation.
IEEE Software 20(5) (Sep 2003)

3. Atkinson, C., Gerbig, R.: Harmonizing Textual and Graphical Visualizations of
Domain Specific Models Categories and Subject Descriptors. In: Proceedings of
the 2nd Workshop on Graphical Modeling Language Development. ACM (2013)

4. Atkinson, C., Gerbig, R., Tunjic, C.: A multi-level modeling environment for
SUM-based software engineering. Proceedings of the 1st Workshop on View-Based,
Aspect-Oriented and Orthographic Software Modelling - VAO ’13 (2013)

5. Bracha, G., Cook, W.: Mixin-based inheritance. ACM SIGPLAN Notices 25(10),
303–311 (1990)

6. De Lara, J., Guerra, E.: Deep meta-modelling with metadepth. In: Objects, Models,
Components, Patterns, pp. 1–20. Springer (2010)

7. Farwick, M., Schweda, C.M., Breu, R., Hanschke, I.: A situational method for
semi-automated Enterprise Architecture Documentation. SOSYM (Apr 2014)

8. Farwick, M., Trojer, T., Breu, M., Ginther, S., Kleinlercher, J., Doblander, A.:
A Case Study on Textual Enterprise Architecture Modeling. In: Enterprise Dis-
tributed Object Computing Conference Workshops (EDOCW), 2013 17th IEEE
International. IEEE (2013)

9. Frank, U., Heise, D., Kattenstroth, H., Fergusona, D., Hadarb, E., Waschkec, M.:
ITML: A Domain-Specific Modeling Language for Supporting Business Driven IT
Management. In: Proceedings of the 9th workshop on domain-specific modeling
(DSM). ACM (2009)

10. Frank, U.: The MEMO meta modelling language (MML) and language architec-
ture. 2nd Edition. Tech. rep., Institut für Informatik und Wirtschaftsinformatik
(ICB) Universität Duisburg-Essen (2011)

11. Haren, V.: TOGAF Version 9.1. Van Haren Publishing (2011)
12. Kattenstroth, H.: DSMLs for enterprise architecture management. In: Proceedings

of the 2012 workshop on Domain-specific modeling (DSM). ACM Press (Oct 2012)
13. Lankhorst, M.: Enterprise Architecture at Work, vol. 36. Springer Berlin Heidel-

berg, 3rd editio edn. (Jan 2012)
14. Matthes, F., Buckl, S., Leitel, J., Schweda, C.M.: Enterprise Architecture Man-

agement Tool Survey 2008. Tech. rep., Technische Universität München,Chair for
Informatics 19 (sebis) (2008)

15. Odell, J.J.: Power Types. Journal of OO Programming (1994)
16. Schweda, C.M.: Development of Organization-Specific Enterprise Architecture

Modeling Languages Using Building Blocks. Ph.D. thesis, TU Munich (2011)

122


