
Migration of rule inference engine to mobile platform.
Challenges and case study.

Mateusz Ślażyński, Szymon Bobek , Grzegorz J. Nalepa

AGH University of Science and Technology,
al. A. Mickiewicza 30, 30-059 Krakow, Poland

{mateusz.slazynski,szymon.bobek,gjn}@agh.edu.pl

Abstract Mobile devices are valuable sources of information about their user
location, physical and social activity, profiles and habits. Such an information
can be used to build context-aware applications, that are able to adapt their func-
tionality to user needs and preferences. A lot of research have been done in this
field of science, providing multiple context-modelling approaches like rules, on-
tologies, probabilistic graphical models, etc. There were also several solutions
developed that allow for efficient context-based reasoning. However, there is still
lack of tools and research done in the area of context-awareness with respect to
mobile environments. The solutions that were constructed for the desktop plat-
forms cannot be directly migrated to the mobile systems, as the requirements and
characteristics of this two environments are disjoint. In this paper we focus on
migrating a lightweight rule-based inference engine to a mobile platform. We de-
fine the requirements that have to be fulfilled by the mobile reasoning system in
order to be efficient and universal with respect to the variety of mobile operating
systems available nowadays.

1 Introduction

Mobile devices such as smart phones or tablets have been becoming better in terms of
hardware capabilities, including speed and storage. Moreover, they are equipped with
number of sensors gathering a lot of environmental data about device and user context.
This triggered an apparent need for complex application running on mobile platforms.
In number of situations such platforms have become viable alternatives for classic ones,
e.g. PC. Therefore, engineering of software on mobile platforms uses similar tools and
techniques to regular software engineering. This also includes methods from the domain
of knowledge engineering, since real-time processing of large numbers of data needed
to program complex mobile applications requires intelligent techniques.

Rules, are one of the most important techniques in knowledge engineering. Rule-
based tools, including rule engines are a first class citizen in number of intelligent soft-
ware systems developed on PC platforms, server and cloud. Therefore, there has been a
growing demand to use rule-based tools on mobile platforms. This turns out to be not a
trivial issue. In fact classic rule engines are very hard to be ported, due to either of the
source code base (e.g. CLIPS/Jess) or runtime requirements (e.g. Drools). This gives
motivation to investigate opportunities to port or develop a mobile rule engine. In this



paper we present the results of such consideration and discuss a specific case study of
the HeaRT [1] rule engine developed by us.

The rest of the paper is organized as follows: In Sect. 2 related works is discussed
along with the detailed motivation for our research. Then in Sect. 3 we specify require-
ments for porting an inference engine to a mobile environment. Based on them we
discuss possible scenarios in Sect. 4. In Sec. 5 we focus on porting HeaRT to a mobile
environment. The paper ends with the summary in Sect. 6.

2 Related works and motivation

In recent years, a lot of development was devoted to build applications that use mobile
devices to monitor and analyze various user contexts.

The SocialCircuits platform [2] uses mobile phones to measure social ties between
individuals, and uses long- and short-term surveys to measure the shifts in individual
habits, opinions, health, and friendships influenced by these ties. Jung [3] focused on
discovering social relationships between people. He proposed an interactive approach
to build meaningful social networks by interacting with human experts, and applied the
proposed system to discover the social networks between mobile users by collecting
a dataset from about two millions of users. Given a certain social relation (e.g., isFa-
therOf), the system can evaluate a set of conditions (which are represented as propo-
sitional axioms) asserted from the human experts, and show them a social network
resulted from data mining tools. Sociometric badge [4] has been designed to identify
human activity patterns, analyze conversational prosody features and wirelessly com-
municate with radio base-stations and mobile phones. Sensor data from the badges has
been used in various organizational contexts to automatically predict employee’s self-
assessment of job satisfaction and quality of interactions. Eagle and Pentland [5] used
mobile phone Bluetooth transceivers, phone communication logs and cellular tower
identifiers to identify the social network structure, recognize social patterns in daily
user activity, infer relationships, identify socially significant locations and model orga-
nizational rhythms.

Besides research projects, there exist also a variety of application that are used for
gathering information about context from mobile devices, like SDCF [6], AWARE 1,
JCAF [7], SCOUT [8], ContextDriod [9], Gimbal 2. These are mostly concerned with
low-level context data acquisition from sensors, suitable fur further context identifi-
cation. On the other hand, they do not provide support nor methodology for creating
complex and customizable context-aware systems.

Although there is a lot of frameworks and middlewares developed for context-aware
systems, they are usually limited to a specific domain and designed without taking into
consideration mobile platforms. Examples include CoBrA [10] and SOUPA [11] for
building smart meeting rooms, GAIA [12] for active spaces, Context Toolkit [13].

There is still space for research in a field of lightweight context modeling and con-
text reasoning targeted at mobile devices. Some attempts were made to develop such

1 http://www.awareframework.com/
2 https://www.gimbal.com/



frameworks, like SOCAM [14], or Context Torrent [15]. There were also attempts to
migrate existing rule engines to the mobile platforms. In our preliminary approach we
investigated several candidates for the mobile reasoning engines, including: Jess 3, Con-
text Toolkit [13], ContextDroid [16] and Context Engine [17]. Although some of them
were successfully migrated and launched on the Android device, none of these solution
fully supported the requirements that we believe are crucial for mobile computing with
respect to the context-based reasoning (see Section 3).

Taking all the above into consideration, our primary motivation for the work pre-
sented in this paper was to:

– investigate possible scenarios for migrating existing rule-based engines to mobile
platforms,

– define requirements that all the inference engines should meet in order to provide
efficient, lightweight context-based reasoning on mobile platforms.

In our research we focused on the rule-based reasoners, because they are character-
ized by the high intelligibility [18] capabilities, which is a crucial factor in designing
user-centric applications. Rule-based approach provides also very efficient reasoning,
and intuitive modeling languages that help the end-user to understand the system and
cooperate with it. The work presented in this paper is a continuation of our previous at-
tempt of migration HeaRT rule-based engine to Android platform, which was success-
ful only in a small fraction [19]. We managed to migrate rule-based reasoning engine to
mobile platform, however the efficiency of this migrated version was far worse than the
desktop one. Therefore, we decided to perform an extensive case study on the possible
migration scenarios, which will allow us to define universal requirements for the mobile
reasoning engine. The following section describes in details these, and shows which of
them can be fulfilled by the existing solutions.

3 Requirements for mobile inference engine

Mobile devices are now dominated by Android and iOS operating systems. However
to design a fully portable reasoning engines other systems should also be taken into
consideration. The portability of the software between different mobile platforms is
however not a trivial task. Therefore, to support the process of efficient migration of
the inference engines to mobile environments, the following requirements were identi-
fied [20]:

– Portability (R1). The inference engine should be portable and as independent of
the operating system as possible.

– Responsiveness (R2). The inference layer has to work under soft real-time con-
straints. Mobile environment is highly dynamic, and the inference layer should fol-
low rapid changes of context in such an environment.

– Resource limitation (R3). It should consume as least resources as possible to work
transparently in the background.

3 http://www.jessrules.com



– Privacy (R4). The reasoning service should not send any confidential data to the
external servers, but perform all the reasoning locally.

– Robustness (R5). It should work properly when the contextual data is incomplete
or uncertain. This requirement is beyond of the scope of this article and is just
briefly described in the following paragraphs.

– Intelligibility (R6). It should be able to explain its decision to the user, and thus
improve intelligibility of the system.

Due to the development of programming languages which execution is performed
by the virtual machines, it became possible to successfully migrate existing rule-based
inference engines directly onto different mobile platforms. For example Java bytecode
can be executed not only on Android operating system, which supports it natively, but
also on iOS and other platforms that provides appropriate Java Virtual Machine imple-
mentations. This may give a misleading impression that the requirement (R1) could be
easily fulfilled. Our research shown that this is not true, as the quality of the virtual
machines is not always satisfactory and hence, although portability is possible it may
indirectly affect fulfillment of other requirements. For instance, if the rule-based engine
is written in a programming language that is not natively supported by the mobile plat-
form, but depends on the virtual machine that allows executing it, the responsiveness
(R2) of such system may be affected by the inefficient implementation of the virtual
machine. What is more, depending on the complexity of the inference engine, such mi-
gration may not always fully succeed, especially if the inference engine is based on the
technology that is not supported by the mobile implementation of the virtual machine
(i.e. Hibernate 4 for knowledge management in Drools and Context Toolkit). Some tech-
nologies even though possible to migrate to mobile platform, loses their efficiency, due
to limited memory or CPU resources on the mobile device. Thus, the (R1) requirement
should be achieved by choosing a programming language that is equally and efficiently
supported by all the available mobile platforms. Currently to our knowledge there is
such solution available.

Responsiveness (R2) of the system is usually affected by the efficiency of its imple-
mentation. Hence, this requirement is very tightly bound with (R3), which states that the
mobile inference engine should consume as low CPU and memory resources as possi-
ble . Complex rule-based solutions like Drools or ContextToolkit although successfully
launched on the Android mobile devices, were very inefficient as they depend on the
parts of the JVM that is not supported by Dalvik Virtual Machine present in Android.
The very important issue that tackles the problem of resource limitation is connected
with energy consumption. Most of the sensors which are primary information providers
about the environment, when turned on all the time, decrease the mobile device battery
level very fast. This reflects on usability of the system and ecological aspects regarding
energy saving. Currently most of the solutions (including these that were designed for
mobile platforms like ContextEngine) rely on the built in mechanisms for sensor energy
consumption.

Having in mind requirement (R3), the reasoning engines that make use of this infor-
mation should be designed to best manage the tradeoff between high quality, accurate

4 http://hibernate.org/orm/



information form the sensors and energy efficiency [21]. Such a design of a reason-
ing engine requires on the other hand a mechanism that could cope with uncertain and
incomplete knowledge. This can be guaranteed by fulfilling the requirement (R5). It
is strictly connected with the nature of the mobile environment. Although the mobile
devices are currently equipped with a variety of sensors, the contextual data provided
by them is not always complete nor certain. For instance the location provider will not
work properly underground, where there is no access to the GPS or the Internet. Cur-
rently only a ContextDroid (former SWAN) tackles this issue by introducing expiration
time and temporal reasoning.

Another requirement that indirectly is connected with energy efficiency and there-
fore tackles the requirement (R3) is privacy requirement (R4). To improve energy ef-
ficiency of the intelligent mobile system, the most time and energy consuming tasks
could be performed externally by the reasoning server. This however requires from the
users to agree to share their private contextual information with the service provider,
which in some countries like European Union is regulated by the law and not easily
accessible. What is more, most of the users do not want to send information about their
location, activities, and other private data to external servers. Hence, the context reason-
ing should be performed locally by the mobile device. This requirement was also one
of the first motivations for our attempts to migrating reasoning engines to a mobile de-
vices so they could work as a local inference services for other applications. Although
not explicitly stated, all of the existing engines rely on the local knowledge bases. Even
Drools and ContextToolkit that allows storing knowledge in remote database can be
adapted to use only local storage.

Requirement (R6) on the other hand is the main reason why we decided to use
rule-based engines. Besides very efficient reasoning mechanisms, rule-based systems
in most cases fulfill the (R6) requirement by the definition. Most of the existing solu-
tions have an explanation mechanism, which allows to trace back the inference chain
and therefore explain the user what was the causes, conclusions and actions that was
taken based on the previous both. The Context Toolkit s the only solution that provides
intelligibility support with a special module designed for this. However, our attempts at
migrating it to the mobile environment failed due to the problems in parsing module of
Context Toolkit.

4 Possible scenarios

One of the biggest challenges for the mobile software creators is the large variety of
technologies used in the mobile operating systems. Due to the more tightly coupled
runtime environment than the one met in the traditional desktop operating system, a pro-
grammer has a very narrow choice of programming tools and languages. To make things
even worse, every one of the leading mobile platforms promotes its own ecosystem in-
compatible with any other. Therefore it is not surprising that the industry is constantly
looking for the cross-platform solutions. This section will concern possible scenarios of
the mobile inference engine development, taking into account issues mentioned in this
paragraph.



In the rest of the article we will focus on the three most popular platforms, namely:
Android, iOS and Windows Phone. Despite this, most of the article applies also to
Firefox OS which supports only the web technologies. There exist also a few Linux
based operating systems, supporting software written for the desktop platforms — many
of them, like Sailfish OS, are trying to reuse the Android ecosystem.

Table 1. Technologies supported by the most popular mobile platforms..

Technology / OS Android iOS Windows Phone

JVM based Native.
One-way interface only
through non-standard

Java Virtual Machines.
None.

C/C++
Two-way interface

using Android NDK. Native. Two-way interface
starting from WP 8.

Objective-C None. Native. None.

CLR based
One-way interface

through Mono.
One-way interface

through Mono. Native.

JavaScript
New devices include

V8 JavaScript engine.5

JavaScriptCore6 support
starting from iOS 7.
Many independent

solutions.

Includes proprietary
JavaScript engine.

Lua
Many implementations,

including LuaJIT. Supported without JIT. Supported without JIT.

4.1 Supported technologies

Before presenting the proposed approaches, we will briefly summarize the mobile pro-
gramming toolset available for the developers. Table 1. contains short summary of sup-
ported languages on different platforms. However, it needs some explanation carried
out in the next three paragraphs.

Firstly, we should explain our choice of the technologies presented in the table.
JVM, CLR and C-family were obvious choices as the native technologies on some plat-
form — their use would simplify implementation at least on the one family of devices.
On the other hand, JavaScript and Lua7 are presented because of their small and easily
accessible runtimes, what makes them perfect candidates for the cross-platform embed-
ded solutions. Lack of the JIT support for Lua means that we cannot use the LuaJIT8 —

5 https://code.google.com/p/v8/
6 http://trac.webkit.org/wiki/JavaScriptCore
7 http://www.lua.org
8 http://luajit.org



a very fast Lua implementation. There are of course other technologies missing from the
table, but we were looking only for the tested and production ready implementations.

Secondly, "one-way interface support" means that we can build an application in
the selected language, but the code written in it cannot be directly called within a na-
tive application. For example: programmer can write an entire application using Mono9

on iOS, but can not use library written in C# within native application.10 These incon-
veniences render Mono as not suitable for our purposes. JVM based languages share
the same problem — necessity of running JVM on the system dramatically reduces its
possibilities to reuse on the other platforms.

Finally, despite the shared support for the C-family languages, we cannot freely
share code written in C/C++ between all these platforms. In fact there are many dif-
ferences mainly due to different compilation toolchains and standard libraries included
in the system — for example Android uses its own Bionic C standard library. Fur-
thermore, while on iOS the C/C++ code can be freely mixed with Objective-C, both
Android and Windows Phone need a foreign function interface to call the C functions
from Dalvik/CLR virtual machines. Lately it became possible to compile Objective-C
code into Android assembler, but it is a very immature project. To conclude, shared C
codebase is possible, but we should not expect it will work on the all systems without
any platform-dependent fixes.

4.2 Proposed solutions

Leaving aside for the moment technical differences between the mobile platforms we
can distinguish different approaches to the cross-platform software development on the
basis of the code base architecture, whether it is fully or only partly shared between
supported platforms. Particularly there can be listed three border cases:

– Separated code bases (S1) — every platform has its own independent code base.
– Shared code base (S2) — all platforms share the same code base.
– Hybrid approach (S3) — there exist elements of project implemented especially

(particularly API interface) for the different platforms, but we can also distinguish
shared parts of code.

In this section we will confront all these approaches with technical characteristic of
mobile operating systems presented in the previous section.

Foremost, according the the S1 approach, we can simply have separate code bases
for every platform. In spite of the obvious disadvantages of this approach, which include
larger support and development costs, this is a perfectly sane solution for the projects
aiming mainly for the high quality implementation for the one selected platform and less
supported ports for the other systems. Moreover, this way we can take advantage of the
features characteristic for the different runtimes; in the context of the mobile libraries it
has a great impact on the quality of API available for the programmers. Therefore this

9 http://www.mono-project.com/Main_Page
10 It is not exactly true. Linking Mono code to the native iOS application is possible but trouble-

some and not production ready.



is a very popular approach used for so called Software Development Kits provided by
such companies like Google or Facebook.

On the other hand, when we are interested in supporting possible many (maybe even
not known in the beginning of the project) environments, the costs related to the code
maintenance can be overwhelming. S2 seems to be an universal solution for these prob-
lems, however we must remember that there is always a trade-off between universality
and expressiveness of the resulting code — programmer is forced to abstract from the
platform dependent features. From the technical point of view there are two distinct
methods to achieve the shared code base on mobile devices. In the first scenario we
could use a technology support on every platform, we have interest in. Again, in the
context of table 1 we could distinguish two possible cases presented below.

Low level approach (S2LL). Most modern operating systems support some kind of the
low level interface to the C-family languages. C/C++ code base has many advantages
— first of all it has a great performance and, secondly, it is very popular among pro-
grammers, so there should not be a problem with the reuse of the existing solutions
and libraries. Unfortunately, as it was indicated before, there are also significant differ-
ences between the low level characteristics of the operating systems — they differ in
used standard libraries and methods of the code calling from the native platform lan-
guage. These differences eventually lead to the corner cases maintained by platform
specific code contained in the conditionally compiled sections of project. Second, the
more controversial disadvantage of the low level code is that is harder to maintain than
its higher level counterparts. Due to the efficiency reasons, the low level approach is
widely adapted by the game development industry. The most popular examples include
cocos2d-x11 and Marmalade12 libraries.

High level approach (S2HL). Nowadays there can be observed the rapid growth of dy-
namic languages; particularly web technologies like JavaScript are regarded as a new
kind of a portable assembler language. Thanks to the efficient, highly optimized and
widely available runtime it recently became the most popular platform for the cross-
platform applications. Lua is an other, less known language with similar features —
lower popularity of this platform is compensated with more sane language character-
istic and even smaller runtime, ported already to the most exotic hardware platforms.
Unlike in C-family languages, there should be no need for the platform-dependent sec-
tions of code in project written using high level languages. Moreover, distribution of the
dynamic code is much easier — it does not need the compilation step and can be dis-
tributed as plain text through the Internet. The main concern about high level approach
regards its efficiency; dynamic code tends to be slower, however due to the rapid growth
of the technology stack, the gap between low level and high level code successfully de-
creases. Given these facts, it should be not surprising that currently there appear more
and more high level frameworks, which could be used to create the mobile applications
from scratch (for example PhoneGap13 or Sencha Touch14) including even more de-
11 http://www.cocos2d-x.org/
12 https://www.madewithmarmalade.com/
13 http://phonegap.com
14 http://www.sencha.com/products/touch



manding products like game engines (for example LÖVE15 and Loom16, both written
in Lua).

The second scenario concerns the more complicated compiling toolchain (S2CT)
— precisely, before the deployment of the project, we could translate it into the native
platform technology. This way we could work on the shared code base without worrying
about differences between the platforms. Recently this approach receives a lot of atten-
tion — there are many technologies treating C or JavaScript as the portable assembler
languages. Especially the latter, given its easy deployment on the web, is currently the
compile target of the almost every popular programming language, including even the
low level technologies. While making C or JavaScript our compile target does not differ
much from using them as the project main language, in the most optimistic scenario we
could translate the code base into different language depending on the target platform.
This way we could maintain portability of the project and also benefit from native API
on every supported platform at the same time. Remarkably, the Haxe17 language can
be compiled into JavaScript, C++, C# and Java, trying to make this optimistic scenario
possible.

Given the advantages of both S1 and S2 approaches, the hybrid approach simply
combines them through the greater modularization of project. While the core black box
part of the project can be written in the portable way, possibly using S2HL or S2LL
methods, the interface layer should be interchangeable and written in regard to each
supported platform separately. Consequently core of the project can truly abstract from
platform dependent code (as in the optimistic cases of S2) and it is possible to make
a high quality API for the end-users (as in S1). This approach is widely used by the
so called wrappers — libraries written in the high level technology, which only wrap
the low level library written already in C or other efficient technology. The proposed
architecture of the inference engine implemented using the hybrid approach is presented
in the figure 1, where the Platform Independent Runtime can mean low level machine
programmable using C-family language or some kind of virtual machine destined to run
the high level code, for example Lua interpreter or V8 JavaScript engine. The API part
of the architecture should contain an query interface and methods to load rules from
their plain representation.

5 HeaRT inference engine on mobile platforms

This section will focus on the case of porting the HeaRT inference engine [1] to the mo-
bile platforms. HeaRT is a lightweight rule-based inference engine that uses XTT2 [22]
notation for knowledge representation [23].

The first part of the section will briefly describe our efforts to port existing code
to the Android ecosystem, which was believed to be a good platform for the "proof of
concept" implementation. The second part will contain plans for the future work, based
on the experience gained from the unsuccessful attempts and research results presented
earlier in section 4.
15 https://love2d.org/
16 https://www.loomsdk.com/
17 http://haxe.org



Figure 1. Proposed architecture of the portable interface engine using the hybrid ap-
proach.

5.1 Previous attempts

The original implementation of HeaRT was written in the Prolog language and was exe-
cuted by SWI–Prolog, an open source ISO-compliant Prolog implementation18. Thanks
to the Prolog metaprogramming and reasoning features it was easy to represent rules as
simple logical clauses and querying could be expressed with standard Prolog queries.
Therefore the first attempts to port the engine were focused mainly on possible ways
of executing Prolog code on the mobile platforms, particularly Android as it was stated
in previous paragraph. The detailed description of these efforts can be found in [19]. In
the terminology of Section 4.2 all attempts presented below can be assigned to the S2
category.

First and conceptually the simplest attempt can be categorized as S2LL and con-
sisted of porting the SWI–Prolog environment to the Android platform. Due to the
source code written almost entirely in C it was hoped to succeed without breaking
changes in the environment. Unfortunately, it could not be carried successfully mainly
because of the two major issues:

– SWI–Prolog contains large parts of platform dependent code, dealing with the low
level facilities like threading support, console interface, etc. Due to the lack of the
libraries and different standard library on Android, migration of the SWI–Prolog
must involve further refactoring and new conditionally compiled lines of code.

– The interface between Java and SWI–Prolog was found to be not satisfactory, par-
ticularly it was not clear, whether it would work with the Dalvik Java virtual ma-
chine.

Next attempt was supposed to leave aside issues connected with the low level char-
acter of the popular Prolog environments and was oriented on their pure Java coun-
terparts (therefore it can be regarded as a S2HL type). Following the carefully carried
research four possible candidates were proposed: tuProlog19, jekejeke Prolog20, Gnu
18 http://www.swi-prolog.org/
19 http://apice.unibo.it/xwiki/bin/view/Tuprolog/
20 http://www.jekejeke.ch/idatab/doclet/intr/en/docs/package.jsp



Prolog for Java21 and jinniprolog22. Despite their supposed ISO-compliance, none of
them could be really regarded as a fully working Prolog enviroment. Nevertheless, after
large refactoring of HeaRT source code we were finally able to run it using the tuProlog
environment. Unfortunately, performance of this solution was unacceptable, clearly not
satisfying the R2 and R3 requirements presented in Section 3.

The last used technique concerned translation of Prolog code into Java (therefore it
was representative of the S2CT approach). Unfortunately, evaluated Prolog Café trans-
lator23, in spite of efficiency, lacked many advanced features used broadly in the HeaRT
code, explicitly it dose not support mixing of the dynamic and static predicates. Further-
more, the text representation of HeaRT rules being itself a valid Prolog code, was also
needed to be compiled to Java class, making the dynamic loading of the rules very
inflexible.

To sum up the foregoing, Prolog proved to be too unpopular language to have ade-
quate running environments on the mobile platforms. Consequently, all approaches of
S2 type have to be preceded by the creation (or adaption) of efficient and portable Pro-
log environment. Due to related development cost, we have currently resigned from this
approach.

5.2 Future plans

The current plans for the mobile HeaRT development were created according to the
S3 approach. The inference elements of HeaRT will be rewritten in the Lua language
— the main reasons of this choice are low development cost and large variety of com-
pact and efficient runtimes on even very exotic hardware. The architecture of so called
LuaHeaRT matches the one presented in Figure 1. There were identified three major
drawbacks of the selected approach:

1. The source code must be completely rewritten into language with different paradigm
and capabilities. The related costs are not negligible, but inevitable.

2. Text representation of the rules in HeaRT is also a Prolog code, therefore in original
implementation the task of processing it was performed entirely by SWI–Prolog.
In the new architecture this process will be divided into two parts: parsing realized
by parser included in the API module and semantic analysis performed entirely by
the inference engine. Thanks to the formal grammar of the rule format it will be
possible to semi-automatically generate parsers for the different platforms.

3. In the desktop version of HeaRT queries are defined as the standard Prolog queries.
For the sake of the new implementation we must specify new, possibly portable
method of creating queries. The related code should be automatically generated
(similarly to the grammar parser) and included in the API module. On the other
hand the inference engine must contain some kind of low level query API, which
could be the target of the human friendly representation of queries.

21 http://www.gnu.org/software/gnuprologjava/
22 http://code.google.com/p/jinniprolog/
23 https://code.google.com/p/prolog-cafe/



For the aforementioned reasons, there is no doubt that the portable implementation
of HeaRT according to the S2 approach will involve the overall redesign of the desktop
version. However, it is not entirely bad phenomenon, the end effects can be highly
beneficial for the future development of the engine.

6 Summary

In recent years, a lot of development was devoted to build applications that make use of
contextual information to behave in an intelligent way. Due to the evolution of mobile
devices which became omnipresent in every human life, the context-aware application
became also one of the primary focus of mobile system developers. However, mobile
and desktop environments are different, and therefore migrating solutions between them
is not a trivial task. In this paper we focused on the problem of migration of a rule engine
to mobile platform.

We defined requirements that every mobile reasoning engine should fulfill to pro-
vide efficient reasoning solution. We confronted these requirements with an attempt to
migrate Prolog-based rule engine HeaRT onto the mobile platform. Finally, we pre-
sented a study of different migration scenarios, and propose a solution that provides
both efficiency, portability and allows for effective source code maintenance.

References

1. Nalepa, G.J.: Architecture of the HeaRT hybrid rule engine. In Rutkowski, L., [et al.], eds.:
Artificial Intelligence and Soft Computing: 10th International Conference, ICAISC 2010:
Zakopane, Poland, June 13–17, 2010, Pt. II. Volume 6114 of Lecture Notes in Artificial
Intelligence., Springer (2010) 598–605

2. Chronis, I., Madan, A., Pentland, A.S.: Socialcircuits: the art of using mobile phones for
modeling personal interactions. In: Proceedings of the ICMI-MLMI ’09 Workshop on Mul-
timodal Sensor-Based Systems and Mobile Phones for Social Computing. ICMI-MLMI ’09,
New York, NY, USA, ACM (2009) 1:1–1:4

3. Jung, J.J.: Contextualized mobile recommendation service based on interactive social net-
work discovered from mobile users. Expert Syst. Appl. 36 (2009) 11950–11956

4. Olguin, D., Waber, B.N., Kim, T., Mohan, A., Ara, K., Pentland, A.: Sensible organizations:
Technology and methodology for automatically measuring organizational behavior. IEEE
TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS-PART B: CYBERNET-
ICS (2009) 43–55

5. Eagle, N., (Sandy) Pentland, A.: Reality mining: sensing complex social systems. Personal
Ubiquitous Comput. 10 (2006) 255–268

6. Atzmueller, M., Hilgenberg, K.: Towards capturing social interactions with sdcf: An extensi-
ble framework for mobile sensing and ubiquitous data collection. In: Proc. 4th International
Workshop on Modeling Social Media, ACM Press (2013)

7. Bardram, J.E.: The java context awareness framework (JCAF) – a service infrastructure
and programming framework for context-aware applications. In Gellersen, H.W., Want, R.,
Schmidt, A., eds.: Pervasive Computing. Volume 3468 of Lecture Notes in Computer Sci-
ence. Springer Berlin Heidelberg (2005) 98–115

8. Woensel, W.V., Casteleyn, S., Troyer, O.D.: A Framework for Decentralized, Context-Aware
Mobile Applications Using Semantic Web Technology. (2009)

9. van Wissen, B., Palmer, N., Kemp, R., Kielmann, T., Bal, H.: ContextDroid: an expression-
based context framework for Android. In: Proceedings of PhoneSense 2010. (2010)

10. Chen, H., Finin, T.W., Joshi, A.: Semantic web in the context broker architecture. In: Per-
Com, IEEE Computer Society (2004) 277–286



11. Chen, H., Perich, F., Finin, T.W., Joshi, A.: Soupa: Standard ontology for ubiquitous and
pervasive applications. In: 1st Annual International Conference on Mobile and Ubiquitous
Systems (MobiQuitous 2004), Networking and Services, 22-25 August 2004, Cambridge,
MA, USA, IEEE Computer Society (2004) 258–267

12. Ranganathan, A., McGrath, R.E., Campbell, R.H., Mickunas, M.D.: Use of ontologies in a
pervasive computing environment. Knowl. Eng. Rev. 18 (2003) 209–220

13. Dey, A.K.: Understanding and using context. Personal Ubiquitous Comput. 5 (2001) 4–7
14. Gu, T., Pung, H.K., Zhang, D.Q., Wang, X.H.: A middleware for building context-aware

mobile services. In: In Proceedings of IEEE Vehicular Technology Conference (VTC. (2004)
15. Hu, H., of Hong Kong, U.: ContextTorrent: A Context Provisioning Framewrok for Pervasive

Applications. University of Hong Kong (2011)
16. Palmer, N., Kemp, R., Kielmann, T., Bal, H.: Swan-song: A flexible context expression

language for smartphones. In: Proceedings of the Third International Workshop on Sensing
Applications on Mobile Phones. PhoneSense ’12, New York, NY, USA, ACM (2012) 12:1–
12:5

17. Kramer, D., Kocurova, A., Oussena, S., Clark, T., Komisarczuk, P.: An extensible, self con-
tained, layered approach to context acquisition. In: Proceedings of the Third International
Workshop on Middleware for Pervasive Mobile and Embedded Computing. M-MPAC ’11,
New York, NY, USA, ACM (2011) 6:1–6:7

18. Dey, A.K.: Modeling and intelligibility in ambient environments. J. Ambient Intell. Smart
Environ. 1 (2009) 57–62

19. Szymon Bobek, Grzegorz J. Nalepa, M.S.: Challenges for migration of rule-based reasoning
engine to a mobile platform. In Dziech, A., Czyżewski, A., eds.: Multimedia Communica-
tions, Services and Security. Volume XX of Communications in Computer and Information
Science., Springer Berlin Heidelberg (2014) accepted.

20. Nalepa, G.J., Bobek, S.: Rule-based solution for context-aware reasoning on mobile devices.
Computer Science and Information Systems 11 (2014) 171–193

21. Bobek, S., Porzycki, K., Nalepa, G.J.: Learning sensors usage patterns in mobile context-
aware systems. In: Proceedings of the FedCSIS 2013 conference, Krakow, IEEE (2013)
993–998

22. Nalepa, G.J., Ligęza, A., Kaczor, K.: Formalization and modeling of rules using the XTT2
method. International Journal on Artificial Intelligence Tools 20 (2011) 1107–1125

23. Ligęza, A., Nalepa, G.J.: A study of methodological issues in design and development of
rule-based systems: proposal of a new approach. Wiley Interdisciplinary Reviews: Data
Mining and Knowledge Discovery 1 (2011) 117–137


