
Revisiting C1

Mauricio Osorio2, José Luis Carballido1, and Claudia Zepeda1

1 Benemérita Universidad Atónoma de Puebla
2 Universidad de las Américas - Puebla

{osoriomauri,jlcarballido7,czepedac}@gmail.com

Abstract We show that logic C1 cannot be extended to a paraconsistent
logic in which the substitution theorem is valid. We show with the help
of an answer set programming (ASP) tool called clasp, that C1 is robust
with respect to certain three valued paraconsistent logics with some de-
sirable properties. In particular C1 is robust with respect to three-valued
logic P2, a logic for which some of the De Morgan laws are valid.
Keywords: clasp, multi-valued logics, substitution theorem.

1 Introduction

According to our experience, we know that always it is very useful to have
software tools that help us to analyze logics. One of these tools is the Answer Set
Programming (ASP) tool called clasp1, which computes the answer sets of logic
programs. ASP is a declarative knowledge representation and logic programming
language [7]. We use clasp-encodings of multi-valued logics for analyzing logics.

Two main approaches are common to define a logic, the Hilbert axiomatic
system and the use of multi-valued tables that define the connectives of the
logic. In the first approach the validity of a formula is determined by a set of
axioms and a family of inference rules, namely, if the formula can be derived
from those axioms and the use of the inference rules, then the formula is valid,
otherwise it is not valid. In general, there are many ways of choosing the family of
axioms to define a logic and Modus Ponens is one of the most common inference
rules appearing in the definition of logics. In the second approach, the tables
used to define the logic are called truth tables, each connective is regarded as a
function taking values in a set of numbers (usually integers) that are specified
from the beginning and are called truth values. Some of the values are chosen
as designated values. Any formula that evaluates to one of the designated values
regardless of the truth values taken by the atoms that appear in the formula, is
considered valid. In this paper, we combine both approaches.

In logic, as in any other area of mathematics, when choosing a family of
axioms to define a logic, it is desirable to have independence of the axioms,
that is, any formula chosen as an axiom should be independent from the other
axioms. Multi-valued logics can be used for this purpose (see an example of this
in [10]), and in [16] is explained how to do it using an answer set-encoding. This

1 http://potassco.sourceforge.net



methodology sometimes could have limitations (see [8]), however it is useful to
researchers interested in the study of logics, such as in our case.

One of the properties a logic can have and in which we are particularly inter-
ested is paraconsistency. Following Béziau [1], a logic is paraconsistent if it has a
negation ¬, which is paraconsistent in the sense that a,¬a 0 b, and at the same
time has enough strong properties to be called a negation. Paraconsistent logics
have important applications, specifically [4] mention three applications in differ-
ent fields: Mathematics, Artificial Intelligence and Philosophy. In relation to the
second one, the authors mention that in certain domains, such as the construc-
tion of expert systems, the presence of inconsistencies is almost unavoidable (see
for example [11]). An application that has not been fully recognized is the use of
paraconsistent logics in non-monotonic reasoning. In this sense [6,14] illustrate
such novel applications. Thus, the research on paraconsistent logics is far from
being over. A three-valued paraconsistent logic of particular interest to us is C1,
which has been studied in [9].

In this paper, we present two results, first we show that there is not para-
consistent logic that extends C1 and for which the substitution theorem holds,
second we explain how to construct a program that obtains a paraconsistent
three-valued logic, called P2 [3], such that the logic C1 is sound w.r.t. P2.

We take advantage of clasp since it allows us to define redundant constraints
to define easily the primitive connectives as mathematical functions such as the
∨, ¬, ∧, and →. For instance, in clasp we write

1{and(X,Y, Z) : v(Z)}1← v(X), v(Y ) instead of writing
and(X,Y, Z)← v(X), v(Z), v(Y ), not nothera(X,Y, Z).

nothera(X,Y, Z)← and(X,Y, Z1), Z! = Z1, v(X), v(Y ), v(Z), v(Z1).

as we wrote in a preliminary work using DLV [16]. We also use the called condi-
tions in clasp to define easily and briefly some constraints in our encoding. For
instance, in clasp we write ← not f(X) : not sel(X) : v(X) instead of writing
← notf(1), f(2) as we wrote in [16]. Moreover in our clasp conditions we use
not which is the negation as failure used in DLV.

Our paper is structured as follows. In section 2, we summarize some basic
concepts and definitions. In section 3, we show our results, a theorem and a
clasp-encoding. Finally, in section 4, we present some conclusions.

2 Background

There are two ways to define a logic: by giving a set of axioms and specifying
a set of inference rules; and by the use of truth values and interpretations. In
this section we summarize each of them and we present some basic concepts and
definitions useful to understand this paper.

2.1 Hilbert style

In Hilbert style proof systems, also known as axiomatic systems, a logic is spec-
ified by giving a set of axioms and a set of inference rules. In these systems, it

2



is common to use the notation ⊢X F for provability of a logic formula F in the
logic X. In that case we say that F is a theorem of X.

We say that a logic X is paraconsistent if the formula (A ∧ ¬A)→ B is not
a theorem 2.

The relevance of logics for which the formula (A∧¬A)→ B is not a theorem,
is that they are useful to define alternative semantics that can be applied in the
study of non monotonic reasoning as we mentioned in the introduction section.

A very important property satisfied by many logics is the substitution theo-
rem which we present now.

Definition 1. A logic X satisfies the substitution theorem if: Γ ⊢X α ↔ β3

then Γ ⊢X Ψ [α/p]↔ Ψ [β/p] for any formulas α, β, and Ψ and any atom p that
appear in Ψ where Ψ [α/p] denotes the resulting formula that is left after every
occurrence of p is substituted by the formula α.

As examples of axiomatic systems, we present three logics: the positive logic
[12], the Cω logic which is a paraconsistent logic defined by daCosta [5], and C1

logic [9]. In Table 1 we present a list of axioms, the first eight of them define
positive logic. Cω logic is defined by the axioms of positive logic plus axioms
Cω1 and Cω2.

Pos1: A→ (B→A) Cω1: A ∨ ¬A
Pos2: (A→ (B→ C))→ ((A→B)→ (A→ C)) Cω2: ¬¬A→A
Pos3: A ∧B→A
Pos4: A ∧B→B
Pos5: A→ (B → (A ∧B))
Pos6: A→ (A ∨B)
Pos7: B→ (A ∨B)
Pos8: (A→ C)→ ((B→ C)→ (A ∨B→ C))

Table 1. Axiomatization of Cω.

C1 logic is defined by the axioms of Cω plus the following two axioms:

¬1: B
◦→ ((A→B)→ ((A→¬B)→¬A))

¬2: A
◦ ∧B◦→ (A ∧B)◦ ∧ (A ∨B)◦ ∧ (A→B)◦

where B◦ = ¬(B ∧ ¬B).

2 For any logic X that contains Pos1 and Pos2 (axioms of positive logic defined in
Table 1) among its axioms and Modus Ponens as its unique inference rule, the
formula (A ∧ ¬A)→ B is a theorem if and only if A,¬A ⊢X B.

3 Here we use the notation Γ ⊢X to indicate that the formula that follows is a theorem
or a tautology depending on how the logic is defined.

3



2.2 Multi-valued logics

An alternative way to define a logic is by the use of truth values and interpreta-
tions. Multi-valued logics generalize the idea of using truth tables to determine
the validity of formulas in classical logic. The core of a multi-valued logic is its
domain of values D, where some of such values are special and identified as desig-
nated or select values. Logic connectives (e.g. ∧, ∨, →, ¬) are then introduced
as operators over D according to the particular definition of the logic, see [10].

An interpretation is a function I : L → D that maps atoms to elements in the
domain. The application of I is then extended to arbitrary formulas by mapping
first the atoms to values in D, and then evaluating the resulting expression in
terms of the connectives of the logic (which are defined over D). It is understood
in general that, if I is an interpretation defined on the arbitrary formulas of a
given program P , then I(P ) is defined as the function I applied to the conjunc-
tion of all the formulas in P . A formula F is said to be a tautology, denoted
usually by |= F if, for every possible interpretation, the formula F evaluates to a
designated value. The simplest example of a multi-valued logic is classical logic
where: D = {0, 1}, 1 is the unique designated value, and the connectives are
defined through the usual basic truth tables.

Note that in a multi-valued logic, so that it can truly be a logic, the impli-
cation connective has to satisfy the following property: for every value x ∈ D, if
there is a designated value y ∈ D such that y→x is designated, then x must also
be a designated value. This restriction enforces the validity of Modus Ponens in
the logic.

As an example of a multi-valued logic, we present the well known paracon-
sistent logic P2 [3] (also called Cive), a three-valued logic that is relevant in
this work. The truth values of logic P2 are in the domain D = {0, 1, 2} where
1 and 2 are the designated values. The ∧, ∨, →, and ¬ connectives are defined
according to the truth tables given in Table 2.

∧ 0 1 2

0 0 0 0
1 0 2 2
2 0 2 2

∨ 0 1 2

0 0 2 2
1 2 2 2
2 2 2 2

→ 0 1 2

0 2 2 2
1 0 2 2
2 0 2 2

x ¬x
0 2
1 1
2 0

Table 2. Truth tables of connectives ∧, ∨, →, and ¬ in P2.

3 Main contribution

An interesting theoretical question that arises in the study of logics is whether a
given logic satisfies the substitution theorem [15]. It is well known that there are
several paraconsistent logics for which that theorem is not valid [2]. We show that
logic C1 can not be extended to a paraconsistent logic in which the substitution
theorem is valid. In order to do this we provide a definition and some results.

4



Definition 2. A logic X satisfies the weak substitution property if: Γ ⊢X α↔ β
then Γ ⊢X ¬α↔ ¬β.

Theorem 1. [13] Any logic stronger than Cω satisfies the weak substitution
property iff satisfies the substitution property.

The first result of our paper is that C1 can not be extended to a paraconsistent
logic in which the substitution theorem holds.

Theorem 2. Any extension of logic C1 to a logic where the substitution theorem
holds, is not paraconsistent.

Proof. It is easy to see that a,¬a ⊢ (a ∧ ¬a)↔ a.
By substitution theorem we have a,¬a ⊢ ¬(a ∧ ¬a)↔ ¬a,
but a,¬a ⊢ ¬a,
therefore a,¬a ⊢ ¬(a ∧ ¬a).
We also know by an instance of axiom ¬1 that
⊢ ¬(a ∧ ¬a)→ ((¬b→ a)→ ((¬b→¬a)→¬¬b))),
then by using modus ponens in the previous line
a,¬a ⊢ ((¬b→ a)→ ((¬b→¬a)→¬¬b))),
now we use Pos1 and modus ponens and a,¬a ⊢ (¬b→ a),
therefore by usung modus ponens again ⊢ (¬b→¬a)→¬¬b,
we also have a,¬a ⊢ (¬b→ a).
then a,¬a ⊢ ¬¬b,
using Cω2 ¬¬b ⊢ b.
Finally, we have a,¬a ⊢ b.
This last line shows that paraconsistency does not hold. ⊓⊔

Our second result is based on an ASP encoding. ASP has been used to
develop different approaches in the areas of planning, logical agents and artificial
intelligence. However, as far as the authors know, it has not been used as a tool to
study logics. Here we use ASP to represent axioms and the inference rule Moduls
Ponens in clasp in order to find three-valued logics that are paraconsistent and
for which the axioms of C1 are tautologies.

In what follows, we explain how to construct a program that obtains three-
valued logics such that the logic C1 is sound w.r.t. them. We use this program
repeatedly, first for the axioms of C1 and then for the axioms of a logic called
C+

1 , and then for larger family that define the logic P2.
Based on a set of values, and a subset of values corresponding to the property

of being select, the clasp-encoding constructs the adequate truth tables for the
connectives of a multi-valued logic that makes all instances of the axioms of the
given logic select. These truth tables are built in such a way that Modus Ponens
preserves the property of being select. The encoding also includes the adequate
conditions that each connective of the logic should satisfy, such as the arity, and
the uniqueness; the definition of Modus Ponens; and all of the axioms of the
logic. It is worth mentioning that all of the axioms are encoded as constraints.
When each axiom is encoded as a constraint, the elimination of those assignment
values of the logic connectives for which the axioms are not select, is guaranteed.

5



Now we present the clasp-encoding, Π to search for three-valued logics for
which logic C1 is sound by extending C1 with the addition of desirable properties
represented in terms of axioms. We present the encoding of one of the axioms
of C1, the encoding of the other axioms is similar. The encoding uses the values
0, 1, and 2 to create the truth tables for the connectives of the logic. The select
value are 1 and 2 4. Thus, for any assignment of the values 0, 1 and 2 to the
statements letters of a formula F , the tables determine a corresponding value for
F . If F always takes the values 1 and 2, F will be called select. Furthermore, Π
is a propositional program. As usual in ASP, we take for granted that programs
with predicate symbols are only an abbreviation of the ground program. The
encoding Π corresponds to the program Pval∪Pprim∪Pdef ∪PAx∪Ppar that we
present below. We want to remark that Pdef includes all the defined connectives
of the C1 logic, PAx includes the axioms of C1 logic.

Pval :


%Truth values:0, 1, 2
v(0; 1; 2).
%Select value:0
sel(1).sel(2).

Pprim :


%Primitive connectives
%implies, not, or, and, ...
1{impl(X,Y, Z) : v(Z)}1← v(X), v(Y ).
1{neg(X,Z) : v(Z)}1← v(X).
. . .

Pdef :


% B◦

bl(X,Z)← neg(X,X1), and(X,X1, Y ), neg(Y,Z).
%Modus Ponens
← impl(X,Y, Z), sel(X), sel(Z), not sel(Y ), v(X), v(Y ), v(Z).

PAx :


%Axioms of C1

%A1 : A→ (B → A)
← impl(B,A,Z), impl(A,Z,R), v(R), not sel(R).
. . .

Ppar :

{
%Paraconsistency: (A ∧ ¬A)→ B is not a theorem.
eval(R)← neg(A,A1), and(A,A1, L), impl(L,B,R), v(R).
← not eval(X) : not sel(X) : v(X).

We can see that the paraconsistency property is encoded as a constraint in
Ppar. This means that in case of obtaining answer sets they must satisfy the
paraconsistency property.

When we execute the clasp-encoding Π, we obtain 8192 answer sets. Each of
them corresponds to an adequate set of truth tables for the connectives of a para-
consistent three-valued logic that make logic C1 sound. These 8192 three-valued
logics really represent 4096 different three-valued logics because of isomorphisms
created by the two designated values.

It is always convenient to look for logics as close to classical logic as possible,
then we go one step further to obtain an extension proposed by Beziau for which
certain De Morgan laws are valid. In this sense, if we replace the axiom ¬2 in
C1 by the following stronger axiom, called ¬3, then we obtain logic C+

1 [9]:

A◦ ∨B◦→ (A ∧B) ◦ ∧(A ∨B) ◦ ∧(A→B)◦

4 We choose two designated values because we already know that when running the
same program with the option of one designated value it does not return any logic.

6



When we implement this replacement in the clasp-encoding Π and we exe-
cute it, we obtain 8 answer sets. Each of them corresponds to an adequate set of
truth tables for the connectives of a three-valued logic that is sound with respect
to the C+

1 logic and satisfies the paraconsistency property. These 8 three-valued
logics really represent 4 different three-valued logics because of isomorphisms
created by the two designated values.

Now, if we add the following two axioms to C+
1 logic

(A ∨B)◦

(A→B)◦

and we add their implementation in the clasp-encoding Π, we obtain 2 answer
sets, each of them corresponds to an adequate set of truth tables for the con-
nectives of a three-valued logic thats make logic P2 [3] sound and satisfies the
paraconsistency property. These two three-valued logics are isomorphic due to
the symmetry generated by the two designated values.

4 Conclusions

ASP have been used to develop different approaches in the areas of planning,
logical agents and artificial intelligence. However, as far as the authors know, it
has not been used as a tool to study logics. We provide a clasp-encoding that
can be used to obtain paraconsistent multi-valued logics. We also proved that
C1 logic can not be extended to a paraconsistent logic where the substitution
theorem holds.

References

1. J. Y. Béziau. The paraconsistent logic Z. A possible solution to jaskowski’s prob-
lem. Logic and logical philosophy, 15:99–111, 2006.

2. W. A. Carnielli and J. Marcos. Limits for paraconsistent calculi. Notre Dame
Journal of Formal Logic, 40(3):375–390, 1999.

3. W. A. Carnielli and J. Marcos. A taxonomy of C-Systems. In Paraconsistency:
The Logical Way to the Inconsistent, Proceedings of the Second World Congress on
Paraconsistency (WCP 2000), number 228 in Lecture Notes in Pure and Applied
Mathematics, pages 1–94. Marcel Dekker, Inc., 2002.

4. N. C. A. da Costa, J.-Y. Béziau, and O. A. S. Bueno. Aspects of paraconsistent
logic. Logic Journal of the IGPL, 3(4):597–614, 1995.

5. N. C. A. daCosta. On the theory of inconsistent formal systems (in Portuguese).
PhD thesis, Curitiva: Editora UFPR, Brazil, 1963.

6. M. J. O. Galindo, J. R. A. Ramı́rez, and J. L. Carballido. Logical weak completions
of paraconsistent logics. J. Log. Comput., 18(6):913–940, 2008.

7. M. Gelfond and V. Lifschitz. The Stable Model Semantics for Logic Programming.
In R. Kowalski and K. Bowen, editors, 5th Conference on Logic Programming,
pages 1070–1080. MIT Press, 1988.

7



8. K. Gödel. Über unabhängigkeitsbeweise im aussagenkalkül(sobre pruebas de inde-
pendencia en el cálculo conectivo). In ergebnisse eines mathematischen kolloqui-
ums, ed. by k. menger, num. 4 (1931-32), pages 9-10.

9. J.-Y.Béziau. Logiques construites suivant les methodes de dacosta. Logique et
Analyse, 33:259–272, 1990.

10. E. Mendelson. Introduction to Mathematical Logic. Wadsworth, Belmont, CA,
third edition, 1987.

11. V. S. S. N. da Costa. Paraconsistent logics as a formalism for reasoning about
inconsistent knowledge bases. Artificial Intelligence in Medicine, 1:167–174, 1989.

12. M. Osorio and J. L. Carballido. Brief study of G’3 logic. Journal of Applied
Non-Classical Logic, 18(4):475–499, 2008.

13. M. Osorio, J. L. Carballido, and C. Zepeda. An application of clasp in the study of
logics. In J. P. Delgrande and W. Faber, editors, LPNMR, volume 6645 of Lecture
Notes in Computer Science, pages 278–283. Springer, 2011.

14. M. Osorio, J. A. Navarro, J. Arrazola, and V. Borja. Logics with common weak
completions. Journal of Logic and Computation, 16(6):867–890, 2006.

15. D. van Dalen. Logic and Structure. Springer, Berlin, second edition, 1980.
16. C. Zepeda, J. L. Carballido, A. Maŕın, and M. Osorio. Answer set programming

for studying logics. In Special Session MICAI 2009. Ed. IEEE Computer Society,
pages 153–158, Puebla, Mxico. ISBN: 13 978-0-7695-3933-1.

8


