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{bbarroca,hv}@cs.mcgill.ca
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Abstract. In this paper, we introduce the Modelverse, a metamodelling
framework and model repository. It clearly distinguishes and supports
physical and linguistic conformance relations and allows for deep charac-
terization and deep instantiation using potency. We introduce language
fragments, which are reusable pieces of a language definition, consisting
of an abstract syntax definition, as well as the definition of concrete syn-
tax, semantics, and a mapping onto physical (representational) concepts,
as suitable concepts for modular language design and reuse. We focus
on multi-level modelling, and use the Modelverse to model a four-level
language hierarchy, demonstrating its deep instantiation and character-
ization capabilities, as well as the use of modelling language fragments.
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1 Introduction

Model-Driven Engineering (MDE) is a set of notations, methods, tech-
niques and tools for designing, simulating, testing, and ultimately real-
izing so-called Software intensive Systems (SiS). MDE raises the level
of abstraction compared to traditional software development techniques,
which are mainly based on code.
The MDE approach can only be successful if there are tools support-
ing the various processes and methods used to develop these systems.
Central to any modelling activity is the notion of a modelling language,
defining the concepts a modeller can use, what their visual representa-
tion is (their concrete syntax ), and their meaning, or semantics. Various
modelling frameworks have been proposed, of which the Meta Object
Facility (MOF) [1] is one of the most popular, and has been adopted as
the standard by many metamodelling tools. The MOF uses a four-level
language approach, of which two levels are user-accessible (the class and
object level). Several articles have pointed out the limitations of this ap-
proach [2–5]. Most notably, the use of only one conformance dimension
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(an object is an instance of exactly one class), and the fact that only two
levels are user-accessible leads to inconsistencies, as strict metamodelling
is made impossible by conformance links which cross multiple levels, and
an increase in accidental complexity, as modellers have to resort to work-
arounds if they want to model types of types.
We contribute to this ongoing research by introducing a new frame-
work and repository capable of modelling multi-level language hierarchies
called the Modelverse. We also introduce language fragments, which al-
low for modular design of modelling languages. Section 2 provides back-
ground information for the rest of the paper. Section 3 presents the
architecture of the Modelverse. In Section 4, the Modelverse is used to
model a multi-level language hierarchy. Section 5 concludes the paper.

2 Background

In this section, the concepts of deep instantiation and deep characteri-
zation using potency is explained, and we take a look at the current tool
support for multi-level language hierarchies.

2.1 Deep Instantiation and Deep Characterization

Traditional instantiation mechanisms consider only two levels: classes
and their instances, objects. In case a modelling hierarchy requires types
of types to be modelled, this approach falls short. For example, in a
modelling system describing stores, it is necessary to model the types
of objects which can appear in the store: books for a library, DVDs for
a video store, or bread for a bakery. Instances of those types then de-
scribe actual products sold at those stores. It may be useful, however,
to describe properties of products in general, in other words, to make
statements about the type of the product types: for example, we might
want to ensure that each product type has an attribute denoting its
VAT. Current architectures do not have sufficient support for modelling
these kinds of hierarchies, and the proposed solutions (for the MOF) are
merely workarounds, not actual solutions to the inherent issue.
In a deep instantiation approach, a type model element can be instan-
tiated more than one level down [4]. At level 0, the traditional object
level, an element is fully defined, meaning that all of its attributes have
received a value. Closely related is deep characterization: types can make
statements about their indirect instances, two or more levels down in the
modelling hierarchy. This is done through the use of potency. Each (deep)
attribute (and modelling element) receives a potency number, signifying
how many levels down it can be instantiated. Each element both has a
type and an instance facet: an element with potency value 2 is an in-
stance of an element with potency value 3, and is a type for elements with
potency value 1. The top and the bottom level can be seen as exceptions:
they only have a type or an instance facet, respectively. A special case
are models with an undefined potency: for them, the number of levels
down they can be instantiated is not known. For top-level type models,
this is necessary, as the designer of such type models cannot know how
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many levels will be introduced by users below it.
With deep characterization, a product type can ensure that actual in-
stances of products (books, DVDs, bread) have a price, by declaring the
price attribute with a potency value of 2. This can be seen as a constraint
on instances of the product type: they all receive a potency 1 attribute
with name ‘price’, and their instances have to provide a value for it.

2.2 Tool Support

As multi-level modelling is gaining importance, tools supporting multi-
level modelling hierarchies and deep instantiation have been constructed,
of which metaDepth [6], a modelling framework with built-in support for
multi-level modelling, is an important example. The tool has a textual
interface: models are constructed using a Human Usable Textual Nota-
tion (HUTN). metaDepth distinguishes two modelling dimensions: the
linguistic dimension is static, and built into the tool. There is, however,
support for linguistic extensions in the type models defined by modellers:
attributes can be added, and there is support for inheritance on all levels
of the modelling hierarchy. Deep instantiation and deep characterization
are supported in the ontological dimension, with potency.
Melanie [7] is an Eclipse-based tool which allows multi-level modelling hi-
erarchies in the ontological dimension. It allows to define domain-specific
concrete syntax for languages, and as such it differs from the strictly tex-
tual approach of metaDepth. The linguistic dimension, however, is static
and predefined, as is the case for metaDepth.
There is a need for a tool which allows language designers to define
multi-level modelling language hierarchies, i.e., to extend the linguistic
dimension. Current tools either fail to distinguish clearly between the
linguistic and physical (representational) type of model elements, or do
not allow such extensions at all.

3 The Modelverse: Overview

In this section, we describe the architectural choices for the Modelverse,
and how it supports multi-level modelling hierarchies. Languages are cen-
tral concepts in the Modelverse: we explain how a language is modelled
by a type model, and how we consistently adhere to the strict meta-
modelling approach, where each element of a model is an instance of
an element in a type model, as well as the deep instantiation and deep
characterization principles.

3.1 Architecure of the Modelverse

The Modelverse is a repository or database of models. The Modelverse
stores any modelling artefact, including, but not limited to, type mod-
els, concrete syntax models, and rule-based model transformations. It
is accessible through an interface, which exposes an Application Pro-
gramming Interface (API). This API includes methods for Create, Read,
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Update and Delete (CRUD) operations, as well as conformance checking,
and the ability to execute models (such as constraint or action code). The
API ensures a uniform, standardized access to the Modelverse, captur-
ing all allowed operations. It will be referred to as the Modelverse Kernel
(MvK) from now on. A user interacts with the Modelverse through the
API exposed by the Modelverse. This user needs not be a human inter-
acting through code with the API of the MvK: it can be a front-end,
allowing a more user-friendly use of the Modelverse. A few examples of
front-ends include a visual front-end, such as AToMPM [8], a human-
usable textual notation, or any (formalism-specific) simulator, that in-
teracts with the Modelverse to simulate the model.
Modelling languages are defined by a linguistic type model, which de-
fines the concepts of the language and the valid ways in which they
can be instantiated. A modeller, when performing a CRUD operation,
always has to specify which linguistic type the element is an instance
of. To make this possible, the Modelverse includes a number of built-in,
predefined, type models used for modelling language engineering, model
transformation, metamodelling, and model management.
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Fig. 1. The framework on which the development of the Modelverse is based.

To introduce the architecture of the Modelverse, Figure 1 shows the
framework on which its development is based. There are two orthogonal
dimensions: the logical and the physical, introduced in [4]. The logical
level encompasses linguistic and ontological classification, but for the re-
mainder of the paper, we only consider linguistic classification. In the
figure, the central entity is a model M. It conforms linguistically to a
linguistic type model LTM. In the physical dimension, one type model
is defined. It defines the concepts the Modelverse needs to know about
in order to function: clabjects, attributes, associations, primitive data
types, action language, and so forth. It acts both as a type model (to
which all models in the Modelverse conform), and an interface definition
for the implementation, which defines the representation on a physical
medium, of those structures. Although the Modelverse can be seen as a
database of models, the representation of those models on physical me-
dia, such as a relational database or in-memory objects, is not known to
the user. This knowledge is not necessary because of the uniform access
through the MvK, as model management operations are performed on
instances of the physical type model. The representation of physical type
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model elements onto physical media is catered for by representers, one
for each physical medium. For example, the default representer maps
physical type model elements onto in-memory Python objects. Alterna-
tive representers would do the same for relational databases, RDF triple
stores, and others.
With this level of indirection, we make sure that this representation only
has to be defined once: we know how to represent physical type model
elements, which means we can represent any linguistic concept in the
Modelverse, as all elements by construction conform to the physical type
model. To ensure this conformance relation is maintained at all times,
physical mappers map linguistic elements onto physical elements. In these
mappers, it is possible for a language engineer to encode custom instan-
tiation policies. For the built-in formalisms, such as a Class Diagrams
formalism, these policies are predefined.
Any element in the logical dimension can take the role of the model
M — indeed, everything in the Modelverse is a model, and all models
have a type model. This has certain benefits, one being the support for
explicitly modelled model transformations [9] — often called the heart
and soul of MDE [10]. If every model conforms to exactly one linguis-
tic type model, it is possible to generate (automatically) transformation
languages for each language, and transform every model using the same
technique, which means higher-order transformations are enabled by de-
fault. A second important advantage of this approach is the ability to de-
fine a semantic mapping function. This function maps language elements
onto concepts in a domain with known semantics, for example Petrinets
[11]. This mapping needs to be unique, which can only be achieved when
it is defined in the linguistic dimension — ontologies, for example, clas-
sify multiple models in different languages, and as such, have no unique
semantic mapping.

P1

Constraint

Statement

State Transition
S2T

T2S

Class Association Composition

L1

L2L. (FRAGMENT)

Constraint

Statement

Physical

Mapping MERGE

Fig. 2. An example of a modelling language fragment.

3.2 Modular Language Design

In recent literature, reuse and abstraction for modelling languages has
received some attention. In [12], the authors explore a template-based ap-
proach for designing languages with similar characteristics. A language
designer, however, might also want to add existing capabilities to a mod-
elling language. An example is the action code used in Statechart tran-
sitions: while it is possible to define an action language from scratch and
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include it in the type model of the Statechart language, chances are that
an already existing formalism also has this feature.
A language designer needs to be able to reuse these modelling language
concepts: ultimately, a tool can provide a library of reusable language
fragments, which can be merged into the linguistic type model of any
modelling language. Languages are more than abstract syntax alone,
which describes the concepts of the language and the valid ways in which
they can be combined. A language or formalism has one or more con-
crete syntax definition(s), a mapping of its concepts to the physical type
model, a definition of its semantics, and a definition of the behaviour
of its modelling environment. A modelling language fragment has to in-
clude these concepts, such that they can be reused when merging the
fragment into a language definition. For now, we focus on the linguistic
definition of the fragment, as well as the mapping of its concepts to the
physical type model.
Figure 2 shows an example of such a fragment. The fragment contains the
definition of a constraint, which contains a number of statements. These
linguistic concepts are mapped onto physical entities that are predefined
in the Modelverse. The most obvious mapping is to the concepts shown
in the figure, as they have the expected semantics. Merging the fragment
results in the Statement and Constraint concepts to be added to the
Statecharts type model. Flexibility is achieved by leaving the potency
value of a fragment undefined (denoted by L.), as well as the linguistic
type of its elements: they are specified when merging the fragment with
the linguistic type model.
Using this mechanism allows a language designer to modularly build
modelling languages, and reuse concepts that are already defined. We
envision this approach as an answer to the observation that 1) some
concepts or structures of modelling languages are naturally reusable,
including their concrete syntax and physical mapping, and 2) these con-
cepts need to be linguistically available at the level of the type model,
i.e., instead of being part of all type models by default. In Section 4, we
demonstrate how fragments may be used, by showing how, in a multi-
level modelling hierarchy, new attributes can be introduced at any level.

4 Case Study

In this section, we model a multi-level language hierarchy in the Model-
verse. The purpose of this section is to show the capabilities of the Mod-
elverse, and the MvK, with respect to multi-level modelling. We focus on
a linguistic hierarchy, with deep instantiation and deep characterization
using potency.

4.1 A Visual Notation

In Figure 3, the example modelling hierarchy is visually represented. A
model is represented by a coloured rectangle, where higher-level models
are darker. All nodes of a model are represented by a rectangle (there
is no language-specific concrete syntax). The name of an abstract class
is shown in italics. Potency, if declared, is shown after the ‘@’ sign. An
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Fig. 3. The example modelling hierarchy.

undefined potency (meaning the element can be instantiated an unde-
fined number of times) is denoted by an asterisk. The default potency
value for Clabjects and models is undefined, for attributes it is 1. Confor-
mance relations are shown for linguistic and physical conformance. Only
a subset of the relations is shown, to avoid cluttering the figure.

4.2 Physical Representation

The physical dimension in the figure contains a relevant part of the phys-
ical type model, which is the built-in (static) type model of the Mod-
elverse. Each element in the linguistic dimension is mapped onto these
concepts.
At the top of the hierarchy, a language called MultiDiagrams is modelled.
It can model classes, attributes, and associations, and allows potency to
be specified. The Attribute class is special: the mapper for the MultiDi-
agrams formalism specifies that it is mapped onto the physical Attribute
class, instead of the physical Clabject class, which is the default. Note
also the id field attribute of Class. The Modelverse uses a dot-separated
notation to refer to elements, and elements are referred to by their name
(for example, to refer to the Class concept, one would use MultiDia-
grams.Class). The id field attributes is used one level down to identify
for each instance of Class what the identifying attribute will be. The
physical mapper then maps this attribute onto the physical name at-
tribute. In our notation, identifying fields are followed with {id}.
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1 package MyFormalisms:

Model:

name = ’Store ’

potency = 2

6 Class:

name = ’Element ’

potency = *

is_abstract = True

id_field = ’id’

11

Attribute:

name = ’id’

type = String

16 Attribute:

name = ’id_field ’

type = String

Class:

21 name = ’Product ’

Attribute:

name = ’VAT ’

type = Float

26 potency = 1

Attribute:

name = ’price ’

type = Float

Listing 1. Tex-

tual notation for

Model Store

Attribute:

name = ’discount ’

type = Float

5 Inherits:

name = ’product_i_element ’

from_clabject = ’Product ’

to_clabject = ’Element ’

10 Class:

name = ’Creator ’

Attribute:

name = ’name ’

15 type = String

Inherits:

name = ’creator_i_element ’

from_clabject = ’Creator ’

20 to_clabject = ’Element ’

Association:

name = ’created ’

25 Attribute:

name = ’year ’

type = Integer

Inherits:

30 name = ’created_i_element ’

from_clabject = ’created ’

to_clabject = ’Element ’

1

package MyFormalisms:

Store:

3 name = ’Library ’

potency = 1

Product:

name = ’Book ’

8 id_field = ’id’

VAT = 7

Attribute:

name = ’id’

13 type = String

Attribute:

name = ’title ’

type = String

18

Attribute:

name = ’ISBN ’

type = String

Listing 2. Tex-

tual notation for

Store Library

Creator:

name = ’Writer ’

id_field = ’id’

4

Attribute:

name = ’id’

type = String

9 Attribute:

name = ’website ’

type = String

created:

14 name = ’written ’

id_field = ’id’

Attribute:

name = ’id’

19 type = String

Attribute:

name = ’publisher ’

type = String

2

package MyFormalisms:

2 Library:

name = ’myLibrary ’

potency = 0

Book:

7 id = ’internet_playground ’

name = ’The Internet is a Playground ’

price = 12.99

discount = 0

ISBN = ’978 -0980672923 ’

12

Writer:

id = ’david_thorne ’

name = ’David Thorne ’

website = ’http ://www.27 bslash6.com/’

17

Book:

id = ’unpublished_emails ’

name = ’The Unpublished Emails ’

price = 12.44

22 discount = 0.7

ISBN = ’978 -0615615950 ’

Listing 3. Textual notation for

myLibrary

3

On the level below, a type model with potency 2 models a Store lan-
guage. A store consists of Products, and are created by Creators. Certain
attributes of the classes need to be defined on the level below (such as
VAT ), while others are left to be defined two levels down (such as name).
This shows the deep characterization capabilities of the Modelverse.
While some attributes are already declared for the elements of the Store
attribute, it might be that modellers making store instances want to add
other attributes to their instances. While this seems reasonable, and is
shown in the Library formalism below, this feature has to be modelled
explicitly in the Store formalism, and, more importantly, proper seman-
tics have to be given to it in its physical mapper. As can be seen from
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the figure, the linguistic type of Attribute in the Store formalism is Mul-
tiDiagrams.Class. Its physical mapper, though, maps it onto the physical
Attribute class. In this way, instances created of this class are seen as at-
tributes of physical Attributes by the Modelverse, but at the same time,
they are seen as linguistic instances of Class, which means they can, for
example, be matched as such in transformation rules. This is an example
of a language fragment, as explained in Section 3.2, although the merging
is currently done manually. Another example is the id field attribute.
The Library formalism has one specific product: books, which are cre-
ated by writers. Any attributes introduced at this level have potency 1.
Both classes have an attribute id as their identifying attribute (meaning
that it is mapped onto the physical name attribute). The instances of
Library are level-0 models, meaning they are fully defined: all attributes
have values, and their potency level has decreased to 0.

4.3 A Textual Representation: the HUTN

Finally, we show in Listings 1, 2, and 3 what the example shown in Fig-
ure 3 looks like in the HUTN syntax, which is a possible front-end for the
Modelverse. In Listing 1, the keywords ‘package’, ‘Model’, ‘Class’, ‘At-
tribute’, ‘Inherits’ and ‘Association’ are highlighted. Only ‘package’ is a
reserved word in the HUTN, while the others are defined using an alias
mechanism which refers to model elements belonging to the above men-
tioned ‘MultiDiagrams’ protected formalism. The model ‘Store’ defined
in Listing 1 is a type model for the ‘Library’ model shown in Listing 2,
which in turn is used as a type model for the ‘myLibrary’ model shown
in Listing 3.
The verbosity of the HUTN is due to a rather conscious design choice
for the concrete syntax: the main objective is to enable the modellers to
seamlessly navigate between different modelling levels while maintaining
the same concrete syntax look-and-feel.

5 Conclusions and Future Work

In this paper, we have introduced the Modelverse, a metamodelling
framework which allows for multi-level linguistic modelling hierarchies,
as well as modular language design. We have demonstrated its use with
a representative case: a four-level modelling hierarchy for stores. We
showed its use as a language workbench, allowing the definition of multi-
level linguistic modelling hierarchies, which to our best knowledge, no
other tool is capable of. We demonstrated the concept of “physical map-
pers” which allows to define custom instantiation policies. This allows to
replace, for example, the top-level linguistic type model, which in most
tools is static. In the example case we defined a type model for multi-level
language hierarchies called MultiDiagrams, but it would be possible to
replace this by a type model for modelling two-level language hierarchies.
In the future, we will continue enhancing the capabilities of the Model-
verse, including:
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– Introducing the ability to define ontological type models, and an on-
tological conformance check, which checks properties in the semantic
domain of the model.

– Continue the work on language fragments, including the automation
of the merge operation, and a definition of a library of fragments.

– The addition of representations on different physical media, to scale
the Modelverse to a distributed environment.
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