
10th Workshop on

Knowledge Engineering

and Software Engineering (KESE10)

at the

21st European Conference on Artificial Intelligence (ECAI 2014)

Prague, Czech Republic, August 19, 2014

Grzegorz J. Nalepa and Joachim Baumeister (Editors)

Technical Report No. 492, Würzburg University, Würzburg, Germany, 2014

The KESE Workshop Series is available online: http://kese.ia.agh.edu.pl

Technical Reports of the Würzburg University: http://www.informatik.uni-wuerzburg.de/forschung/technical reports

Preface

Grzegorz J. Nalepa and Joachim Baumeister

AGH University of Science and Technology
Kraków, Poland
gjn@agh.edu.pl

—
denkbares GmbH

Friedrich-Bergius-Ring 15, 97076 Würzburg, Germany
joachim.baumeister@denkbares.com

Research questions and practical exchange between Knowledge Engineering
for intelligent systems and Software Engineering of advanced software programs
have been fruitfully discussed over the last years. Many successful examples
demonstrate the clear symbiosis between these two research areas.

In 2005 the KESE workshops took place for the first time in Koblenz at
the 28th German Conference on Artificial Intelligence (KI-2005). In 2014 the
KESE10 workshops was collocated with the 21st European Conference on Ar-
tificial Intelligence (ECAI 2014) in Prague, Czech Republic on August 19. This
year we solicited contributions having the following topics:

– Knowledge and software engineering for the Semantic Web,
– Knowledge and software engineering for Linked Data,
– Ontologies in practical knowledge and software engineering,
– Business systems modeling, design and analysis using KE and SE,
– Practical knowledge representation and discovery techniques in software en-

gineering,
– Context and explanation in intelligent systems,
– Knowledge base management in KE systems,
– Evaluation and verification of KBS,
– Practical tools for KBS engineering,
– Process models in KE applications,
– Software requirements and design for KBS applications,
– Software quality assessment through formal KE models, and
– Declarative, logic-based, including constraint programming approaches in

SE.

As from the beginning the workshop series shows a healthy mixture of ad-
vanced research papers showing the direction to the next years and practical pa-
pers demonstrating the actual applicability of approaches in (industrial) projects
and concrete systems. This year six regular, and two short papers were accepted
to the workshop. Moreover, two tool presentations were also included. We de-
cided to organize the presentations during the workshop into three topical ses-
sions.

The first session, entitled Knowledge Modeling (Chair: Grzegorz J. Nalepa)
included two papers and one tool presentation. Freiberg and Puppe discuss the

use of patterns in engneering of knowledge-based systems. In their tool presen-
tation Furth and Baumeister demonstrate an ontology debugger integrated in
a semantic wiki. Hatko et al. apply behaviour-driven development for medical
applications.

The second session, entitled Business Processes in KE&SE (Chair: Thomas
Roth-Berghofer) included three papers. Nguyen and Le-Thanh discuss semantic
aspects of workflows. Bobek et al. present a recommender system for business
process design using a Bayesian network. In their paper Sanfilippo et al. provide
remarks on an ontological analysis of BPMN.

The third session Systems and Tools (Chair: Martina Freiberg) included four
papers. Ostermayer et al. presented a custom connector architecture for Pro-
log and Java. Then Ślażyński et al. shared their experiences in migrating rule
inference engines to mobile platforms. In their paper Bach et al. discussed knowl-
edge modeling aspects with the open source tool myCBR. Finally, Kluza et al.
presented a new wiki-based tool for SBVR.

The organizers would like to thank all who contributed to the success of the
workshop. We thank all authors for submitting papers to the workshop, and
we thank the members of the program committee for reviewing and collabora-
tively discussing the submissions. We would like to thank the Chairmans that
supported the KESE Chairs during the event. For the submission and reviewing
process we used the EasyChair system, for which the organizers would like to
thank all the developers of the system. Last but not least, we would like to thank
the organizers of the ECAI2014 conference for hosting the KESE10 workshop.

Grzegorz J. Nalepa
Joachim Baumeister

Workshop Organization

The 10th Workshop on Knowledge Engineering and Software Engineering
(KESE10)

was held as a one-day event at the
21st European Conference on Artificial Intelligence

(ECAI 2014)
on August 19 2014 in Prague, Czech Republic

Workshop Chairs and Organizers

Grzegorz J. Nalepa, AGH UST, Kraków, Poland
Joachim Baumeister, denkbares GmbH, Germany
Krzysztof Kaczor, AGH UST, Kraków, Poland

Programme Committee

Klaus-Dieter Althoff, University Hildesheim, Germany
Isabel María del Águila, University of Almeria, Spain
Thomas-Roth Berghofer, University of West London, UK
Kerstin Bach, Verdande Technology AS, Norway
Joachim Baumeister, denkbares GmbH/University Würzburg, Germany
Joaquín Cañadas, University of Almeria, Spain
Adrian Giurca, BTU Cottbus, Germany
Jason Jung, Yeungnam University, Korea
Rainer Knauf, TU Ilmenau, Germany
Mirjam Minor, Johann Wolfgang Goethe-Universität Frankfurt, Germany
Pascal Molli, University of Nantes - LINA, France
Grzegorz J. Nalepa, AGH UST, Kraków, Poland
José Palma, University of Murcia, Spain
Alvaro E. Prieto, Univesity of Extremadura, Spain
Dietmar Seipel, University Würzburg, Germany
José del Sagrado, University of Almeria, Spain

Table of Contents

Knowledge Modelling (Chair: Grzegorz J. Nalepa).

Pattern-driven Knowledge Systems Engineering . 1
Martina Freiberg, Frank Puppe

An Ontology Debugger for the Semantic Wiki KnowWE (Tool
Presentation) . 13

Sebastian Furth, Joachim Baumeister

Behaviour-Driven Development for Computer-Interpretable Clinical
Guidelines . 24

Reinhard Hatko, Stefan Mersmann and Frank Puppe

Business Processes in KE&SE (Chair: Thomas
Roth-Berghofer).

Ensuring the Semantic Correctness of Workflow Processes: An
Ontological Approach . 30

Thi-Hoa-Hue Nguyen, Nhan Le-Thanh

Integration of Activity Modeller with Bayesian Network Based
Recommender for Business Processes . 42

Szymon Bobek, Grzegorz J. Nalepa and Olgierd Grodzki

Towards an Ontological Analysis of BPMN . 53
Emilio M. Sanfilippo, Stefano Borgo and Claudio Masolo

Systems and Tools (Chair: Martina Freiberg).

CAPJA - A Connector Architecture for Prolog and Java 59
Ludwig Ostermayer, Frank Flederer and Dietmar Seipel

Migration of Rule Inference Engine to Mobile Platform. Challenges and
Case Study. 71

Mateusz Slażyński, Szymon Bobek and Grzegorz J. Nalepa

Knowledge Modeling with the Open Source Tool myCBR 84
Kerstin Bach, Christian Severin Sauer, Klaus-Dieter Althoff and Thomas
Roth-Berghofer

SBVRwiki (Tool Presentation) . 95
Krzysztof Kluza, Krzysztof Kutt and Marta Woźniak

1

Pattern-driven Knowledge Systems Engineering

Martina Freiberg and Frank Puppe

Department of Artificial Intelligence and Applied Informatics, Institute of Computer
Science, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany

freiberg/puppe@informatik.uni-wuerzburg.de

Abstract. Despite increasing relevance in research- and industrial con-
texts, the implementation of knowledge-based systems (KBS) still is
a challenging task. We motivate, that patterns—basically a renowned
means for providing reusable solutions for similar problems—can drasti-
cally leverage development efforts and time. In this paper, we propose a
framework for pattern-driven, encompassing KBS development, consist-
ing of: Tailored usability criteria for a clear delimitation of KBS solutions,
a basic pattern specification template, and a collection of foundational
KBS UI patterns. We further describe practical experiences with the ap-
proach, entailing: The reference implementation of several patterns with
the tailored development tool ProKEt, their design- and usability-related
evaluation, and empirical evidence of applying pattern-driven KBS de-
velopment in actual projects.

1 Introduction

Despite increasing relevance in research- and industrial contexts, knowledge-
based systems (KBS) engineering still denotes a challenging task. In general
software engineering, patterns are renowned for describing proven solutions and
preventing common pitfalls, thus fostering reuse and strongly leveraging overall
development efforts. To date, various pattern collections for general UI- and
interaction design are proposed, including [7, 8, 9]; also, many resources are
available freely on the web.

In contrast to standard web pages or query forms, KBS do not solely build on
strictly predefined question sequences; rather, they characteristically live from
follow-up items—flexibly included interview items that become relevant only
during the questioning session and based on the concrete user input. Also, KBS
often require the prominent integration of additional information for elaborating
the knowledge base / interview items more clearly and of (in-place) explanations
of the results. This calls for tailored UI and interaction solutions that best sup-
port those requirements.

We motivate, that also KBS engineering can strongly profit from fitted pat-
terns that subsume such proven (and optimally evaluated) KBS solutions; this
can strongly support and refine requirements engineering, and leverage encom-
passing KBS development. First steps into that direction have been already taken
with regards to the knowledge base, e.g., [6]. As counterpart, we propose tailored

2

patterns, that capture foundational KBS interaction and UI design solutions re-
garding various contexts and target objectives; to the best of our knowledge, no
similar efforts have been published so far.

The rest of the paper is organized as follows: In Section 2, we introduce a
basic KBS pattern specification framework: A short definition of relevant terms,
tailored (usability-related) classification criteria, and a KBS UI pattern specifi-
cation template. A collection of four framing patterns, that can be fine-tuned
into a total of ten pattern variants, is proposed in Section 3. Practical experi-
ences related to pattern-driven KBS development are reported in Section 4, and
a summarizing conclusion and promising future work are presented in Section 5.

2 KBS UI Pattern Specification Framework

Before proposing a set of usability-related KBS delimitation criteria in Sec-
tion 2.1 and sketching a basic pattern specification template in Section 2.2,
we clarify some basic terms used in the remaining paper.

Forward- & backward progression: Forward progression starts with an
empty solution set; from one or more init questions, such a KBS then ques-
tions in all directions, depending on the particularly implemented indication
mechanisms. In contrast, a backward progression KBS is initialized with a target
solution and poses only those questions that contribute to the final state of that
chosen solution.

Multiplex consultation- & clarification KBS: Multiplex consultation
KBS use forward progression, whereas clarification KBS base on backward pro-
gression. Clarification KBS can further be used with two application focuses:
Consultation focussed—i.e., the clarification KBS is started empty, and all con-
tributing questions are posed. Or justification focussed—then, such a system is
called for justifying a solution that already has been derived in the preceding
session, thus corresponding to an elaborate, interactive solution explanation.

2.1 Tailored, Usability-related KBS Classification Criteria

Today, diverse UI design- and usability guidelines and standards are available,
such as Nielsen’s heuristics [5] or the universal design guidelines of Lidwell [4].
However, those typically are defined rather generally as to be applicable for
diverse interactive software system types. Due to their specifics as mentioned
in the introduction, KBS require more tailored criteria; those then can be used
for clearly delimitating their specific characteristics—as, e.g., for the pattern
specification in this work—or for rating KBS solutions regarding their quality
and usability. We propose eight tailored, usability-related classification criteria
as follows:

1. Compactness: How many interview items are presented simultaneously?
2. Comprehensibility: Is support provided for understanding specialist,

complex, or ambiguous knowledge base contents (additional explanations, sur-
rounding, contextual questions), and in learning something about the domain?

3

3. Descriptiveness: Does the KBS suggest how respective questions/answers
influence the final result of the session, e.g., by indicating the score (change)?

4. Efficiency: How long does a characteristic session take and how many
interview items need to be processed?

5. Explorability (Participation): Are users enabled to deviate from the
suggested questioning sequence, are potential expert shortcuts provided?

6. Intuition (usage): Are the applied presentation/interaction forms famil-
iar or otherwise self-descriptive? If not, are particularly novice users supported
(instructions, tutorials, examples)?

7. Transparency: Is the current state (i.e., state of questions, results, over-
all progress) clearly and comprehensibly mediated at any time?

8. Clear Arrangement/Aesthetics: Does the overall design exhibit certain
aesthetics, e.g., by using a small number of virtual lines & basic symmetry?

2.2 KBS UI Pattern Specification Template

Table 1 summarizes a basic template for specifying KBS UI patterns in a unified
and clear manner. All variations of a base pattern exhibit some similar charac-
teristics, e.g., the core KBS objective. They vary regarding the specific realiza-
tion of the UI/interaction, the extent of adhering to KBS classification criteria
(see Section 2.1), the target users, knowledge specifics, and the imposed conse-
quences. In the following pattern descriptions, we only provide a summarizing
template item variations that subsumes specifics regarding the UI/interaction
and required knowledge; we further delimitate the differences regarding the clas-
sification criteria and the target users in Table 2; consequences, as well as details
on the example implementations, are omitted here due to space restrictions.

Pattern Section Description

Problem
Statement

Specifies the problem, that is solved by this pattern, based on the
the tailored KBS usability criteria as described in Section 2.1.

Solution Describes the general (UI and interaction) solution that all variants
of this pattern apply, e.g., the characteristic base interaction.

Variations Variations of the fundamental pattern, differing regarding: The tar-
geted user types, the specific UI realization, knowledge specifics, (con-
sequences, and example implementation details—not elaborated in
this paper).

Table 1: Basic template for specifying fundamental KBS UI patterns.

3 KBS UI Pattern Collection

We propose four basic KBS UI patterns: Questionnaire, Interview, Clarifier, and
Clarifier Hybrid, along with variants. In earlier research, we already introduced

4

three basic interaction categories for KBS, see [1]; there, Adaptive Entry maps
to Questionnaire, Guided Entry to Interview, and Autonomous Entry to Clari-
fier. The patterns basically are intended independent from a specific knowledge
representation—in the sense that for the pattern/UI it is irrelevant whether a
rule-base or a covering model derives the solution ratings; however, some pat-
terns are favorable regarding specific knowledge characteristics—e.g., CheckList
Questionnaire requires all questions to be mappable on a fixed answer set; we
included short remarks on such specifics in the variations’ descriptions.

3.1 Questionnaire Pattern

Problem Statement: The KBS should compactly display a greater part of the
KB, offer a highly transparent UI, intuitive usage, and a certain extent of ex-
plorability ; comprehensibility, is no key requirement for the core UI itself.

Solution: Questionnaire KBS resemble paper- or web-based questionnaire forms.
Depending on the particular UI style, many to all indicated interview objects
are displayed simultaneously and typically ordered in some form of grid-based
layout. Questionnaire may suggest (visually), but does not necessarily prescribe,
an optimal interrogation sequence and thus fosters explorative usage. A certain
comprehensibility can be achieved by adding auxiliaries—such as informative
popups with additional explanations for interview items. Per default, Question-
naire uses forward progression, c.f., Section 2

Variations: Box-, Daily-, and CheckList Questionnaire.
a. Box Questionnaire closely adheres to the design of standard question-

naires by using established, familiar question presentation forms—e.g., check-
boxes and radio buttons for choice questions, see Figure 1, I; thereby, each ques-
tion is rendered within a distinct box, resulting in a very regular layout, but
some waste of UI space.

b. Daily Questionnaire, originally inspired by daily newspapers, realizes
a more flat, juxtaposed presentation style for questions and answers, c.f., Fig-
ure 1, II; therefore, each question along with its answer options is placed in a
line, implying a less regular yet more compact layout than the Box variant.

c. CheckList Questionnaire mirrors paper-based check lists by repre-
senting answer options by columns that simply are ticked off, see Figure 1, III.
Therefore, all choice questions need to be mappable to a fixed answer set; includ-
ing further types, e.g., numerical questions, is possible, yet best results regarding
efficient interaction and compactness are achieved with choice questions only.

3.2 Interview Base Pattern

Problem Statement: The KBS UI should be highly intuitive and easily com-
prehensible, thus specifically supporting novice users/domain laymen; in turn,
compactness, descriptiveness, efficiency, explorability, as well as UI transparency
can be neglected.

5

Ye
s

N
o

-?
-

Li
gh

t d
ia

gn
os

is

Is
 th

e
an

te
rio

r l
ig

ht
 w

or
ki

ng
?

Is
 th

e
re

ar
 li

gh
t w

or
ki

ng
?

C
on

ta
ct

 b
et

w
ee

n
th

e
an

te
rio

r l
ig

ht
 a

nd
 w

ire
?

C
on

ta
ct

 b
et

w
ee

n
th

e
an

te
rio

r l
ig

ht
 a

nd
 d

yn
am

o?

Is
 th

e
an

te
rio

r l
ig

ht
 o

pt
ic

al
ly

 in
 g

oo
d

or
de

r?

C
on

ta
ct

 b
et

w
ee

n
th

e
re

ar
 li

gh
t a

nd
 w

ire
?

C
on

ta
ct

 b
et

w
ee

n
th

e
re

ar
 li

gh
t a

nd
 d

yn
am

o?

Is
 th

e
re

ar
 li

gh
t o

pt
ic

al
ly

 in
 g

oo
d

or
de

r?

X

X

X

X X

D
id

 th
e

lig
ht

 d
is

or
de

r o
cc

ur
 re

gu
la

rly
?

H
ow

 o
fte

n?
|
...

(I
)

(I
I)

(I
II
)

Fl
u

is
 d

er
iv

ed
 a

s
es

ta
bl

ish
ed

 (S
co

re
: +

12
0.

0)
 :

X

Sh
iv

er
s

==
 Y

es
 (+

50
),

Fe
ve

r =
=

Ye
s

(+
40

),
St

ar
te

d
Sl

ow
ly

 =
=

Ye
s

(+
10

),
La

st
ed

 lo
ng

 =
=

un
kn

ow
n,

Fu
rt

he
r S

ym
pt

om
s

==
 S

ne
ez

in
g

(-
20

)

(a
)X

N
au

se
a

(-5
)

Fa
tig

ue
 (+

10
)

Sn
ee

zi
ng

 (+
20

)

Fl
u

(+
12

0)

C
ol

d
(+

40
)

La
st

ed
 lo

ng
 =

 y
es

St
ar

te
d

sl
ow

ly
 =

 y
es

Sh
iv

er
s

=
ye

s

Fe
ve

r =
 y

es

P6 P5

Fa
tig

ue
 =

 y
es

Sn
ee

zi
ng

 =
 y

es

P5Ye
s (

+2
0)

 |
N

o
(-5

)
X

Ye
s

N
o

X

(a
)

(b
)

(I
V
)

F
ig

.1
:

K
B

S
P

a
tt

er
n
s—

ex
a
m

p
le

s
1
:

B
ox

Q
u
es

ti
o
n
n
a
ir

e
(I

)
a
n
d

D
a
il
y

Q
u
es

ti
o
n
n
a
ir

e
(I

I)
a
s

im
p
le

m
en

te
d

in
P

ro
K

E
t,

C
h
ec

k
L

is
t

Q
u
es

ti
o
n
-

n
a
ir

e
(I

II
),

a
n
d

F
o
rm

A
d
d
-o

n
C

la
ri

fi
er

(I
V

)
a
s

p
re

li
m

in
a
ry

sk
et

ch
.

6

Solution: Interview imitates human conversations by presenting always a single
question—or a group of related questions—at a time; additional information are
available anytime quickly and easily, e.g., by directly integrating it near to the
corresponding interview object. Interview typically prescribes the interrogation
sequence in a rather fixed manner. The basic lack of transparency can be alle-
viated by integrating auxiliaries such as an interview object history—listing the
already processed interview items—and a progress information display.

Variations: Strict-, Grouped-, and Hierarchical Interview.
d. Strict Interview displays only a single question at a time together with

its additional information, see Figure 2, I. Thus, optimally, the KB should pro-
vide suitable auxiliary information for each interview item. Further, a sophisti-
cated indication mechanism is advisable for keeping the possible interrogation
paths at solid lengths, especially regarding large KBs.

e. Grouped Interview sequentially displays groups of (optimally topically
related) questions or single questions; thus, it is a bit more efficient than Strict In-
terview, and offers more explorability, as the particular sequence within question
groups is not prescribed. The UI uses a similar basic frame as Strict Interview,
where Questionnaire variants are used for rendering the groups, c.f., Figure 2, II.

f. Hierarchical Interview offers an interactively navigable tree UI specifi-
cally for decision tree knowledge, c.f., [6]. Answer options are presented as width-
spanning tree nodes, c.f., Figure 2, III. Clicking on answer nodes induces their
expansion by the answer options of the follow up question. Solutions are rep-
resented by distinct nodes at the final nesting levels; thus, the tree path from
outer nodes to the solution particularly enables users to ’read’ the justification
of a solution from the visual tree structure. Auxiliary information is presented
in a dedicated side panel—either on click or by hovering the nodes.

3.3 Clarifier Base Pattern

Problem Statement: Selected single solutions in highly expertise domains
should be investigated exclusively and in-depth. The KBS UI should be com-
pact, transparent, descriptive, and offer skill-building ability induced by a high
comprehensibility of the contents; users should be enabled to increase efficiency
in contributing their personal knowledge, e.g., for using shortcuts regarding the
interrogation sequence (explorability/participation). Intuitive usage, in contrast,
is no key requirement.

Solution: Clarifier characteristically uses backward knowledge, see Section 2,
for investigating only a single issue at a time. Therefore, Clarifier renders the
target solution and all contributing questions—i.e., that potentially alter the
solution rating in any way—simultaneously and offers means to adapt answers
and thus investigate the consequences on the solution.

Variations: Hierarchical Clarifier and Form Add-on Clarifier.

7

Da
y

(I
II
)

(I
I)

(I
)

8
%

In
te

rv
ie

w
 H

is
to

ry
:

Co
m

m
on

 R
ou

te

 Y

ea
r o

f b
irt

h
==

 1
97

0

 G

en
de

r =
=

fe
m

al
e

Ba
sic

 O
pe

ra
tiv

e
Da

ta

O
pe

ra
tio

n
Da

te

Ba
si

c
O

pe
ra

tiv
e

D
at

a

An
ae

st
he

si
a

G
en

er
al

Re
gi

on
al

M
on

th
Ye

ar

O
pe

ra
to

r

Su
rg

eo
n

Su
rg

eo
n-

in
-tr

ai
ni

ng
, s

up
er

vis
ed

Su
rg

eo
n-

in
-tr

ai
ni

ng
, n

ot
 s

up
er

vis
ed

Ba
ck

N
ex
t

(I
II
)

(I
V
)

(I
I)

(I
)

F
ig

.2
:

K
B

S
P

a
tt

er
n
s—

E
x
a
m

p
le

s
2
:

S
tr

ic
t

In
te

rv
ie

w
(I

),
H

ie
ra

rc
h
ic

a
l

In
te

rv
ie

w
(I

II
),

a
n
d

H
ie

ra
rc

h
ic

a
l

C
la

ri
fi
er

(I
V

)
a
s

im
p
le

m
en

te
d

in
P

ro
K

E
t,

G
ro

u
p

ed
In

te
rv

ie
w

(I
I)

a
s

p
re

li
m

in
a
ry

sk
et

ch
.

8

g. Hierarchical Clarifier exhibits its strengths optimally with backward
knowledge that is refined over several abstraction levels. It displays question
and answers options within one node of its tree-style UI, see Figure 2, IV. The
topmost node corresponds to the target solution, and is followed by nodes that
correspond to the directly solution-relevant questions. Each question node again
can be followed recursively by further question levels where the children denote a
more fine-granular partition—one or several questions—of its parent. Thus, users
decide whether to answer the more abstract top-level questions; or whether to
implicitly answer them by expanding them and processing the children—child
answers then are propagated recursively back to the parents.

h. Form Add-on Clarifier adds minimalistic consultation widgets to static
base justification presentation forms, such as finding lists or rule graphs, c.f.,
Figure 1, IV a&b. Clicking the interview objects in the justification automatically
triggers compact (popup) consultation widgets; those contain all answer options
for the respective question, potentially also indicating the value that is added to
the solution. This allows for interactively adapting answers and thus exploring
and clarifying a selected solution based on its general justification view.

3.4 Clarifier Hybrid Pattern

Problem Description: A more intuitively usable and easily comprehensible
UI representation for using clarification knowledge is desired.

Solution: Clarifier Hybrids merge intuitive, comprehensible KBS UIs with back-
ward knowledge for supporting especially also novice or laymen users in using
clarification KBS. Both Questionnaire and Interview patterns are suitable for
using backward knowledge. The base implementation of Clarifier Hybrid then
corresponds to the variants described in Sections 3.1 and 3.2; in contrast to that,
the targeted backward knowledge is processed, which might—depending on the
actually selected UI variant—require some additions to the base UI; for example,
widgets for explicitly navigating the hierarchical refinement levels.

Variations: Clarification Interview and Clarification Questionnaire.

3.5 Pattern Variants—Detailed Delimitation

Table 2 summarizes the fine-grained delimitation of the proposed patterns ac-
cording to the tailored classification criteria, introduced in Section 2.1; the ex-
tent of their realization is rated from low (L) to high (H). Further, correspond-
ing target user characteristics for each pattern are specified by classifying the
domain-expertise and the frequency of usage. Thus, the delimitation table serves
as quick reference which pattern to apply in what context. If, e.g., a KBS solu-
tion is requested that is both highly intuitive usable, and—given the appropriate
knowledge—highly comprehensible, also and especially for first-time users, then
the Strict Interview pattern suits best, c.f., Table 2.

9

Questionnaire Interview Clarifier Hybrid

3
.1

.a

3
.1

.b

3
.1

.c

3
.2

.d

3
.2

.e

3
.2

.f

3
.3

.g

3
.3

.h

3
.4

3
.4

U
s
a
b
il
it
y

C
r
it

e
r
ia compact M H H L M H H H L M

comprehensible M M M H H L-M M-H M M-H M-H
descriptive L L L L L L H H L L
efficient M H H L M M M L-M M L-M
explorable H H H L L M-H H H L H
intuitive H M H H M L-M L M M-H H
transparent H H H M M M H H L-M H
clear arranged H M H L M L-M M L-M L M

U
s
e
r
s expertise: laymen X X X X X (X) / (X) X X

experienced X X X X X X X X X X
expert (X) X X / (X) X X X (X) X

usage: one-time X X X X X (X) (X) X X
frequent X X X (X) X X X X (X) X

Table 2: KBS UI pattern delimitation according to tailored usability-related KBS clas-
sification criteria with extent of their realization—High (H), medium (M), and low
(L)—and further, regarding two user characteristics—expertise, and usage frequency.

4 Practical, Pattern-Driven KBS Development

Our practical experiences related to KBS UI patterns encompass: Support of
pattern-driven KBS development by the tailored tool ProKEt [3]; a usability as-
sessment of selected pattern reference implementations with ProKEt; and several
current projects where KBS patterns/pattern-driven development was beneficial.

4.1 ProKEt: Tool Support for Pattern-driven KBS development

We already introduced ProKEt as a tailored KBS engineering tool that specif-
ically supports template-based development in [3]: By realizing the KBS UI
framework through defining highly modular (HTML) templates with varying
complexity, that can recursively be assembled into more comprehensive ones.
That main mechanism still persists, yet the collection of supported templates
and readily available KBS patterns has been extended. Currently supported
are Box- and Daily Questionnaire, along with encompassing options for sim-
ple property-based fine-tuning—e.g., regarding whether to hide non-indicated
items; Strict- and Hierarchical Interview, with an optional interview history and
progress bar; a configurable solution panel display for all those variants; and
Hierarchical Clarifier, with a tailored add-on information display and a specific
solution panel variant.

4.2 Evaluation of Selected KBS UI Patterns

In early 2014, an encompassing evaluation was conducted regarding ProKEt ref-
erence implementations of the following KBS UI patterns: Box-/Daily Question-
naire, Strict-/Hierarchical Interview, and Hierarchical Clarifier. Therefore, first

10

an expert evaluation was conducted by 30 HCI students, using heuristic evalu-
ation according to Nielsen [5] and the cognitive walkthrough technique [10]; the
basic goal was to assess the demo implementations regarding their basic quality
and usability. Afterwards, in total 248 computer science students participated in
a more comparative user study, where certain given problem descriptions were
to be solved with each of the tested KBS; there, students were further instructed
to fill in a short questionnaire for collecting some basic unified values—e.g., re-
garding the overall utility of the KBS—and to provide informal feedback.

Evaluation Item Daily Box HInterv SInterv HClari

Success Rate = Correctly solved/all cases 88.71 91.53 27.02 20.16 88.31

Questionnaire Items

Q1. Overall utility of the system 2.04 1.93 3.63 3.06 2.72

Q3. Belief in the result’s correctness 1.68 1.76 4.13 3.86 3.03

Q4. KB quality=content,structure 2.24 2.16 3.73 3.08 2.82

Q5. Knowledge mediation 3.79 3.77 3.64 3.18 2.78

Q6. Perceived ease of use 1.95 1.57 3.30 2.28 3.03

Q7. Efficiency of the KBS 2.01 1.84 3.45 2.86 2.83

Q9. Rating of the KBS UI design 3.58 2.60 3.84 2.57 3.12

Table 3: Results of the comparative user study regarding five selected KBS patterns,
ratings from 1 (very good) to 6 (very bad). Not explicitly listed are Q2 which concerned
the acquired solution (mirrored in the success rate), and Q8 (resolution of the screen).

Table 3 summarizes the questionnaire-based results of the comparative study
(rating scale: 1/very good – 6/very bad). The first major finding is a strong
correlation between KB quality Q4 and each of KB utility Q1 (0.9968), KBS
efficiency Q7 (0.9813), and perceived correctness of the result Q3 (0.9571), cor-
relation coefficient given in parentheses. Further, KB quality Q4 correlates quite
strong with the overall KBS success (0.8325); thus overall, the KB quality can
be assumed one major influencing factor regarding the overall KBS perception.
This in turn explains the bad overall results for both Interview variants, despite
their way more positive rating in the expert usability assessment: Both vari-
ants used a qualitatively rather unfavorable statistical KB—confirmed strongly
also by subjective remarks. Yet, regarding Strict Interview, at least the basic
tendency of the expert assessment—which confirmed a highly intuitive overall
UI/interaction—was confirmed, see Q6 and Q9.

Box Questionnaire obviously received the best ratings, closely followed by
the Daily variant; along with provided subjective remarks this indicates, that
the more structured presentation of the Box variant was favored over the com-
pact Daily layout, thereby consenting with the basic expert assessment findings.
Apart from underlining this tendency, however, subjective remarks specifically
criticized the more space consuming presentation of Box Questionnaire and the
general lack of structure in Daily; those comments also revealed more approval

11

for Daily regarding its ease of use, simplicity, and efficiency. Thus, we suspect an
even further increase in the overall rating of Daily in case it is further enhanced
regarding its presentation—including, e.g., a clearer distinction of question and
answer items, a more prominent highlighting of answered items, and providing
overall visual structure by indicating separators between question/answer lines.

Regarding Hierarchical Clarifier, the ratings may seem improvable; yet, this
KBS addressed a highly complex KB from the domain of protection against un-
lawful dismissal, with an equally comprehensive problem description of the dis-
missal conditions, the correctness of which was to be rated by the KBS. Thus,
an utility value of 2.68 and even the more a success rate of 88.31 % are particu-
larly good results in the given context of a highly expertise domain but domain
laymen users. Especially the descriptive and transparent style of Hierarchical
Clarifier, mirroring the derived question/solution ratings directly in the UI may
have supported that result; it most likely fostered the overall trustworthiness Q3
(compared to the Interview variants).

As a general important insight it excelled clearly, that the evaluation of a
KBS UI always is inherently coupled with the applied KB and the respective
problem to be solved.

4.3 Case Studies with pattern-driven KBS Development

Pattern-driven development along with the tool ProKEt already proved highly
beneficial in actual projects. First, we noticed a strong support of the require-
ments engineering process. In the Mediastinitis project—where a documentation
KBS for the structured input of operation data is realized, c.f., [3]—the patterns,
and their ProKEt reference implementations, provided a visual and interactive
means for gathering the user requirements more precisely and quickly. Thus, it
was easy to experiment with several Questionnaire variants—two distinct Box
layouts and one Daily layout—and to let the user formulate his requirements
based on practically investigating the ProKEt pattern demos.

Another advantage is the fostered reuse of KBS solutions. In the EuraHS
project, c.f. also [3], nearly the same constraints and conditions existed as in
Mediastinitis. Thus, it was quickly agreed that a similar KBS solution would
fit best in that case, too. There, the availability of the Questionnaire reference
implementation in ProKEt drastically accelerated the initial setup of a first
functional demo system—which was gradually refined, particularly regarding
the KB, later, yet the project initiation itself was highly accelerated and eased.

Similarly, in the JuriSearch project, see [2]—aiming at providing clarification
consultation modules for diverse legal topics—we could easily experiment with a
Hierarchical Clarifier and a (preliminary) hybrid Clarification Interview variant
regarding the most suiting solution.

5 Conclusion

In this paper, we motivated the benefits of pattern-driven development in the
context of KBS. For practical support, we proposed a pattern specification frame-

12

work, based on tailored KBS (usability) criteria and a pattern template, and we
introduced a collection of 10 fundamental KBS UI/interaction patterns. Fur-
ther, we reported practical experiences with the approach: Using the tailored
KBS engineering tool ProKEt for creating reference implementations of the pat-
terns, evaluating five of them regarding their design and usability, and empirical
experiences with pattern-driven KBS development from current projects.

Despite denoting an exciting approach for leveraging encompassing KBS de-
velopment, there are several aspects worth investigating in the future: First,
the general extension of the tool ProKEt as to entirely support those patterns
that are specified theoretically only so far. Second, a thorough usability- and
design-related base evaluation of the not yet assessed patterns. Third, an in-
depth inquiry of one assumption that has emerged in the conducted study: That
a structural enhancement of Daily Questionnaire may entail even better results
compared to Box Questionnaire. Fourth, follow-up studies for investigating pat-
terns in direct comparison for delimitating core characteristics even clearer—e.g.,
the pure Clarifier variants vs. one or both Clarifier Hybrids. Another goal is the
actual application of further selected patterns in current (and potential future)
projects; e.g., using Clarification Interview as a first-time user alternative for the
Hierarchical Clarifier in the JuriSearch project.

References

1. Freiberg, M., Baumeister, J., Puppe, F.: Interaction Pattern Categories—
Pragmatic Engineering of Knowledge-Based Systems. In: Proceedings of the 6th
Workshop on Knowledge Engineering and Software Engineering (KESE-2010) at
the 33rd German Conference on Artificial Intelligence (2010)

2. Freiberg, M., Puppe, F.: iTree: Skill-building User-centered Clarification Consul-
tation Interfaces. In: Proceedings of the International Conference on Knowledge
Engineering and Ontology Development (KEOD 2012). SciTePress Digital Library
(2012)

3. Freiberg, M., Striffler, A., Puppe, F.: Extensible prototyping for pragmatic en-
gineering of knowledge-based systems. Expert Systems with Applications 39(11),
10177 – 10190 (2012)

4. Lidwell, W., Holden, K., Butler, J.: Universal Principles of Design. Rockport Pub-
lishers Inc., 2nd edn. (2010)

5. Nielsen, J.: Heuristic Evaluation. In: Nielsen, J., Mack, R.L. (eds.) Usability In-
spection Methods, pp. 25–62. John Wiley & Sons, New York (1994)

6. Puppe, F.: Knowledge Formalization Patterns. In: Proceedings of PKAW 2000,
Sydney Australia (2000)

7. Rogers, Y.: Interaction Design—beyond human-computer interaction. John Wiley
& Sons, Ltd, 3rd edn. (2011)

8. Schmettow, M.: User interaction design patterns for information retrieval systems
(2006)

9. Tidwell, J.: Designing Interfaces — Patterns for Effective Interaction Design.
O’Reilly Media Inc. (2006)

10. Wharton, C., Rieman, J., Lewis, C., Polson, P.: Usability inspection methods. chap.
The Cognitive Walkthrough Method: A Practitioner’s Guide, pp. 105–140. John
Wiley & Sons, Inc., New York, NY, USA (1994)

13

An Ontology Debugger for the
Semantic Wiki KnowWE

(Tool Presentation)

Sebastian Furth1 and Joachim Baumeister1,2

1 denkbares GmbH, Friedrich-Bergius-Ring 15, 97076 Würzburg, Germany
{firstname.lastname}@denkbares.com

2 University of Würzburg, Institute of Computer Science, Am Hubland,
97074 Würzburg, Germany

Abstract. KnowWE is a semantic wiki that provides the possibility to
define and maintain ontologies and strong problem-solving knowledge.
Recently, the ontology engineering capabilities of KnowWE were signifi-
cantly extended. As with other ontology engineering tools, the support of
ontology debugging during the development of ontologies is the deficient.
We present an Ontology Debugger for KnowWE that is based on the
delta debugging approach known from Software Engineering. KnowWE
already provides possibilities to define test cases to be used with various
knowledge representations. While reusing the existing testing capabili-
ties we implemented a debugger that is able to identify failure-inducing
statements between two revisions of an ontology.

1 Introduction

In software engineering changing requirements and evolving solutions are well-
known challenges during the software development process. Agile software devel-
opment [3] became popular as it tackles these challenges by supporting software
engineers with methods based on iterative and incremental development.

In the field of ontology engineering the challenges are similar. It is extremely
rare that the development of an ontology is a one-time task. In most cases an
ontology is developed continuously and collaboratively. Even though this insight
is not new and tool support has improved in recent years, a mature method for
agile ontology development still is a vision.

The idea of continuous integration (CI) has been adapted for the development
of knowledge systems (cf. Baumeister et al. [1] or Skaf-Molli et al. [14]). CI for
knowledge system uses automated integration tests in order to validate a set of
modifications. In software engineering the continuous integration is applied by
unit and integration tests to mostly manageable sets of changes, which often is
sufficient to isolate bugs. In accordance to Vrandečić et al. [16], who adapted
the idea of unit testing to ontologies, we consider unit tests for ontologies to be
difficult to realize. Additionally in ontology engineering changes can be rather
complex, e.g. when large amounts of new instance data is extracted from texts
and added automatically to an ontology.

14

As abandoning a complete change set because of an error is as unrealistic
as tracing down the failure cause manually, a method for isolating the fault
automatically is necessary. We developed a debugging plugin for the semantic
wiki KnowWE that is able to find the failure-inducing parts in a change set.
The debugger is based on the Delta Debugging idea for software development
proposed by Zeller [18].

The remainder of this paper is structured as follows: Section 2 describes the
delta debugging approach for ontologies; in Section 3 we present the developed
plugin for KnowWE in detail. Section 4 contains a short case study while Sec-
tion 5 concludes with a discussion and the description of future work.

2 Delta Debugging for Ontologies

2.1 Prerequisites

The proposed Delta Debugging approach assumes that we are able to access
different revisions of an ontology. Additionally, we assume that a mechanism
for the detection of changes exists. We call the difference between two revisions
the set of changes C. The detection can be realized for example by utilizing
revision control systems like SVN or Git or by manually calculating the difference
between two snapshots of an ontology. Even more sophisticated change detection
approaches are possible, like the one proposed by Goncalves et al. [5] for the
detection of changes in OWL ontologies on a semantic level.

Definition 1 (Changes). Let C = {c1, c2, . . . , cn} be the set of changes ci
provided by a change detection mechanism.

Definition 2 (Revision). Let O1 be the base revision of an ontology and O2 =
O1 ∪C a revision of the ontology, where the set of changes C have been applied.

With respect to a given test one of the revisions has to pass while the other
one has to fail a specific test (Axiom 1).

Definition 3 (Test Function). A function test : O → BOOLEAN deter-
mines for a given ontology whether it passes (TRUE) a specified test procedure
or not (FALSE).

Axiom 1 For a given test function test and the revisions O1 and O2 of the
ontology test(O1) = TRUE and test(O2) = FALSE holds.

2.2 Tests for Ontologies

Test outcome The Delta Debugging approach we propose is not limited to
a certain test procedure as long as it can assert a boolean value as defined in
Definition 3 and Axiom 1. In software engineering the outcome of a test can also
be undefined. Zeller [18] pointed out three reasons why this can happen:

15

Failure 1 Integration: When a change relies on earlier changes that are not
included in the currently focused change set, the change may not be applied.

Failure 2 Construction: When applying all changes a program may have syn-
tactical or semantical errors which avoids the construction of the program.

Failure 3 Execution: A program can not be executed.

As ontology engineering is basically about adding/removing/changing triples,
these failures can hardly occur—at least on the syntactical level. Incorrect state-
ments can usually not be added to a repository and therefore should not detected
as a valid/applicable change by the change detection mechanism. Additionally
triples do syntactically not depend on other triples and therefore can be added to
and removed from a repository independently. Finally ontologies are not executed
in the way a program is, what relaxes the execution failure. On the semantical
level, however, integration and construction failures are very likely to occur but
they do not result in an undefined test outcome, but a failing test—which is the
desired behavior.

Example tests A test could consider for example the result of a SPARQL
query. A concrete implementation could compare the actual query result with
an explicitly defined (expected) result. Another realization could use SPARQL’s
ASK form.

When dealing with an ontology that makes heavy use of semantics like OWL,
a reasoner like Pellet [13] could be utilized in a test to check whether an ontology
is consistent and/or satisfiable.

A test does not even have to test the ontology itself, as in task-based on-
tology evaluation [8] the outcome of the ontology’s target application could be
considered. Testing with sample queries for semantic search applications is an
example, where a given ontology is expected to provide certain results in an
otherwise unchanged semantic search engine.

Regardless of the actual implementation the definition of test cases should be
a substantial and integral part of the underlying ontology engineering method-
ology. We described the TELESUP project [4] that aims for a methodology and
tool for ontology development in a self-improving manner and emphasizes on the
early formulation of test cases.

2.3 The Delta Debugging Algorithm

We propose a delta debugging algorithm (Algorithm 1) for ontologies that is
basically a divide-and-conquer algorithm recursively tracing down the faulty
parts of an ontology.

The input of the recursive algorithm is the base revision of the ontology O1

that is known to pass the specified test procedure test. Additionally the set of
changes C between this base revision and the failing revision O2 is provided.

16

Algorithm 1 The delta debugging algorithm for ontologies.

function DeltaDebug(O1, C, test)
if C.length is 1 then

return C
end if
r ← {}
for all ci in Divide(C) do

Ot ← O1 ∪ ci
if test(Ot) is FALSE then

r ← r + DeltaDebug(O1, ci, test)
end if

end for
return r

end function

If the considered change set only contains one change then this is the failure-
inducing change by definition. Otherwise the helper function Divide slices the
set of changes in i new change sets. The function may use heuristics or exploit the
semantics of the ontology to divide the initial change set. In the following each
change set ci proposed by the Divide function is applied to the base revision
O1 of the ontology. If the resulting revision of the ontology Ot does not pass the
specified test procedure, then the change set is recursively examined in order to
find the triple responsible for the failure. As more than one recursive call of the
DeltaDebug algorithm can return a non empty set of failure inducing changes,
the final result may contain more than one triple.

The shown version of the algorithm returns all changes that applied to the
base revision O1 cause the failure. It additionally assumes monotonicity, i.e. a
failure occurs as long as the responsible changes are contained in the change set.
A more sophisticated handling of interferences will be subject of future work.

3 Implementation

3.1 KnowWE

We have implemented the delta debugging algorithm as an extension of the
semantic wiki KnowWE [2]. KnowWE provides the possibility to define and
maintain ontologies together with strong problem-solving knowledge. Ontologies
can be formulated using the RDF(S) or OWL languages. KnowWE provides
different markups for including RDF(S) and OWL: proprietary markups, turtle
syntax, and the Manchester syntax. KnowWE compiles ontologies incrementally,
i.e. only those parts of an ontology get updated that are affected by a specific
change. This is possible as KnowWE’s incremental parsing and compiling mech-
anism is able to keep track of which markup is responsible for the inclusion of a
specific statement. Thus statements can easily be added to or removed from the
repository when a specific markup has been changed.

17

3.2 Change Detection Mechanism

We use a dedicated change log to keep track of all changes applied to an ontology
in KnowWE. Each time a change is applied to the repository KnowWE’s event
mechanism is used to fire events that inform about the statements that have
been added to and removed from the repository. For every change a log entry is
created. Listing 1.1 shows an example of log entries, that indicate the removal
(line 1) and addition (line 2) of statements at the specified timestamps.

Listing 1.1. Example change log

1 -;1401619927398; si:abraham;rdfs:label;Abraham Simpson
2 +;1401619927401; si:abraham;rdfs:label;Abraham Simson

The change detection mechanism can now be realized by accessing the log file
and asking for the changes between two points in time. The ontology revisions
O1 and O2

3 can be constructed by reverting all changes between a specified
start point and the currently running revision of the ontology (HEAD). The set
of changes C between these two revisions can be extracted directly from the log
file.

3.3 Tests in KnowWE

In order to realize the test function, we have introduced a Java interface called
OntologyDeltaDebuggerTest which requires implementors to realize the method
boolean execute(Collection<Statement> statements).

We have implemented a sample test that checks whether a revision of an
ontology is able to provide specified results for a SPARQL query. We exploit
the already existing possibilities of KnowWE to formulate and execute labeled
SPARQL queries. In the following, we use an exemplary ontology inspired by
the comic characters ”The Simpsons”4.

Listing 1.2. Example for an expected SPARQL result.

1 %% SPARQL
2 SELECT ?s
3 WHERE {
4 ?s rdf:type si:Human;
5 si:gender si:male;
6 rdfs:label ?name .
7 FILTER regex(str(?name), "Simpson ")
8 }
9 @name: maleSimpsons

10 %

12 %% ExpectedSparqlResult
13 |si:abraham
14 |si:homer
15 |si:bart
16 @sparql: maleSimpsons
17 @name: maleSimpsonsExpected
18 %

3 The revision O2 is constructed to check whether Axiom 1 holds.
4 http://en.wikipedia.org/wiki/The Simpsons

18

Additionally we use KnowWE’s feature to define expected results for a spec-
ified query. This can be done by adding the expected results to a table and
referencing a labeled SPARQL query. For the convenient formulation a special
markup has been introduced. Listing 1.2 shows an example where si:homer and
si:bart are the expected results of the SPARQL query with the label “male-
Simpsons”. In order to access the formulated expected results, the markup also
gets a label (“maleSimpsonsExpected”). The actual test is instantiated using
this label, which allows accessing the expected results as well as the underlying
SPARQL query.

3.4 Ontology Debugger

The Delta Debugger for Ontologies is realized by the markup OntologyDebugger

that allows for the convenient configuration of the debugger. The configuration
is done by specifying the base revision O1 using the start annotation, option-
ally the revision O2 can be specified using the end annotation. If not specified
the current revision of the ontology (HEAD) is considered as O2. Using the
annotation expected the label of the expected SPARQL result is defined.

Listing 1.3. Example for the definition of an Ontology Debugger.

1 %% OntologyDebugger
2 @expected: maleSimpsonsExpected
3 @start: 1401267947599
4 %

The so defined ontology debugger instance is rendered like depicted in Fig-
ure 1. A tool menu allows the execution of the debugger, a progress bar is used
to visualize the running process. The actual implementation of the delta de-
bugging algorithm for ontologies has been realized as LongOperation that is a
feature of KnowWE’s framework architecture, which allows for executing long
operations in background without having the user to wait for the result. When
the long operation has finished, then the failure-inducing changes are returned
and displayed. An error message is rendered instead, if a failure occurs during
the execution of the debugger, e.g. because the test is undefined or Axiom 1 does
not hold for the specified revisions.

Fig. 1. The ontology debugger in KnowWE.

19

4 Case Study

4.1 The Simpsons Ontology

Fig. 2. An excerpt of the ontology showing the relationships of the Simpson family.

In the following we describe a small case study that illustrates the func-
tionality of the presented ontology debugging extension for KnowWE. Therefore
we use an example ontology that has been developed for tutorial purposes and
covers various facts of the popular comic television series “The Simpsons”. The
ontology contains several classes like Human or Building, as well as properties
like parent or owns. Additionally, some instances of the defined classes are in-
cluded. We do not present the entire ontology but concentrate on some relevant
parts.

Figure 2 shows relationships of the Simpsons family, e.g. that Homer (si:-
homer) is the father (si:father) of Bart (si:bart), Lisa (si:lisa) and Maggie
(si:maggie), who are also marked as siblings (si:sibling). The sibling prop-
erty was initially defined as owl:TransitiveProperty, i.e. a triple that explic-
itly states that Lisa is sibling of Maggie is not necessary. We have also defined
that si:father is a sub-property of si:parent, which has an inverse prop-
erty si:child. Listing 1.4 describes a SPARQL query for all children of Homer
(si:homer) and Marge (si:marge).

20

Listing 1.4. SPARQL query for the children of Homer and Marge.
1 %% SPARQL
2 SELECT ?kid
3 WHERE {
4 ?kid rdf:type si:Human .
5 si:homer si:child ?kid .
6 si:marge si:child ?kid .
7 }
8 @name: simpsonsKids
9 %

An expert on the Simpson family knows that Bart, Lisa and Maggie are the
expected result of this query. So this knowledge can be defined in KnowWE as
an expected SPARQL result (Listing 1.5), which than can be used as a test case
for the ontology.

Listing 1.5. Expected results of the query for the children of Homer and Marge.
1 %% ExpectedSparqlResult
2 |si:maggie
3 |si:bart
4 |si:lisa
5 @name: simpsonsKidsExpected
6 @sparql: simpsonsKids
7 %

Listing 1.6 is another example containing a SPARQL query for all siblings
of Maggie (si:maggie) and the definition of the expected result (si:bart and
si:lisa).

Listing 1.6. A test case for Maggie’s siblings.
1 %% SPARQL
2 SELECT ?sibling
3 WHERE {
4 BIND (si:maggie as ?kid) .
5 ?kid si:sibling ?sibling .
6 FILTER (?kid != ?sibling) .
7 }
8 @name: maggiesSiblings
9 %

11 %% ExpectedSparqlResult
12 |si:bart
13 |si:lisa
14 @name: maggiesSiblingsExcpected
15 @sparql: maggiesSiblings
16 %

For this case study various changes have been applied to the ontology (see
Listing 1.7) and broke it finally, i.e. the SPARQL results do not return the
expected results: Bart can not be retrieved as sibling of Maggie, and apparently
Homer and Marge do not have any children.

Listing 1.7. Changes applied to the Simpsons ontology.
1 -;1401267947600; si:snowball;rdfs:label;Snowball
2 +;1401267947605; si:santas_little_helper;rdfs:label;Santa ’s little helper@en
3 +;1401267947605; si:snowball;rdfs:label;Snowball II
4 -;1401268045755; si:child;owl:inverseOf;si:parent
5 +;1401283675264; si:sibling;rdf:type;owl:IrreflexiveProperty
6 -;1401283841549; si:relatedWith;rdf:type;owl:ReflexiveProperty
7 +;1401283841552; si:relatedWith;rdf:type;owl:SymmetricProperty
8 -;1401283907308; si:sibling;rdf:type;owl:TransitiveProperty
9 -;1401287487640; si:Powerplant;rdfs:subClassOf;si:Building

21

In order to find the failure-inducing changes, we have defined two ontology de-
bugger instances that utilize the test cases defined above. Listing 1.8 shows their
definitions. Revision 1401267947599 is the base revision O1 for both instances
as we know that the queries had been working before we started changing the
ontology.

Listing 1.8. Changes applied to the Simpsons ontology.

1 %% OntologyDebugger
2 @expected: simpsonsKidsExpected
3 @start: 1401267947599
4 %

6 %% OntologyDebugger
7 @expected: maggiesSiblingsExcpected
8 @start: 1401267947599
9 %

After manually triggering the debugging process, the ontology debugger in-
stances return the correct results. As depicted in Figure 3 the first ontology
debugger instance identified that removing the statement declaring si:child

as inverse property of si:parent has caused the failure that the children of
Homer and Marge could not be retrieved. The second instance reports that Bart
is not identified as sibling of Maggie because the transitivity (owl:Transitive-
Property) has been removed from the si:sibling property.

Fig. 3. The result of running the ontology debugger.

We ran the case study on an Apple MacBook with 3 GHz Intel Core i7
processor and 8 GB RAM; the example ontology contained 2,518 triples. The
ontology debugger returned each result after about 1.2 seconds on.

22

4.2 Ontology of an Industrial Information System

The ontology debugger was also utilized to trace down a failure-inducing change
in an ontology for an industrial information system. The ontology comprises
more than 700,000 triples and makes heavy use of OWL2-RL semantics. In this
scenario the debugger returned the correct hint for the failure-inducing change
after 5 minutes. The manual tracing of the error would have costed many times
over the presented automated approach.

5 Conclusion

In this paper we presented an extension for KnowWE that adds support for
ontology debugging by using a divide-and-conquer algorithm to find failure-
inducing changes. Our current implementation is working on the syntactical
level of an ontology and uses a provided test case in combination with a change
detection mechanism and a heuristic for dividing the change set. However, the
design of the algorithm and the software allows for the incorporation of more
sophisticated methods that may consider semantics to leverage the debugging
to a semantic level.

There has already been work on considering semantics for the debugging of
ontologies. Schlobach et al. [10] coined the term pinpointing which means re-
ducing a logically incorrect ontology, s.t. a modeling error could be more easily
detected by a human expert. They also proposed algorithms that use pinpoint-
ing to support the debugging task [11]. Ribeiro et al. [9] proposed the usage of
Belief Revision to identify axioms in OWL ontologies that are responsible for
inconsistencies. Wang et al. [17] proposed a heuristic approach that considers
OWL semantics in order to explain why classes are unsatisfiable. Shchekotykhin
et al. [12] proposed an interactive debugging approach to address the problem
that in OWL ontologies more than one explaination for an error can exist and
additional information is necessary to narrow down the problem. As debugging
OWL ontologies is closely related to the justification of entailments the work in
this field must also be considered. See for example Horridge et al. [6] or Kalyan-
pur et al. [7]. However, Stuckenschmidt [15] questions the practical applicability
of several debugging approaches of OWL ontologies with respect to scalability
and correctness.

While already functional we consider the current implementation of our on-
tology debugging plugin for KnowWE as early work. For the future we plan
several enhancements to the debugger, like the replacement of the change log
by a change detection mechanism that is based on standard wiki functionality
providing direct access to different revisions of an ontology. As mentioned above
we want to improve the handling of interferences, check the monotonicity as-
sumption for different ontology languages and plan to examine the applicability
of OWL debugging approaches. As KnowWE also allows for the definition of
strong problem-solving knowledge the generalization of the debugger to other
knowledge representations will be subject of future work.

23

Acknowledgments

The work described in this paper is supported by the Bundesministerium für
Wirtschaft und Energie (BMWi) under the grant ZIM KF2959902BZ4 ”SELE-
SUP – SElf-LEarning SUPport Systems”.

References

1. Baumeister, J., Reutelshoefer, J.: Developing knowledge systems with continuous
integration. In: Proceedings of the 11th International Conference on Knowledge
Management and Knowledge Technologies. p. 33. ACM (2011)

2. Baumeister, J., Reutelshoefer, J., Puppe, F.: KnowWE: a Semantic Wiki for knowl-
edge engineering. Applied Intelligence 35(3), 323–344 (2011)

3. Cockburn, A.: Agile Software Development (2002)
4. Furth, S., Baumeister, J.: TELESUP Textual Self-Learning Support Systems. In:

under review (2014)
5. Gonçalves, R.S., Parsia, B., Sattler, U.: Analysing the evolution of the NCI the-

saurus. In: Computer-Based Medical Systems (CBMS), 2011 24th International
Symposium on. pp. 1–6. IEEE (2011)

6. Horridge, M., Parsia, B., Sattler, U.: Laconic and precise justifications in OWL.
In: The Semantic Web-ISWC 2008, pp. 323–338. Springer (2008)

7. Kalyanpur, A., Parsia, B., Horridge, M., Sirin, E.: Finding all justifications of OWL
DL entailments. In: The Semantic Web, pp. 267–280. Springer (2007)

8. Porzel, R., Malaka, R.: A task-based approach for ontology evaluation. In: ECAI
Workshop on Ontology Learning and Population, Valencia, Spain. Citeseer (2004)

9. Ribeiro, M.M., Wassermann, R.: Base revision for ontology debugging. Journal of
Logic and Computation 19(5), 721–743 (2009)

10. Schlobach, S., Cornet, R.: Non-standard reasoning services for the debugging of
description logic terminologies. In: IJCAI. vol. 3, pp. 355–362 (2003)

11. Schlobach, S., Huang, Z., Cornet, R., Van Harmelen, F.: Debugging incoherent
terminologies. Journal of Automated Reasoning 39(3), 317–349 (2007)

12. Shchekotykhin, K., Friedrich, G., Fleiss, P., Rodler, P.: Interactive ontology debug-
ging: two query strategies for efficient fault localization. Web Semantics: Science,
Services and Agents on the World Wide Web 12, 88–103 (2012)

13. Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: A practical OWL-
DL reasoner. Web Semantics: science, services and agents on the World Wide Web
5(2), 51–53 (2007)

14. Skaf-Molli, H., Desmontils, E., Nauer, E., Canals, G., Cordier, A., Lefevre, M.,
Molli, P., Toussaint, Y.: Knowledge continuous integration process (k-cip). In: Pro-
ceedings of the 21st international conference companion on World Wide Web. pp.
1075–1082. ACM (2012)

15. Stuckenschmidt, H.: Debugging OWL Ontologies-A Reality Check. In: EON (2008)
16. Vrandečić, D., Gangemi, A.: Unit tests for ontologies. In: On the Move to Meaning-

ful Internet Systems 2006: OTM 2006 Workshops. pp. 1012–1020. Springer (2006)
17. Wang, H., Horridge, M., Rector, A., Drummond, N., Seidenberg, J.: Debugging

OWL-DL ontologies: A heuristic approach. In: The Semantic Web–ISWC 2005,
pp. 745–757. Springer (2005)

18. Zeller, A.: Yesterday, my program worked. Today, it does not. Why? In: Software
EngineeringESEC/FSE99. pp. 253–267. Springer (1999)

24

Behaviour-Driven Development for

Computer-Interpretable Clinical Guidelines

Reinhard Hatko1, Stefan Mersmann2, and Frank Puppe1

1 Institute of Computer Science, University of Würzburg, Germany
2 Dräger Medical GmbH, Lübeck, Germany

Abstract. In this paper, we propose an approach for speci�cation and
analysis of Computer-Interpretable Clinical Guidelines (CIGs) that was
inspired by Behaviour-Driven Development. The expected behaviour of
a CIG is speci�ed by requirements in natural language. On the one
hand, those requirements are used as design input for guideline devel-
opment. On the other hand, they can be checked against time-oriented
data recorded during testing sessions of the implemented CIG.

1 Introduction

Continuously improving quality and e�ciency of health care delivery are major
goals in medicine, especially in critical care. Approaches from process engineer-
ing that identify, organize and standardize therapeutic work�ows have been es-
tablished to meet these goals. Evidence-based work�ows in medicine are called
clinical guidelines (CGs). CGs are standardized therapeutic plans that re�ect
best practices for treating patients within a certain medical scope. The impact
of CGs on patient outcome had been investigated and published through several
clinical studies, e.g., [5]. A logical next step was the integration of standardized
health care processes into medical technology by enabling CGs to be executed
by medical devices as Computer-Interpretable Clinical Guidelines (CIGs).

Recently, we demonstrated the applicability of the Semantic Wiki KnowWE
for the development of a CIG for automated mechanical ventilation [4]. The vi-
sual CIG language DiaFlux [3] was used to implement the guideline logic. How-
ever, the described development process lacked a speci�cation of CIG behaviour
at an abstract level on which the implementation was based.

The rest of the paper describes an approach to �ll this gap: The next sec-
tion introduces Behaviour-Driven Development (BDD) in Software Engineering.
Section 3 shows its applicability in the area of CIGs. A case study in progress is
presented in Section 4. The paper concludes with a summary in Section 5.

2 Behaviour-Driven Development

Behaviour-Driven Development (BDD) is an agile Software Engineering (SE)
methodology, that conforms to the Test-First principle: Test cases are devel-
oped previous to the software system itself. In BDD, executable test cases are
directly derived from requirements stated in natural language, by employing a

25

pattern matching approach. This enables stakeholders to actively participate in
the de�nition of requirements, which are a fundamental design input for the
system under development.

In contrast to other Test-First approaches (like Test-Driven Development),
BDD focuses on the creation of acceptance tests rather than unit tests. The
former ones assure the acceptance of the system by its users, as the system's
ability to ful�ll their needs with respect to a business value is tested. The latter
ones perform testing on a lower system level by checking individual program
constructs. This has the potential to reduce the number of defects at an early
stage of the software development process.

Scenario : t r ade r i s not a l e r t e d below thre sho ld
Given a stock o f symbol STK1 at a th r e sho ld o f 10 .0
When the s tock i s traded at 5 .0
Then the a l e r t s t a tu s should be OFF

Scenario : t r ade r i s a l e r t e d above th r e sho ld
Given a stock o f symbol STK1 at a th r e sho ld o f 10 .0
When the s tock i s traded at 11 .0
Then the a l e r t s t a tu s should be ON

Fig. 1: Two scenarios from the stock market domain, expressed in Gherkin.

BDD frameworks exist for several programming languages, e.g. JBehave3

(Java) or RSpec [1] (Ruby). As a commonality, those frameworks o�er some kind
of Domain-Speci�c Language (DSL) for de�ning scenarios, and a mechanism to
derive executable test code by some sort of pattern matching, usually regular
expressions. One such DSL which is employed in multiple frameworks is called
the Gherkin language [1]. Figure 1 shows an exemplary usage of Gherkin. The
scenarios consist of the following three groups:
� The keyword GIVEN sets up the test environment by creating the speci�c
context which is necessary to execute the test.

� Second, the functionality under test is executed (keyword WHEN).
� Lastly, the outcome of the previous step is compared against the expected
one (keyword THEN).
Each group can contain several steps that are joined together using the key-

word AND. Each step in turn, is backed by a step template (also called support

code), that converts the text into executable program code using regular ex-
pressions, e.g. to extract method parameters. Figure 2 shows the step templates
needed to execute both scenarios shown in Figure 1.

As each step is individually backed by support code, steps can arbitrarily
be combined to create new acceptance tests. Thanks to the comprehensibility
of Gherkin and the use of natural language, scenarios can easily be created also

3 http://jbehave.org

26

pub l i c c l a s s TraderSteps {
p r i va t e Stock stock ;

@Given ("a stock o f symbol $sym at a th re sho ld o f $thr ")
pub l i c void aStock (S t r ing sym , double thr) {

s tock = new Stock (sym , thr) ; }

@When(" the s tock i s traded at $p r i c e ")
pub l i c void theStockIsTradedAt (double p r i c e) {

s tock . tradeAt (p r i c e) ; }

@Then(" the a l e r t s t a tu s should be $ s t a t ")
pub l i c void theAlertStatusShouldBe (St r ing s t a t) {

ensureThat (s tock . ge tStatus () . name () , equalTo (s t a t)) ; }
}

Fig. 2: The according support code for the scenarios in Figure 1, expressed in
Java and JBehave.

by non-programmers, e.g. the future users of the software themselves. That way,
a ubiquitous language [2] is created, that improves communication between all
participants involved in the software development process, e.g., product owner,
software engineers, testers, and users.

3 Speci�cation of Clinical Guidelines

In the remainder of this section, we describe an approach for the speci�cation of
automated CIGs following the BDD methodology. The CIG behaviour is speci-
�ed as a set of scenarios expressed in the Gherkin language:
� The GIVEN group of a scenario describes the precondition in terms of the
patient's current state, and possibly also its past progression.

� The expected therapeutic action, i.e. the output of the CIG for the given
patient state, is expressed in the WHEN part of the scenario.

� The THEN group contains assumptions about the future (improved) patient
state, based on the therapeutic action. As the e�ects will take some time
until they are measurable, usually a temporal annotation is included.
There is a main di�erence between the SE acceptance tests as described in

the previous section and the CIG scenarios. While the former ones are actively

preparing the test context and executing the function under test, the latter ones
can only �passively� be evaluated on data a patient delivered. The CIG scenarios
are interpretable descriptions of patterns that are supposed to occur in patient
data, given that the CIG has correctly been implemented based on an error-free
speci�cation.

After implementing the CIG based on the de�ned scenarios, test cases can be
recorded, e.g. using a patient simulator [4]. The data consists of time-stamped
recordings of the patient state and the according therapy over the course of

27

the session. Therapeutic actions are changes of the medical device's settings ap-
plied automatically according to the underlying CIG. By checking the scenarios
against a test case, two types of errors can be discovered: First, the designated
therapeutic action (WHEN-group) may not occur due to a bug in the implementa-
tion (�error of omission�), although the current patient state ful�lls the precon-
dition of the scenario (GIVEN-group). Second, if the precondition as well as the
action of a scenario are met, but not the expected change in the patient's state,
the assumptions about the state may not be correct in the �rst place. While the
�rst error is most likely rooted in the implementation of the CIG, the second
kind of error may arise from an improper speci�cation itself.

4 Case Study

We have implemented an extension for the Semantic Wiki KnowWE that sup-
ports the described approach. Each step template consists of a regular expression
containing capturing groups enriched by a type system, and a formal condition
with the according placeholders. When using step templates, the placeholders are
�lled with terms from a prede�ned ontology, that contains the data de�nitions
of the CIG (cf. Figure 3, left side). The ontology is created as the foundation for
the fully formalized CIG [4]. Scenarios are expressed by arbitrarily combining
steps. If a step can not be matched against a template, an error is reported. This
leads to the de�nition of new templates, incrementally increasing the range of
expressible scenarios as needed (cf. Figure 3, right side).

Fig. 3: Two KnowWE wiki pages: The left page contains parts of the data ontol-
ogy and step templates. The right one contains two scenarios in display and in
editing mode. Steps that cannot be matched result in an error.

28

The results of the scenario analysis with respect to a test case are visual-
ized on an interactive timeline, that can be panned and zoomed, cf. Figure 4.
Each band corresponds to exactly one scenario. At each instant of time, an icon
represents the result, if the scenario's precondition is ful�lled: omitted therapeu-
tic action (red warning sign), unful�lled postcondition (yellow warning sign),
and fully satis�ed scenario (green checkmark), respectively. The timeline is inte-
grated into KnowWE's testing framework. Replaying the test case to any instant
in time is possible to introspect CIG execution for debugging purposes.

Fig. 4: Analysis results of the de�ned scenarios with respect to a temporal test
case are depicted on an interactive timeline. For debugging purposes, the test
case can be replayed until the currently selected instant of time by clicking the
green arrow inside the tooltip.

For the evaluation of the presented approach, we are currently working on a
case study with a real world CIG and patient data from a previous study con-
ducted at the Department of Anesthesiology and Intensive Care Medicine, Uni-
versity Medical Center Schleswig-Holstein, Campus Kiel [8]. During this study,
150 patients have been automatically weaned from mechanical ventilation by the
automatic weaning system SmartCare/PS R© [6]. SmartCare/PS is a knowledge-
based software option for Dräger's mechanical ventilators Evita XL and Evita
In�nity V500. SmartCare/PS stabilizes the patient's spontaneous breathing in
a respiratory comfort zone, while gradually reducing the inspiratory support of
the ventilator until the patient is ready for extubation. The system's underlying
CG is further depicted in [7].

This study does not investigate the usage of the derived speci�cation as a
design input. It focuses on the applicability of the approach in terms of usability
and expressiveness, and its usage for analysing the test cases regarding the sce-
narios. The CIG behaviour has been speci�ed using natural language scenarios
as described herein. By exploiting strict naming conventions regarding the label-
ing of related data, e.g. measurements and their corresponding upper and lower
limits, only a rather limited set of about 15 step templates needed to be de-

29

�ned. This allows for fast requirements elicitation and also reduces maintenance
e�orts.

5 Conclusion

In this paper, we have described an approach inspired by Behaviour-Driven
Development for speci�cation and analysis of Computer-Interpretable Clinical
Guidelines. Requirements stated by medical experts in natural language are
used as design input for the development of CIGs and their analysis using test
cases. We demonstrated the applicability of Behaviour-Driven Development for
CIGs using an extension for the Semantic Wiki KnowWE. Currently, we are
conducting a case study focusing on the analysis aspect. A real world CIG and
test cases from a real patient study are used for evaluation. So far, the approach
has shown its applicability in terms of usability and expressiveness. In the near
future, the results of the scenarios will be analysed by medical experts.

References

1. Chelimsky, D., Astels, D., Dennis, Z., Hellesoy, A., Helmkamp, B., North, D.: The
RSpec Book: Behaviour Driven Development with RSpec, Cucumber, and Friends.
The Pragmatic Programmers, United States (2011)

2. Evans, E.: Domain-Driven Design: Tackling Complexity in the Heart of Software.
Addison-Wesley Longman, Amsterdam, 1 edn. (2003)

3. Hatko, R., Baumeister, J., Belli, V., Puppe, F.: DiaFlux: A graphical language for
computer-interpretable guidelines. In: Riaño, D., ten Teije, A., Miksch, S. (eds.)
Knowledge Representation for Health-Care, Lecture Notes in Computer Science,
vol. 6924, pp. 94�107. Springer, Berlin / Heidelberg (2012)

4. Hatko, R., Schädler, D., Mersmann, S., Baumeister, J., Weiler, N., Puppe, F.: Imple-
menting an Automated Ventilation Guideline Using the Semantic Wiki KnowWE.
In: ten Teije, A., Völker, J., Handschuh, S., Stuckenschmidt, H., d'Aquin, M.,
Nikolov, A., Aussenac-Gilles, N., Hernandez, N. (eds.) EKAW. Lecture Notes in
Computer Science, vol. 7603, pp. 363�372. Springer (2012)

5. Lellouche, F., Mancebo, J., Jolliet, P., Roeseler, J., Schortgen, F., Dojat, M., Ca-
bello, B., Bouadma, L., Rodriguez, P., Maggiore, S., Reynaert, M., Mersmann, S.,
Brochard, L.: A multicenter randomized trial of computer-driven protocolized wean-
ing from mechanical ventilation. American journal of respiratory and critical care
medicine 174(8), 894�900 (Oct 2006)

6. Mersmann, S., Dojat, M.: SmartCare/PS-Automated Clinical Guidelines in Critical
Care. In: de Mántaras, R.L., Saitta, L. (eds.) Proceedings of the 16th Eureopean
Conference on AI, ECAI'2004. pp. 745�749. IOS Press 2004, Valencia, Spain (2004)

7. Neumann, A., Schmidt, H.: SmartCareR©/PS The automated weaning protocol
(2010), http://www.draeger.net/media/10/01/35/10013505/
smartcare_auto_weaning_protocol_booklet.pdf

8. Schädler, D., Engel, C., Elke, G., Pulletz, S., Haake, N., Frerichs, I., Zick, G., Scholz,
J., Weiler, N.: Automatic control of pressure support for ventilator weaning in surgi-
cal intensive care patients. American journal of respiratory and critical care medicine
185(6), 637�44 (Mar 2012)

30

Ensuring the Semantic Correctness of Workflow
Processes: An Ontological Approach

Thi-Hoa-Hue Nguyen and Nhan Le-Thanh

WIMMICS - The I3S Laboratory - CNRS - INRIA
University of Nice Sophia Antipolis

Sophia Antipolis, France
nguyenth@i3s.unice.fr,Nhan.LE-THANH@unice.fr

Abstract. Workflow verification has been known as an important as-
pect of workflow management systems. Many existing approaches con-
centrate on ensuring the correctness of workflow processes at the syntac-
tic level. However, these approaches are not sufficient to detect errors at
the semantic level. This paper contributes to ensure the semantic cor-
rectness of workflow processes. First, we propose a formal definition of
semantic constraints and an O(n3)-time algorithm for detecting redun-
dant and conflicting constraints. Second, by relying on the CPN Ontology
(a representation of Coloured Petri Nets with OWL DL ontology) and
sets of semantic constraints, workflow processes are semantically created.
And third, we show how to check the semantic correctness of workflow
processes with the SPARQL query language.

Keywords: Ensuring, Ontology, Semantic Constraint, Semantic Cor-
rectness, SPARQL query, Workflow Process

1 Introduction

Workflows have drawn an enormous amount of attention from the research com-
munity and the industry. Over the years, workflow technology has been applied
extensively to the business area. So far, various researchers have focused on pro-
cess specification techniques [1], [2] and on conceptual models of workflow [3],
[4]. However, specifying a real-world business process is mostly manual and is
thus prone to human error, resulting in a considerable number of failed projects.
Therefore, model quality, correctness and re-usability become very important
issues. Although numerous approaches have been already developed to ensure
workflow correctness at the syntactic level (e.g., avoiding deadlocks, infinite cy-
cles, etc.). At the semantic level there may exist errors. Recently, few researches
focus on checking the semantic conformance of workflow processes.

To check the semantic correctness of a model, we consider semantic con-
straints as domain specific restrictions on a business process which need to be
conformed during the process is executed. Let us take an example: In a process
for the Order Management activity, when an order is accepted, an order confir-
mation must be sent out later; If no order confirmation is scheduled to be sent,
or this activity is not done in the right position, a semantic error occurs.

31

The work in [5] provides a very useful inspiration for our work, but it does
not discuss how to formulate semantic constraints and also does not mention
about the control-flow perspective in process models. Our objective is to sup-
port workflow designers in generating semantically rich workflow processes which
allow syntactic and semantic verification. In this paper, we restrict ourselves to
ensure the semantic correctness of workflow processes. Our contributions are:

– Giving a formal method to describe a variety of semantic constraints;
– Proposing an algorithm to check redundant and conflicting semantic con-

straints;
– Developing an ontology for annotating semantic constraints and representing

control flow-based business workflow processes based on that ontology;
– Showing how to use the SPARQL query language [6] to check the semantic

correctness of workflow processes.

This paper is organized as follows: in Section 2, we discuss related work. A
short introduction to the CPN Ontology, which is defined to represent Coloured
Petri Nets (CPNs) with OWL DL, is given in Section 3. Section 4 proposes a
formal definition of semantic constraints for business processes. An algorithm
used for checking redundant and conflicting semantic constraints is presented.
We then develop a semantic conformance-oriented ontology. In Section 5, we
present the creation of correspondences between those two ontologies to develop
workflow processes. These workflows enable designers to check their semantic
correctness. Five semantic verification issues of a workflow process are introduced
in Section 6. Finally, Section 7 concludes the paper with an outlook on the future
research.

2 Related Work

Today, software systems that automate business processes have become more
and more advanced. Various researchers have paid attention to the problem
of ensuring the correctness of process models. Many methods have been done
in workflow verification. Most of them focus on the control-flow perspective,
such as [7], [8], [9], [10], [11] to prevent errors (e.g., avoiding deadlocks, infinite
cycles) at the syntactic level. Nevertheless, they check mainly the conformance
of a workflow process based on the principle that if the constraints on data and
control flow are met during execution, the workflow is correct.

Recently, a number of researches have grown beyond the scope of pure
control-flow verification. Some approaches analyze the final state of the whole
workflow [12] or consider running processes [13], [14], [15]. In [13], semantic con-
straints are defined over processes which are used to detect semantic conflicts
caused by violation only of dependency and mutual exclusion constraints. They
presented techniques to ensure semantic correctness for single and concurrent
changes at process instance level. With regard to ontological approaches, aspects
of semantic correctness are considered in few researches, such as [5], [16], [17].
The approach of [17] requires both the annotation of preconditions and effects to

32

ensure the models are semantically correct. In [5], the SPARQL query language
is used to check the semantic correctness of ontology-based process represen-
tations. Individual model elements were annotated with concepts of a formal
ontology, and constraints were formalized as SPARQL queries. However, these
approaches depend on the availability of an ontology and a bulky annotation of
process models.

We know that the ontology-based approach for modelling business process is
not a new idea. There are some works made efforts to build business workflow
ontologies, such as [18], [4], [19] to support (semi-)automatic system collabora-
tion, provide machine-readable definitions of concepts and interpretable format.
However, the issue that relates to workflow verification at the syntactic level
is not mentioned. By extending the state-of-the-art, we use the Web Ontology
Language to define the CPN Ontology for representing CPNs with OWL DL
ontology and the semantic conformance-oriented ontology. Our ontological ap-
proach enables to create high quality and semantically rich workflow processes.

3 Representation of Coloured Petri Nets with OWL DL
ontology

In this Section, we introduce the CPN Ontology [20] defined for business pro-
cesses modelled with CPNs. The purpose is to ensure the syntactic correctness
of workflow processes and to facilitate business process models easy to be shared
and reused.

On one hand, Coloured Petri Nets (CPNs) [21] have been developed into
a full-fledged language for the design, specification, simulation, validation and
implementation of large software systems. Consequently, modelling business pro-
cesses with CPNs supports workflow designers easy to verify the syntactic cor-
rectness of workflow processes [8]. On the other hand, OWL DL [22], which
stands for OWL Description Logic, is equivalent to Description Logic SHOIN (D).
OWL DL supports all OWL language constructs with restrictions (e.g., type
separation) and provides maximum expressiveness while keeping always compu-
tational completeness and decidability. Therefore, we choose OWL DL language
to represent the CPN Ontology. We believe that the combination of CPNs and
OWL DL provides not only semantically rich business process definitions but
also machine-processable ones. Figure 1 depicts the core concepts of the CPN
ontology.

The CPN Ontology comprises the concepts: CPNOnt defined for all possi-
ble CPNs; Place defined for all places; Transition defined for all transitions;
InputArc defined for all directed arcs from places to transitions; OutputArc
defined for all directed arcs from transitions to places; Token defined for all
tokens inside places (We consider the case of one place containing no more than
one token at one time); GuardFunction defined for all transition expressions;
CtrlNode defined for occurrence condition in control nodes; ActNode defined
for occurrence activity in activity nodes, Delete and Insert defined for all ex-
pressions in input arcs and output arcs, respectively; Attribute defined for all

33

CPNOnt ≡≥ 1hasTrans.Transitionu ≥ 1hasP lace.P lace
u ≥ 1hasArc.(InputArc tOutputArc)

Place ≡ connectsTrans.Transitionu ≤ 1 hasMarking.Token
Transition ≡ connectsP lace.P laceu = 1hasGuardFunction.GuardFunction
InputArc ≡≥ 1hasExpresion.Delete u ∃hasP lace.P lace
OutputArc ≡≥ 1hasExpression.Insert u ∃hasTrans.Transition
Delete ≡ ∀hasAttribute.Attribute
Insert ≡ ∃hasAttribute.Attribute
GuardFunction ≡≥ 1hasAttribute.Attributeu = 1hasActivity.ActNode

t = 1hasControl.CtrlNode
Token ≡≥ 1hasAttribute.Attribute
Attribute ≡≥ 1valueAtt.V alue
CtrlNode ≡≤ 1valueAtt.V alue
ActNode ≡= 1valueAtt.V alue
V alue ≡ valueRef.V alue

Fig. 1: CPN ontology expressed in a description logic

attributes of individuals); Value defined for all subsets of I1×I2× . . .×In where
Ii is a set of individuals.

Properties between the concepts in the CPN Ontology are also specified
in Figure 1. For example, the concept CPNOnt is defined with three prop-
erties, including hasP lace, hasTrans and hasArc. It can be glossed as ‘The
class CPNOnt is defined as the intersection of: (i) any class having at least one
property hasP lace whose value is restricted to the class Place and; (ii) any class
having at least one property hasTransition whose value is restricted to the class
Transition and; (iii) any class having at least one property hasArc whose value
is either restricted to the class InputArc or the class OutputArc’.

4 Semantic Constraints for Business Processes

As mentioned previously, our work aims at representing workflow processes mod-
elled with CPNs in a knowledge base. Therefore, in this Section, we focus on
ensuring their quality by guaranteeing their semantic correctness.

4.1 Definition of Semantic Constraints

By taking account domain experts in support of modellers at build time, a set of
semantic constraints is specified, which then is used to develop a corresponding
workflow. According to [13], there are two fundamental kinds of semantic con-
straints, including mutual exclusion constraints and dependency constraints. For
interdependent tasks, e.g., the presence of task A indicates that task B must be
included, however, task B can be executed while task A is absence. In fact, there
may exist tasks that are coexistent. This refers to the coexistence constraints.
Consequently, we propose three basic types: mutual exclusion constraints, de-
pendency constraints and coexistence constraints.

34

Definition 1 (Semantic Constraint).

Let T be a set of tasks. A semantic constraint:

c = (constraintType, appliedTask, relatedTask, order, description, [Equivalence])
where:

• constraintType ∈ {mExclusion, dependency, coexistence};
• appliedTask ∈ T ;

• relatedTask ∈ T ;

• order ∈ {before, after, concurrence, notSpecified} ;

• description is an annotation of the constraint;

• Equivalence is a set of tasks which are equivalent to task appliedTask.

In Definition 1, the first parameter constraintType denotes the type of a
semantic constraint. Each value of constraintType refers to the relationship
between the executions of the source task denoted by the second parameter
appliedTask and the target task denoted by the third parameter relatedTask.
Parameter order specifies the order between the source and target tasks in a
process model. The first four parameters are very important when defining a
semantic constraint. The fifth parameter, description, is used for describing the
constraint. Equivalence is an optional parameter, which contains a set of tasks
(if any) being equivalent to the source task.

Let us continue the example of a process for the Order Management activity.
The process is determined as follows: After receiving an order, two tasks have
to do in parallel are authenticate client and check availability. If both of these
tasks result “true”, the order is accepted and an order confirmation is sent out.
Otherwise, an order refusal is sent out. Some semantic constraints of the process
are formed as follows:

c1 = (dependency, authenticate client, receive request, before,

receiving an order has to be performed before authenticating

client, {authenticate purchaser});

c2 = (dependency, check availability, receive request, before,

receiving an order has to be performed before checking

availability);

c3 = (coexistence, authenticate client, check availability,

concurrence, client authentication and checking availability

are performed in parallel);

c4 = (dependency, evaluate results, authenticate client, before,

evaluating the results obtained from the relevant departments);

c5 = (dependency, evaluate results, receive request, before,

receiving an order has to be performed before evaluating results

related to the order)

35

4.2 Checking implicit, redundant and conflicting semantic
constraints

A workflow process is designed based upon the specified semantic constraints.
However, when defining those constraints, there may occur implicit, redundant
or conflicting semantic constraints.

Note that a combination of two or more constraints can constitute some new
constraints. This is demonstrated by the order parameter in Definition 1. As
mentioned above, this parameter indicates the execution order of a source task
and a target task. Consider T1, T2, T3, instances of tasks, we identify the follow-
ing properties which are associative, symmetric, transitive and/or commutative
presented in Table 1.

Table 1: Algebra properties of the order parameter

Name Expression

Association
(1) (T1 concurrence T2) concurrence T3 = T1 concurrence (T2 concurrence T3)
(2) (T1 notSpecified T2) notSpecified T3 = T1 notSpecified (T2 notSpecified T3)

Symmetrization (1) T1 before T2 = T2 after T1

Transitivity

(1) T1 before T2, T2 before T3 → T1 before T3

(2) T1 after T2, T2 after T3 → T1 after T3

(3) T1 concurrence T2, T2 concurrence T3 → T1 concurrence T3

(4) T1 concurrence T2, T1 before T3 → T2 before T3

(5) T1 concurrence T2, T1 after T3 → T2 after T3

Commutativity
(1) T1 concurrence T2 = T2 concurrence T1

(2) T1 notSpecified T2 = T2 notSpecified T1

These properties are used for inferring implicit semantic constraints. As a
result, detecting implicit constraints plays a crucial role in the elimination of re-
dundant constraints. In addition, conflicting constraints will lead to undesirable
results. Therefore, it is necessary to resolve them before they can be applied.

Let us consider three constraints presented in Subsection 4.1, including c1, c4
and c5. According to transitivity property (1) in Table 1, a new constraint, named
c1−4, can be inferred from constraints c1 and c4, where:

c1_4={dependency, evaluate results, receive request, before,

receiving an order has to be performed before authenticating

client and evaluating the results obtained from the relevant

departments}

Comparing constraint c1−4 to constraint c5, their first four values are the
same, hence constraint c5 is redundant. As a result, constraint c5 has to be
removed.

Because of the different complexity of each semantic constraint set, we need
an algorithm to resolve issues related to redundancy and conflict semantic con-
straints. The procedure for validating the constraint set will stop as soon as it

36

detects a couple of conflicting constraints and a message is generated to notify
the user. In addition, if there exist any redundant constraints, they will be re-
moved. In our algorithm in Figure 2, the boolean function conflict is used for
checking the conflict between two constraints, e.g., it returns true if they are
conflicting, otherwise, it returns false. The function infer is used for inferring
implicit constraints. The time complexity of the algorithm is O(n3) where n
is the number of semantic constraints. To provide a representation of semantic

Input: Initial semantic set vector C

Output: Sound semantic constraint set vector C

SCValidation (C: Semantic_Constrait_Set)

1: { n = C.size;

2: For (i = 1; i<=n-1; i++)

3: For (j = i+1; j<=n; j++)

4: If (conflict(C[i],C[j]))

5: { Print ‘‘Constraint C[i] conflicts with constraint C[j]’’;

6: Break ; }

7: Else If (!empty(infer(C[i],C[j])))

8: //If there exists an implicit constraint

9: { cij = infer(C[i],C[j]);

10: For (k = j+1; k<=n; k++)

11: If (conflict(cij,C[k]))

12: { Print ‘‘The implicit constraint inferred from C[i] and C[j]

13: conflicts with constraint C[k]’’ ;

14: Break ; }

15: Else If (compare(cij,C[k]))

16: { C.Remove(C[k]) ; //Remove redundant constraint C[k]}

18: }

Fig. 2: Algorithm for validating the semantic constraint set

constraints related to process elements, in next Subsection, we will describe an
approach for constructing a semantic conformance-oriented ontology.

4.3 Development of a Semantic conformance-oriented Ontology

Our work aims at representing processes modelled with CPNs in a knowledge
base. Therefore, to provide a representation of semantic constraints related to
process elements, we develop an approach for constructing a new ontology. This
ontology is oriented to semantic conformity checking in workflow processes. We
focus on formalizing the concepts/relations corresponding to the knowledge that
is required by model elements.

The following keystones to transform a set of semantic constraints into an
OWL DL ontology:

• Each semantic constraint c is mapped to an instance of owl : Class.

37

• appliedTask and relatedTask are mapped to two instances of owl : Class.
The rdfs : subClassOf property is used to state that these classes is a
subclass of the constraint class.

• Each value of constraitType or order is defined as an instance of the built-in
OWL class owl : ObjectProperty.

• description is defined as an instance of the built-in OWL class owl : Datatype
Property;

• Each value in the set Equivalence is mapped to an instance of owl : Class.
The built-in property owl : equivalentClass is used to link every class de-
scription of these classes to the class description of appliedTask.

In the upcoming Section, we will discuss about the integration of a semantic
conformance-oriented ontology (domain knowledge) and the CPN Ontology to
create workflow processes.

5 Creation of Correspondences Between Ontologies

We rely on ontology mapping techniques for matching semantics between ontolo-
gies, i.e., the CPN Ontology and Domain Ontology (a semantic conformance-
oriented ontology). In our case, the articulation of two ontologies are used not
only for creating semantically workflow processes, but also for verifying their
correctness.

We now define our use of the term “mapping”: Consider two ontologies, O1

and O2. Mapping of one ontology with another is defined as bringing ontolo-
gies into mutual agreement in order to make them consistent and coherent. It
means that for a concept or a relation in ontology O1, we try to find the same
intended meaning in ontology O2; For an instance in ontology O1, we find the
same instance in ontology O2.

Definition 2 (Mapping related to the before property).
We define a mapping for all instances IC of a semantic constraint in which

the order between the instance of class appliedTask, named taska, and the in-
stance of class relatedTask, named taskb, is indicated by the object property
before. The type of instance IC is either dependency or coexistence. A set of
correspondences is determined as follows:

• Each instance of class appliedTask or relatedTask is mapped into an in-
stance of class Transition (expressing activity node).

• There exists a firing sequence t1t2 . . . tn, where t1, tn are the instances of class
Transition corresponding to instances taska and tb respectively, ta = t1,
tb = tn n ≥ 2.

Definition 3 (Mapping related to the concurrence property).
We define a mapping for all instances IC of a semantic constraint in which

the order between the instance of class appliedTask, named taska, and the in-
stance of class relatedTask, named taskb, is indicated by the object property
concurrence. The type of instance IC is coexistence. A set of correspondences
is determined as follows:

38

• Each instance of class appliedTask or relatedTask is mapped into an in-
stance of class Transition (expressing activity node).

• Two instances of class transitions which correspond to instance taska and
instance taskb can be enabled at the same time.

It is important to underline that object property before is the symmetrical
property of object property after. Consequently, we do not define a mapping
related to the after property.

By continuing the process schema for the order management activity in Sec-
tion 4, Figure 3 shows the mapping of some instances between two onotologies,
CPN Ontology and Semantic Conformance-oriented Ontology.

Fig. 3: An example of ontology mapping (excerpt)

We have introduced the formal definition of semantic constraints and illus-
trated how to model a workflow process with CPNs based on specified semantic

39

constraints. Note that concrete workflow processes are represented in RDF syn-
tax. Moreover, to develop or modify a workflow process, manipulation operations
[20] (e.g., inserting a new element) are required. Therefore, it is necessary to ver-
ify workflow processes at design time before they are put into use.

6 Semantic Verification Issues

By using the algorithm presented in Section 4, the sets of specified semantic
constraints are checked redundant and conflicting. Hence, we here pay attention
to the research question relating to semantic verification: Is the behavior of the
individual activities satisfied and conformed with the control flow? To answer
this question, we address the following semantic verification issues:

• Are there activities whose occurrences are mutual exclusion, but that may
be executed in parallel or in sequence?

• Are there activities whose executions are interdependent, but that may be
carried out in choice or in parallel?

• Are there activities whose occurrences are coexistent, but that may be exe-
cuted in choice?

• Are there any couples of activities whose order executions are defined as one
before the other, but that may be executed in the opposite?

• Are there any couples of activities whose order executions are defined as one
after the other, but that may be executed in the opposite order?

Because concrete workflows are stored in RDF syntax, we rely on the CORESE
[23] semantic search engine for answering SPARQL queries asked against an RDF
knowledge base. We initiate SPARQL queries to verify whether workflow pro-
cesses contain semantic errors or not. SELECT query form is chosen for this
work. After a SELECT keyword, the variables are listed that contain the return
values. And in the WHERE clause, one or more graph patterns can be specified
to describe the desired result.

The following query1 relating to the third verification issue is used to query
if the model contains ‘any pairs of activities whose occurrences are coexis-
tence but that may be executed in choice’. The properties h : coexistence and
h : concurrence defined in the first ontology indicate the semantic constraint
between activities ?t1 and ?t2. On the other hand, the other properties defined
in the second ontology which represent these activities restricted to the control
flow perspective. By applying this query to the workflow example depicted in
Figure 3, the result is empty.

The sample query does not only demonstrate that the SPARQL query lan-
guage is able to check the semantic correctness of workflow processes, but also
the usage of terminological background knowledge provided by the semantic
conformance-oriented ontology and CPN Ontology.

1 The prefix is assumed as:
PREFIXh :< http : //www.semanticweb.org/CPNWF# >

40

Moreover, by representing CPNs-based business processes with OWL DL on-
tology we can also verify the soundness of models. This means that we can check
syntactic errors (for example, deadlocks, infinite cycles and missing synchroniza-
tion, etc.) by the SPARQL query language.

SELECT ?t1 ?t2 WHERE

{

?t1 rdf:type h:Transition

?t2 rdf:type h:Transition

?t3 rdf:type h:Xor-split

?t4 rdf:type h:Xor-join

?t1 h:coexistence ?t2

?t2 h:concurrence ?t1

?t3 h:connectsPlace/h:connectsTrans ?t1

?t3 h:connectsPlace/h:connectsTrans ?t2

?t1 h:connectsPlace/h:connectsTrans ?t4

?t2 h:connectsPlace/h:connectsTrans ?t4

FILTER (?t1!=?t2)

}

7 Conclusion

This paper presents a formal method for describing semantic constraints that
are used to generate workflow processes. First, we propose a formal definition
of semantic constraints. Then we describe an algorithm for detecting redundant
and conflicting semantic constraints. To integrate the domain knowledge used
for annotating the process elements, we develop a semantic conformance-oriented
ontology. This ontology is then matched with the CPN Ontology (a represen-
tation of CPNs with OWL DL). The mapping is to enable workflow processes
which can be verified at the semantic level and also syntactic level. Furthermore,
we demonstrate that the SPARQL query language is able to check the correct-
ness of concrete workflow processes represented in RDF syntax. This ensures
error-free workflow processes at build-time.

We know that verifying workflow processes at build-time is not enough to
guarantee workflows can be executed correctly. The correctness of workflow ex-
ecution must also be checked. Therefore, in future work, we plan to develop a
run-time environment for validating concrete workflows.

References

1. Ellis, C.A., Nutt, G.J.: Modeling and enactment of workflow systems. In: Appli-
cation and Theory of Petri Nets. (1993) 1–16

2. van der Aalst, W.M.P.: The application of petri nets to workflow management.
Journal of Circuits, Systems, and Computers 8(1) (1998) 21–66

41

3. Barros, A.P., ter Hofstede, A.H.M., Proper, H.A.: Essential principles for workflow
modelling effectiveness. In: PACIS. (1997) 15

4. Koschmider, A., Oberweis, A.: Ontology based business process description. In:
EMOI-INTEROP, Springer (2005) 321–333

5. Fellmann, M., Thomas, O., Busch, B.: A query-driven approach for checking the
semantic correctness of ontology-based process representations. In: BIS. (2011)
62–73

6. W3C: Sparql 1.1 query language. http://www.w3.org/TR/sparql11-query/ (March
2013) W3C Recommendation.

7. van der Aalst, W.M.P.: Verification of workflow nets. In: ICATPN. (1997) 407–426
8. Verbeek, H., Basten, T., van der Aalst, W.: Diagnosing workflow processes using

woflan. The computer journal 44 (1999) 246–279
9. Bi, H.H., Zhao, J.L.: Applying propositional logic to workflow verification. Infor-

mation Technology and Management 5(3-4) (2004) 293–318
10. Wainer, J.: Logic representation of processes in work activity coordination. In:

Proceedings of the 2000 ACM Symposium on Applied Computing - Volume 1. SAC
’00, New York, NY, USA, ACM (2000) 203–209

11. Sadiq, W., Maria, Orlowska, E.: Analyzing process models using graph reduction
techniques. Information Systems 25 (2000) 117–134

12. Lu, S., Bernstein, A.J., Lewis, P.M.: Automatic workflow verification and genera-
tion. Theor. Comput. Sci. 353(1-3) (2006) 71–92

13. Ly, L.T., Rinderle, S., Dadam, P.: Integration and verification of semantic con-
straints in adaptive process management systems. Data Knowl. Eng. 64(1) (2008)
3–23

14. Kumar, A., Yao, W., Chu, C.H., Li, Z.: Ensuring compliance with semantic con-
straints in process adaptation with rule-based event processing. In: RuleML. (2010)
50–65

15. Ly, L.T., Rinderle-Ma, S., Göser, K., Dadam, P.: On enabling integrated process
compliance with semantic constraints in process management systems - require-
ments, challenges, solutions. Information Systems Frontiers 14(2) (2012) 195–219

16. Thomas, O., Fellmann, M.: Semantic process modeling - design and implementa-
tion of an ontology-based representation of business processes. Business & Infor-
mation Systems Engineering 1(6) (2009) 438–451

17. Weber, I., Hoffmann, J., Mendling, J.: Beyond soundness: on the verification of
semantic business process models. Distributed and Parallel Databases 27(3) (2010)
271–343

18. Gasevic, D., Devedzic, V.: Interoperable petri net models via ontology. Int. J. Web
Eng. Technol. 3(4) (2007) 374–396

19. Sebastian, A., Tudorache, T., Noy, N.F., Musen, M.A.: Customizable workflow
support for collaborative ontology development. In: 4th International Workshop
on Semantic Web Enabled Software Engineering (SWESE) at ISWC 2008. (2008)

20. Nguyen, T.H.H., Le-Thanh, N.: An ontology-enabled approach for modelling busi-
ness processes. In: Beyond Databases, Architectures, and Structures. Volume 424
of Communications in Computer and Information Science. Springer International
Publishing (2014) 139–147

21. Kristensen, L.M., Christensen, S., Jensen, K.: The practitioner’s guide to coloured
petri nets. STTT 2(2) (1998) 98–132

22. W3C: Owl web ontology language reference. http://www.w3.org/TR/owl-ref/
(2004) W3C Recommendation.

23. Corby, O., et al.: Corese/kgram. https://wimmics.inria.fr/corese

42

Integration of Activity Modeller with Bayesian network
based recommender for business processes?

Szymon Bobek , Grzegorz J. Nalepa, Olgierd Grodzki

AGH University of Science and Technology,
al. A. Mickiewicza 30, 30-059 Krakow, Poland
{szymon.bobek,gjn}@agh.edu.pl

Abstract Formalized process models help to handle, design and store processes
in a form understandable for the designers and users. As model repositories of-
ten contain similar or related models, they should be used when modelling new
processes in a form of automated recommendations. It is important, as designers
prefer to receive and use suggestions during the modelling process. Recommen-
dations make modelling faster and less error-prone because a set of good models
is automatically used to help the designer. In this paper, we describe and evaluate
a method that uses Bayesian Networks and configurable models for recommen-
dation purposes in process modelling. The practical integration of the recommen-
dation module with a Activity Modeller tool is also presented.

1 Introduction

Processes are one of the most popular methods for modelling flow of information and/or
control within a sequence of activities, actions or tasks. Among many notations that
allow to define and build business process diagrams, the Business Process Modeling
Notation (BPMN) [1] is currently considered as a standard. BPMN is a set of graphical
elements denoting such constructs as activities, splits and joins, events etc. These ele-
ments can be connected using control flow and provide a visual description of process
logic [2]. Thus, a visual model is easier to understand than textual description and helps
to manage software complexity [3].

Several visual editors were developed to support design of business processes in
BPMN, one of which is Activity Modeller 1. It is a web modeller component that is
available as part of the Activiti Explorer web application. The Modeller is a fork of the
Signavio Core Components project 2. The goal of the Activiti Modeller is to support all
the BPMN elements and extension supported by the Activiti Engine – a Java process
engine that runs BPMN 2 processes natively.

Although visual editors like Activity provide support for building and executing
business processes, this support does not include design recommendations. By recom-
mendation we mean suggestions that the system can give to the designer to improve the
design process both in terms of quality and time.

? The paper is supported by the Prosecco project.
1 See http://activiti.org/
2 See http://www.signavio.com/

43

Three different types of recommendations can be distinguished depending on the
subject of recommendation process [4]. These types are:

– structural recommendations – that allows to suggest structural elements of the BP
diagram, like tasks, events, etc,

– textual recommendations –that are used to allow suggestions of names of elements,
guard conditions, etc.

– attachment recommendations –that allows to recommend attachments to the BP in
a form of decision tables, links, service tasks, etc.

In this paper we focus on structural recommendation, that allows for automated
generation of suggestions for the next (forward recommendation), previous (backward
recommendation) or missing elements (autocompletion) of the designed BP. Such rec-
ommendations improves time needed to build new business process and prevents user
from making most common mistakes. What is more, such suggestions allow the de-
signer to interactively learn best practices in designing BPMN diagrams as this practices
are encoded into the recommendation model.

In this paper we present the implementation and evaluation of the method for struc-
tural recommendation of business processes that uses Bayesian networks and config-
urable processes. The work presented in this paper is part of the Prosecco project3. The
objective of the project is to provide tools supporting the management of Small and
Medium Enterprises (SMEs) by the introduction of methods for declarative specifica-
tion of business process models and their semantics. The work described in this article
is a continuation of our previous research presented in [5].

The rest of the paper is organized as follows. In Section 2 related work is presented
and motivation for our research was stated. Section 3 describes briefly the recommen-
dation method developed. A prototype implementation of the recommendation module,
and its integration with Activity Modeller in Section 4. This section provides also an
evaluation of the method on a real-case scenario. Section 5 provides summary of the
research and open issues that are planned to be solved in a future work.

2 Related work and motivation

As empirical studies have proven that users prefer to receive and use suggestions dur-
ing modelling processes [6], several approaches to recommendations in BP modelling
have been developed. They are based on different factors such as labels of elements,
current progress of modelling process, or additional pieces of information like process
descriptions or annotations.

Among attachment recommendations, support with finding appropriate services was
proposed by Born et al. [7] and Nguyen et al. [8]. Such a recommendation mechanism
can take advantage of context specified by the process fragment [8] or historical data [9].
Approaches that recommend textual pieces of information, such as names of tasks, were
proposed by Leopold et al. [10] and extended in [11].

In the case of structural recommendations, Kopp et al. [12] showed how to auto-
complete BPMN fragments in order to enable its verification. Although this approach

3 See http://prosecco.agh.edu.pl

44

does not require any additional information, it is very limited in the case of recommen-
dations. The more useful existing algorithms are based on graph grammars for process
models [13,14], process descriptions [15], automatic tagging mechanism [16,6], anno-
tations of process tasks [17] or context matching [18].

Start of the
project

[1]

Gather data
about client

[1,2,3,4]

Perform
market analysis

[1]

Refine
information

about project

[1,2]

[1]

Make the
schedule of
the project

[1,2,4]

[2]

Verify progress

[2]

Is the project
small?

[1]
Prepare the
application

[1]

Divide the
project into

parts

[1,4]

Perform tasks

[1,2,3,4]

Milestone
reached

[4]

[1]

[2]

Send the
project to the

client

[1,2]

Correct the
project

[1,2,3] End of the
project

[4]

Make
settlements

[2]

Make
settlements

[1,3,4]

Yes

Figure 1. Configurable Business Process [5]

Case-based reasoning for workflow adaptation was discussed in [19]. It allows for
structural adaptations of workflow instances at build time or at run time, and supports
the designer in performing such adaptations by an automated method based on the adap-
tation episodes from the past.

The work presented in this paper is a continuation of our previous research pre-
sented in [5]. We use Bayesian networks (BN) for recommendation purposes. In this
approach a BN is created and learned based on a configurable business process. The
motivation for the current work was to evaluate the methods developed in previous re-
search. Therefore this paper focuses on the issues of matching Bayesian network to
business processes to allow probabilistic recommendation queries. The BN learning
was presented in our previous work and is beyond the scope of this paper. For the eval-

45

uation environment we decided to use Activity Modeller 4, which is part of one of the
most widely used software bundle for designing and executing BPMN models.

In the following section we present a short overview of the recommendation method,
that uses BN for structural recommendations. It also describes an algorithm for mapping
BPMN process elements to random variables of Bayesian network.

3 Bayesian network based recommendations

Bayesian Network [20] is an acyclic graph that represents dependencies between ran-
dom variables and provide graphical representation of the probabilistic model. This
representation serves as the basis for compactly encoding a complex probability distri-
bution over a high-dimensional space [21].

In the subject of structural recommendations with BN approach, the random vari-
ables are BP structural elements (tasks, events, gates, etc). Connections between the
random variables are obtained from the configurable process, that captures similarities
between two or more BP models and encapsulates them within one meta-model. For
the configuration model example, see Figure 1.

The transformation from a configurable model to a BN model is straightforward.
Each node in a configurable process has to be modeled as a random variable in BN.
Therefore, each node in a configurable process is translated into a node in the net-
work. The flow that is modeled by configurable process represents dependencies be-
tween nodes. These dependencies also can be translated directly to the BN model (See
Figure 2).

The BN network obtained from the configurable model encodes just the structure
of the process. To allow querying the network for the recommendations it is necessary
to train it. The comprehensive list and comparison of them can be found in [22]. For
the purpose of this paper, we use the Expectation Maximization algorithm to perform
Bayesian network training. The software we used to model and train our network is
called Samiam5. The training data was a configurable process serialized to a CSV file.
Each column in the file represents a node in configurable process, whereas each row
represents a separate process model that was used to create the former.

3.1 Querying the model for recommendations

We defined three different structural recommendation modes that include forward rec-
ommendations, backward recommendation and autocompletion [5]. So far we success-
fully implemented and evaluated forward recommendations that allows for automated
generation of suggestions for the next element of the designed BP. Although the back-
ward recommendations and autocompletion scenarios are not presented in the paper,
the overall algorithm remains the same for all three scenarios. The difference between
them lays on the implementation rather than conceptual level, and therefore they were
skipped for the sake of clarity and simplicity. In this section we describe details of the
aforementioned forward recommendation algorithm.

4 http://activiti.org
5 See: http://reasoning.cs.ucla.edu/samiam.

46

Figure 2. Bayesian Network representing the configurable process from Figure 1

Figure 3 describes a possible query for forward recommendation. The red circle
denotes observed states (so called evidence) that represents BPMN elements that were
already included by the designed in the model. In the case presented in the Figure 3,
the only observed evidence is a Start element. The remaining circles denotes possible
configuration of BPMN blocks with probabilities assigned to them. For instance proba-
bility, that the block Perform market analysis will be present in the model is 25%.

The forward recommendation algorithm will scan the Bayesian network starting
from the last observed block in a topological order, and return three blocks with the
probabilities of presence in the model greater than 50%. The most challenging task
in this algorithm was mapping the nodes from BPMN process to nodes in Bayesian
network. This was particularly difficult because the BPMN elements are identified by
the unique IDs that are different every time a new process is created.

Figure 3. Forward recommendations of the process for the model presented in Fig. 2

47

Therefore, we distinguished several possible paths for matching the BN model to
the process that is designed:

– graph-based metrics, that allows to compare structures of two networks and identify
areas that may correspond to the same elements [23],

– text-based metrics, that allows to compare elements based on their labels [24], and

– semantic-based comparisons, that provides more advanced matching based on the
elements labels, taking into consideration semantics of the labels [25].

Because the recommendation module should work in a real-time, we decided to
use the second approach which is more efficient comparing to graph-based approaches
and requires less implementation effort than the third option. This choice was motivated
also by the fact that BPMN elements usually have very informative labels and hence, the
text comparison should give good results. As the metric for comparing nodes labels, a
Levenshtein distance [26] was used. Mathematically, the Levenshtein distance between
two strings a, b is given by the equation 1, where where 1(ai 6=bj) is the indicator function
equal to 0 when ai = bj and equal to 1 otherwise.

leva,b(i, j) =

max(i, j) ifmin(i, j) = 0,

min

leva,b(i− 1, j) + 1

leva,b(i, j − 1) + 1

leva,b(i− 1, j − 1) + 1(ai 6=bj)

otherwise.
(1)

Such text-based matching performs well until two or more nodes have similar or the
same labels. For instance in Figure 1 there are four And nodes and two Make settlements
nodes. Hence, when the user puts the block with a label And, the recommendation
algorithm has to decide to which of the blocks in the Bayesian network it corresponds.
This is performed by the neighborhood scanning algorithm.

The algorithm performs a breadth-first search on the currently designed model, and
try to match the neighborhood of the node from BPMN diagram to the neighborhoods of
the ambiguous nodes in the Bayesian networks. The node from the Bayesian network
which neighborhood matches the most of the nodes from BPMN diagram is chosen.
For instance in the example from Figure 3, the user choses to include the And gateway
in the diagram. The recommendation algorithm has to decide which And node from
the Bayesian network presented in the Figure 2 should be treated as a reference point
for the next recommendation. Because in the BPMN diagram the neighborhood of the
And node is just one element called Start, the neighborhood scanning algorithm will
search in the BN for the And node with a Start element as a neighbor. If the ambiguity
cannot be resolved by the first level neighborhood scanning, the algorithm continues
the process in a breath-search manner.

The following section presents details of the implementation of the recommendation
module and presents brief evaluation of the approach.

48

4 Activity recommender

In [5] the process of transforming a configurable process into a Bayesian Network is
performed manually. In order to automate this process 3 auxiliary modules have been
implemented.

The first module is the converter, which creates a Bayesian Network file from a
BPMN file. The second module generates a training data file based on the information
about each block’s occurrence in each of the processes that the configurable process
is composed of. The third module takes the untrained Bayesian Network file and the
training data file as input and trains the network using the EM algorithm.

Figure 4. Architecture of the Activity recommender extension.

The output of this three modules is an input for the Activity recommender presented
in the following section.

4.1 Implementation

The architecture of the solution consists of four elements as depicted in Figure 4. These
elements are:

– Recommendation module – an element responsible for providing recommendations
based on the given BN model and evidences. It executes the recommendations
queries described in Section 3.

– SamIam inference library 6 – A library that allows for probabilistic reasoning that is
used by the recommendation module. The probabilities of occurrence of elements
in designed BPMN diagram are calculated by this element.

6 http://reasoning.cs.ucla.edu/samiam/

49

– Recommendation plugin – A user interface element, that presents the recommen-
dations to the designer and allows to query the recommendation module.

– Shape Menu plugin – A plugin that is a set of icons that surround a selected block
providing shortcuts for the most commonly used operations. In this case, a plugin
allows to insert the recommended element just after the selected one (see Figure 5).

The Recommendation module and SamIam inference library were encapsulated into
a webservice restlet to fit the Activity software architecture. Recommendation plugin
and Shape Menu plugin have been implemented as a frontend plugins for Activity
modeller. The communication between frontend and backend is based on the JSON
exchange format.

Figure 5. An example of a recommendation process in Activity modeller

To better visualize this process of recommendation performed by the Activity rec-
ommender, lets assume that the previously trained Bayesian network was deployed into
the Activity recommender system. When a designer queries the system for the recom-
mendation, all the BPMN elements labels that were already placed by the designer into
the model are treated as an evidence. The currently selected element is tarted as a ref-
erence element for which the forward recommendation should be performed. All the
evidence are packaged into the JSON format and sent to the backend, where the recom-
mendation module performs a query to the BN and returns the recommended elements
back to the frontend. In the frontend the recommendation plugin and shape menu plugin
present the recommendations to the designer and the process continues.

The following section describes a brief evaluation of the descried solution on the
simple use-case scenario.

4.2 Evaluation

The evaluation of the Activity recommender was performed on the simple model pre-
sented in Figure 2. The model was learnt from the configurable process presented in
Figure 1 with an auxiliary modules described briefly at the beginning of this section.

50

The Figure 5 presents the beginning of the design process, when only two elements
are inserted into the diagram: the Start of the project element and the And gateway. The
Bayesian network representing this state was depicted in the Figure 3. If the user selects
the node and presses the button depicted with a question mark icon that is located on
the top bar of the modeller, the recommendation query will be send to the recommenda-
tion module. The module will then perform forward recommendation starting from the
element that was selected by the designer (in this case the And gateway). The results of
the query are presented in the sidebar on the left side of the Activity modeller, and are
also accessible through shape menu plugin, which is activated when the user hover the
mouse over the element.

As presented in Figure 5, the recommendations are consistent with the probabilities
calculated from the Bayesian network presented in Figure 3. It is worth noting, that al-
though in the Bayesian network there exist four And gateways, the correct gateway was
chosen for the recommendation reference point, thanks to the neighborhood scanning
algorithm described in Section 3.

5 Summary and future work

In this paper we presented an implementation and evaluation of the structural recom-
mendation module for BPMN diagrams. We integrated one of the most popular BPMN
modeller called Ativity with our recommendation module providing practical tool for
structural recommendation of BP models. We also presented an approach that supports
matching the similar areas of two graphs that is based on the Levenshtein metric and
neighbor scanning algorithm. The evaluation was presented on a simple use-case sce-
nario that was part of the Prosecco project.

The future works assumes implementing remaining two recommendation modes
that are: backward recommendation and autocompletion. It is also considered to com-
pare the solution based on the Bayesian networks to the other approach that originates
from phrase prediction algorithms [27].

References
1. OMG: Business Process Model and Notation (BPMN): Version 2.0 specification. Technical

Report formal/2011-01-03, Object Management Group (2011)
2. Allweyer, T.: BPMN 2.0. Introduction to the Standard for Business Process Modeling. BoD,

Norderstedt (2010)
3. Nalepa, G.J., Kluza, K.: UML representation for rule-based application models with XTT2-

based business rules. International Journal of Software Engineering and Knowledge Engi-
neering (IJSEKE) 22 (2012) 485–524

4. Kluza, K., Baran, M., Bobek, S., Nalepa, G.J.: Overview of recommendation techniques in
business process modeling. In Nalepa, G.J., Baumeister, J., eds.: Proceedings of 9th Work-
shop on Knowledge Engineering and Software Engineering (KESE9) co-located with the
36th German Conference on Artificial Intelligence (KI2013), Koblenz, Germany, September
17, 2013. (2013)

5. Bobek, S., Baran, M., Kluza, K., Nalepa, G.J.: Application of bayesian networks to recom-
mendations in business process modeling. In Giordano, L., Montani, S., Dupre, D.T., eds.:
Proceedings of the Workshop AI Meets Business Processes 2013 co-located with the 13th
Conference of the Italian Association for Artificial Intelligence (AI*IA 2013), Turin, Italy,
December 6, 2013. (2013)

51

6. Koschmider, A., Hornung, T., Oberweis, A.: Recommendation-based editor for business
process modeling. Data & Knowledge Engineering 70 (2011) 483 – 503

7. Born, M., Brelage, C., Markovic, I., Pfeiffer, D., Weber, I.: Auto-completion for executable
business process models. In Ardagna, D., Mecella, M., Yang, J., eds.: Business Process
Management Workshops. Volume 17 of Lecture Notes in Business Information Processing.
Springer Berlin Heidelberg (2009) 510–515

8. Chan, N., Gaaloul, W., Tata, S.: Context-based service recommendation for assisting busi-
ness process design. In Huemer, C., Setzer, T., eds.: E-Commerce and Web Technologies.
Volume 85 of Lecture Notes in Business Information Processing. Springer Berlin Heidelberg
(2011) 39–51

9. Chan, N., Gaaloul, W., Tata, S.: A recommender system based on historical usage data for
web service discovery. Service Oriented Computing and Applications 6 (2012) 51–63

10. Leopold, H., Mendling, J., Reijers, H.A.: On the automatic labeling of process models. In
Mouratidis, H., Rolland, C., eds.: Advanced Information Systems Engineering. Volume 6741
of Lecture Notes in Computer Science. Springer Berlin Heidelberg (2011) 512–520

11. Leopold, H., Smirnov, S., Mendling, J.: On the refactoring of activity labels in business
process models. Information Systems 37 (2012) 443–459

12. Kopp, O., Leymann, F., Schumm, D., Unger, T.: On bpmn process fragment auto-completion.
In Eichhorn, D., Koschmider, A., Zhang, H., eds.: Services und ihre Komposition. Proceed-
ings of the 3rd Central-European Workshop on Services and their Composition, ZEUS 2011,
Karlsruhe, Germany, February 21/22. Volume 705 of CEUR Workshop Proceedings., CEUR
(2011) 58–64

13. Mazanek, S., Minas, M.: Business process models as a showcase for syntax-based assistance
in diagram editors. In: Proceedings of the 12th International Conference on Model Driven
Engineering Languages and Systems. MODELS ’09, Berlin, Heidelberg, Springer-Verlag
(2009) 322–336

14. Mazanek, S., Rutetzki, C., Minas, M.: Sketch-based diagram editors with user assistance
based on graph transformation and graph drawing techniques. In de Lara, J., Varro, D., eds.:
Proceedings of the Fourth International Workshop on Graph-Based Tools (GraBaTs 2010),
University of Twente, Enschede, The Netherlands, September 28, 2010. Satellite event of
ICGT’10. Volume 32 of Electronic Communications of the EASST. (2010)

15. Hornung, T., Koschmider, A., Lausen, G.: Recommendation based process modeling sup-
port: Method and user experience. In: Proceedings of the 27th International Conference on
Conceptual Modeling. ER ’08, Berlin, Heidelberg, Springer-Verlag (2008) 265–278

16. Koschmider, A., Oberweis, A.: Designing business processes with a recommendation-based
editor. In Brocke, J., Rosemann, M., eds.: Handbook on Business Process Management 1.
International Handbooks on Information Systems. Springer Berlin Heidelberg (2010) 299–
312

17. Wieloch, K., Filipowska, A., Kaczmarek, M.: Autocompletion for business process mod-
elling. In Abramowicz, W., Maciaszek, L., Węcel, K., eds.: Business Information Systems
Workshops. Volume 97 of Lecture Notes in Business Information Processing. Springer
Berlin Heidelberg (2011) 30–40

18. Chan, N., Gaaloul, W., Tata, S.: Assisting business process design by activity neighborhood
context matching. In Liu, C., Ludwig, H., Toumani, F., Yu, Q., eds.: Service-Oriented Com-
puting. Volume 7636 of Lecture Notes in Computer Science. Springer Berlin Heidelberg
(2012) 541–549

19. Minor, M., Bergmann, R., Görg, S., Walter, K.: Towards case-based adaptation of workflows.
In Bichindaritz, I., Montani, S., eds.: ICCBR. Volume 6176 of Lecture Notes in Computer
Science., Springer (2010) 421–435

20. Friedman, N., Geiger, D., Goldszmidt, M.: Bayesian network classifiers. Machine Learning
29 (1997) 131–163

21. Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Techniques. MIT
Press (2009)

22. Neapolitan, R.E.: Learning Bayesian Networks. Prentice-Hall, Inc., Upper Saddle River, NJ,
USA (2003)

52

23. Dijkman, R., Dumas, M., García-Bañuelos, L.: Graph matching algorithms for business
process model similarity search. In Dayal, U., Eder, J., Koehler, J., Reijers, H., eds.: Business
Process Management. Volume 5701 of Lecture Notes in Computer Science. Springer Berlin
Heidelberg (2009) 48–63

24. Dijkman, R., Dumas, M., van Dongen, B., Käärik, R., Mendling, J.: Similarity of business
process models: Metrics and evaluation. Information Systems 36 (2011) 498 – 516 Special
Issue: Semantic Integration of Data, Multimedia, and Services.

25. Sigman, M., Cecchi, G.A.: Global organization of the wordnet lexicon. Proceedings of the
National Academy of Sciences 99 (2002) 1742–1747

26. Levenshtein, V.: Binary Codes Capable of Correcting Deletions, Insertions and Reversals.
Soviet Physics Doklady 10 (1966) 707

27. Nandi, A., Jagadish, H.V.: Effective phrase prediction. In: Proceedings of the 33rd In-
ternational Conference on Very Large Data Bases. VLDB ’07, VLDB Endowment (2007)
219–230

53

Towards an ontological analysis of BPMN

Emilio M.Sanfilippo1,2, Stefano Borgo2, and Claudio Masolo2

1 Institute of Industrial Technologies and Automation, ITIA-CNR, Italy
emilio.sanfilippo@itia.cnr.it

2 Laboratory for Applied Ontology, ISTC-CNR, Italy

Abstract. bpmn is a de-facto standard with more than 70 commercial
tools that currently support its use. However, its the semantic ambigu-
ities jeopardize its implementation. We perform an ontological analysis
of important constructs of bpmn like activities and events to highlight
their implicit commitments.

Keywords: Ontological analysis, bpmn, State, Event, Activity

1 Introduction

Business process (BP) modelling concerns the analysis and representation of the
activities by which companies coordinate their organisation and work, produce
goods, interact with each others and customers. The goal is a common con-
ceptual modelling language that can be easily understood to facilitate business
communication. The Business Process Model and Notation (bpmn) [9] is one of
such BP languages and is a OMG standard with more than 70 commercial tools
that currently supports its use3. bpmn focuses on graphical constructs and lacks
formal semantics. Thus, it presents conceptual ambiguities regarding the inter-
pretation of its metamodel and the supporting software tools are not guarantee
to interoperate. We use ontological analysis to dwell into the backbone elements
of bpmn like activity and event. The goal is to investigate whether the standard
is (possibly implicitly) committed to some (coherent) ontological perspective.
The remainder of the paper is organized as follows: Section 2 describes the state
of the art about the analysis of bpmn. Section 3 looks at a bpmn process diagram
to highlight some problematic issues. Sections 4 gives the ontological analysis of
our target notions.

2 State of the art

The literature about bpmn focuses on three types of analysis: (i) the syntac-
tic analysis, (ii) the behavioral analysis, and (iii) the ontological analysis. The
syntactic analysis aims at defining the structural constraints that bpmn-models

3This work is part of a larger study [11] that will be presented at the International
Conference on Formal Ontology in Information Systems (FOIS 2014). In this version
we assume some familiarity with bpmn.

54

must satisfy. [4] presents the bpmno meta-ontology implemented in OWL [7].
bpmno allows reasoning with semantically annotated processes and it enriches
bpmn with, e.g., temporal information. Similarly, [1] provides a bpmn ontology
encoded in the WSML language [2]. The behavioral analysis looks at what can
happen during the execution of a well-formed bpmn model like, e.g., the existence
of deadlocks or livelocks [3]. This (static) analysis of a process model considers
the semantics underlying the schema only for procedural information and is not
relevant for our work in this paper. Finally, the ontological analysis focuses on
the characterization of the primitives of the language. [8] discusses the OPAL
reference framework and characterizes the specific kinds of activities or events
present in a given model, but it lacks a characterization of the general difference
between bpmn-activities and bpmn-events. [5] uses the ontology ABDESO to
distinguishes actions from other events. The authors find quite a few ambiguous
and redundant elements, as well as missing concepts in bpmn. Finally, [10] looks
at the mutual relationship between bpmn and the Bunge-Wand-Weber (BWW)
foundational ontology. The paper highlights some ontological shortcoming in the
first release of the standard with respect to ontological completeness, construct
overload, construct excess and construct redundancy.

In this paper we are interested in the ontological analysis of bpmn with the
aim of clarifying how one can understand the notions of activity and event. We
carry out our study in two ways: first by ontologically analyzing the information
provided by the bpmn standard, and then by characterizing our findings on these
concepts with the Dolce ontology [6]. We are not proposing an evaluation of
bpmn with respect to an ontology; we rather use the ontology to find (possibly
implicit) commitments of the standard, identify business related elements that
the standard does not address, and to highlight the variety of interpretations
that are consistent with these constraints.

3 Activities and Events in bpmn

The bpmn diagram in Fig. 1 represents a process with four participants: Pur-
chaser, Service provider A, Service provider B and Service provider C. The pro-
cess starts when the event type None in the Purchaser pool happens. This is
followed by the execution of task Request Quotes which ends with the sending
of a message to each service provider participant in the process. Once a service
provider receives the message, it starts its own process consisting in sending a
quote to the Purchaser. After this, the service provider process ends. When the
Purchaser receives at least two quotes, it executes the Assess the Quotes task
after which the process ends for the Purchaser provided the condition Sufficient
reserve amount? is satisfied. Otherwise, the process is back to the Request Quotes
and flows again.

The reason why some parts of the process are marked as activities and others
as events is not immediately clear. In the diagram below, messages are exchanged
between the process participants by using tasks of type Message send. However,
in bpmn one could also use a Message as throw event (not showed in Figure

55

Fig. 1. bpmn process diagram, taken from [9, p.362]

1), which models the sending of a message as well. The meanings of these two
different constructs – that seem to model the same thing – is not immediately
clear. The bpmn specification [9] provides little help in clarifying the distinction
between activity and event. The bpmn Quick Guide4 states that “[...] an Event
maps to a time point on a time line [while] a Task [activity] maps to a time
interval”. This seems to mean that events are instantaneous while activities last
in time, which implies that temporal atomicity is a discriminating property.
Nevertheless, bpmn does not commit to a theory of temporal points or intervals,
thus every reference to time remains vague. Another possibility is to understand
activities and (at least some) events in terms of endogenous vs exogenous entities:
the first are happenings controlled within the poll the latter are out of the control
of the pool.

4 Ontological analysis of bpmn events and activities

Events and activities in bpmn are connected to other events and activities in the
same (in a different) pool by solid (dashed) arrows; these arrows mark execution
precedence and thus temporal dependences. This reveals the temporal nature of
events and activities in bpmn. From the ontological viewpoint, we can classify
them as (some type of) perdurants or occurrents, in the sense of entities that
extend in time possibly by accumulating temporal parts. In the following we
use the Dolce taxonomy of perdurants—mainly the concepts of Achievement,
Accomplishment, State, and Event—to discuss and ontologically characterize the
difference between Activities and Events, and between Catch- and Throw-events.

4http://www.bpmn.org

56

While we find helpful to use a foundational ontology like Dolce, we remark that
the analysis could be based on other ontological systems provided they include
a taxonomy of perdurants.

Activities and tasks: We have seen that bpmn activities are not instantaneous,
thus they take time to execute. In addition, bpmn distinguishes between two
types of activities: tasks, i.e., atomic activities and sub-processes, i.e., non-atomic
activities. The relationship between being instantaneous and being atomic is not
trivial given that a task can have a positive temporal extension.

In some ontological theory [12] it is assumed that perdurants extend in time
by having different temporal slices at different times. This would rule out bpmn
tasks because, by extending in time, they necessarily have (temporal) proper
parts, where ‘necessity’ is here used in the ontological sense, namely tasks have
temporal parts in all possible worlds. According to this perspective, a task like
Request Quotes is necessarily anti-atomic and anti-homeomeric, i.e., all its in-
stances have parts that do not belong to Request Quotes. The anti-homeomericity
is evident for bpmn sub-processes, whose structure is explicitly included in the
BPMN-model.However, it might be suggested that bpmn models the world at
some granularity, in the sense that tasks are considered to be atomic in the con-
text of the model even though they have temporal parts in the actual world. In
this case, tasks could be conceived as atomic or non-atomic depending on the
context, granularity, or perspective on the world. We talk in this case of concep-
tual modality, because the ontological status of tasks relies not on how they are,
but rather on how they are conceived within a certain conceptual framework.

We observe also that the mereological sum of two instances of a task like Send
quote is not an entity of the same type. This is consistent with the assumption
that bpmn activities represent units of work with the purpose of achieving given
business goals; they thus culminate with the achievement of the goal.

We can then conclude that by considering a strict ontological modality ac-
tivities are anti-atomic and anti-cumulative, i.e., they can be mapped to Dolce
accomplishments. Vice versa, by assuming a conceptual modality, only sub-
processes may be mapped to accomplishments. More generally tasks would be
mapped to Dolce events, i.e., as anti-cumulative types of perdurants with no
commitment on atomicity and homeomericity.

Catch events: We saw that events are instantaneous, consequently they are
temporally atomic, that is, they cannot extend over or throughout a temporal
stretch. Catch events like the reception of a message, are in general exogenous,
i.e., their happening is outside of the control of the pool they belong to or,
at least, of the branch of the pool process at stake. In this perspective None
start events could be understood as ‘the system is turned-on’. In addition, being
culminating perdurants the catch events are anti-cumulative. Anti-cumulativity
and atomicity characterize the subcategory of achievements in Dolce.

The process of Service Provider A in Figure 1 cannot proceed unless a trigger
is received, i.e., a message is received. Accordingly, if the system of this service
provider is ‘turned-off’, the message will never be received. Thus, behind a catch

57

event there is the assumption that the process is waiting to be triggered, i.e.,
the system is on a receiving mode.

Differently from activities, these kinds of perdurants (e.g., waiting) are home-
omeric—i.e., the temporal slices of waiting-instances (if any) are themselves
waiting instances—and cumulative—i.e., the mereological sum of two (immedi-
ately consecutive) waiting-instances is still a waiting-instance. Homeomeric and
cumulative perdurants are called states in Dolce. For example, Figure 1 indi-
cates that Service providers A, B and C are (by default) in a waiting status for
receiving messages. Thus, a catch event identifies (perhaps implicitly) a state
and it further indicates that the pool is committed towards a specific trigger to
occur.

However, on the same line of [10], one could consider catch events as state-
transitions. For example, the reception of messages can be understood by refer-
ring to two states: the state of ‘waiting for the message’ and the state of ‘message
received’, where the latter is the pre-condition for executing the successive task.
The trigger thus enacts a state transition and, in turn, the starting of the new
state enables the process to perform its subsequent tasks5.In the case of None
catch (start, intermediate) the trigger that is holding the process is not spec-
ified. From our viewpoint, there are at least two possible views regarding the
semantics of this modelling construct. It might be a placeholder for the initial
temporal boundary of the process that in our example corresponds, as a logical
constraint, to ‘there are no parts of the process that precede the Request Quote
task’. In this case, the None catch bears no further ontological commitment. On
the other side, one can return to the idea of a (hidden) waiting state. The latter
case seems to be incompatible with the interpretation of the start event as ‘the
system is turned-on’.

Throw events: Similarly to catch events, throw events are instantaneous, then
temporally atomic, and anti-cumulative, i.e., in Dolce they are classified as
achievements. Differently from catch events, throw events tend to be endogenous:
actions under the control of the pool they belong to. Note that differently from
tasks, which can be conceived as structured perdurants, although atomic under
a certain granularity, throw events are punctual, thus intrinsically unstructured.

Throw None end events can be understood as the achievement of the whole
process, and, in a fashion similar to start events, they can be interpreted either
as an ontologically neutral placeholder in the model, as a logical constraint, or
as an (ontologically committed) achievement. Note that the throw end events
marked with a specific trigger icon, like Message, Terminate, Signal and Error,
indicate an achievement as well but now the culmination point is qualified: the
triggers that are specified in these cases (message, signal, termination and error)
are amongst the participating entities of the achievement.

5The analysis of the causal dependencies among triggers, events and tasks could be
very informative.

58

5 Conclusions

We focused on the ontological analysis of the bpmn notions of activity (task) and
event, and classified them within the Dolce account of perdurant entities. The
results are still preliminary and the hope is that it can help to reach a deeper
understanding of the system; and to develop sound bpmn-driven ontologies. In
the future, we shall expand this first analysis and develop a formalization cap-
turing our results on bpmn.

Acknowledgements: This research is in part supported by the Gecko and
Pro2Evo projects of the “Fabbrica del Futuro” (funding: MIUR).

References

1. W. Abramowicz, A. Filipowska, M. Kaczmarek, T. Kaczmarek Semantically en-
hanced Business Process Modelling Notation. In M. Hepp et al. (Eds.), Semantic
Business Process and Product Lifecycle Management. Proceedings of the Workshop
SBPM 2007, Innsbruck, April 7, 2007

2. J. de Bruijn, D. Fensel, U. Keller, M. Kifer, H. Lausen, R. Krummenacher, A.
Polleres, L. Predoiu Web Service Modeling Language (WSML). W3C Member
Submission 3 June 2005 Available at: http://www.w3.org/Submission/WSML. Last
access March 2014

3. R.M. Dijkman, M. Dumas, and C.Ouyang. Semantics and analysis of business
process models in BPMN. Information and Software Technology, 50(12):1281–1294,
2008.

4. C. Ghidini, M. Rospocher, L. Serafini A Formalisation of BPMN in Description
Logics. Technical Report TR 2008-06-004, FBK-irst, 2008.

5. G. Guizzardi, G. Wagner Can BPMN Be Used for Making Simulation Models?
7th International Workshop on Enterprise & Organizational Modeling and Simula-
tion (EOMAS 2011), together with the 23rd International Conference on Advanced
Information System Engineering (CAiSE’11), London, UK.

6. C. Masolo, S. Borgo, A. Gangemi, N. Guarino, A. Oltramari.
WonderWeb Deliverable D18. Ontology Library. Available at:
http://wonderweb.man.ac.uk/deliverables.shtml, 2002. Accessed March 2014

7. D.L. McGuinnes, F. van Harmelen OWL Web Ontology Language. Overview. W3C
Recommendation 10 February 2004. Available at: http://www.w3.org/TR/owl-
features. Last access March 2014

8. M. Missikoff, M. Proietti, and F. Smith. Linking ontologies to business process
schemas. Technical Report 10-20, Istituto di Analisi dei Sistemi ed Informatica del
CNR, 2010. ISSN: 1128 - 3378.

9. Object Management Group (OMG) Business Process Model and Notation (BPMN).
Version 2.0, 2011 Available at: http://www.bpmn.org Last access March 2014

10. J. Recker, M. Indulska, M. Rosemann, P. Green. Do Process Modelling Techniques
Get Better? A Comparative Ontological Analysis of BPMN. Australasian Conf. on
Information Systems. Sydney, 2005

11. E.M.Sanflippo, S. Borgo and C. Masolo. Events and Activities: Is there an Ontology
behind BPMN? In: Formal Ontology in Information Systems, IOS Press, 2014

12. T. Sider, Four-Dimensionalism. An Ontology of Persistence and Time. Oxford:
Clarendon Press, 2001.

59

CAPJA- A Connector Architecture for PROLOG and
JAVA

Ludwig Ostermayer, Frank Flederer, Dietmar Seipel

University of Würzburg, Department of Computer Science
Am Hubland, D – 97074 Würzburg, Germany

{ludwig.ostermayer,dietmar.seipel}@uni-wuerzburg.de

Abstract. Modern software often relies on the combination of several software
modules that are developed independently. There are use cases where different
software libraries from different programming languages are used, e.g., embed-
ding DLL files in JAVA applications. Even more complex is the case when differ-
ent programming paradigms are combined like within applications with database
connections, for instance PHP and SQL.
Such a diversification of programming languages and modules in just one soft-
ware application is becoming more and more important, as this leads to a combi-
nation of the strengths of different programming paradigms. But not always, the
developers are experts in the different programming languages or even in differ-
ent programming paradigms. So, it is desirable to provide easy to use interfaces
that enable the integration of programs from different programming languages
and offer access to different programming paradigms.
In this paper we introduce a connector architecture for two programming lan-
guages of different paradigms: JAVA as a representative of object oriented pro-
gramming languages and PROLOG for logic programming. Our approach pro-
vides a fast, portable and easy to use communication layer between JAVA and
PROLOG. The exchange of information is done via a textual term representation
which can be used independently from a deployed PROLOG engine. The proposed
connector architecture allows for Object Unification on the JAVA side.
We provide an exemplary connector for JAVA and SWI-PROLOG, a well-known
PROLOG implementation.

Keywords. Multi-Paradigm Programming, Logic Programming, Prolog, Java.

1 Introduction

Business applications often are implemented with object oriented techniques. JAVA cur-
rently is one of the most used object oriented programming languages with rich libraries
and a very active community. There are tools based on JAVA for writing complex rules,
but these tools still come with flaws [10]. Logic programming languages like PROLOG
are particular suitable to write rules more intuitively and declaratively, which helps in
building, updating and testing complex structured sets of rules as we have successfully
shown in the field of e-commerce in [9]. Because JAVA is the main programming lan-
guage in most large-scale applications, it is desirable to connect JAVA with PROLOG for
certain problem domains.

60

Many approaches have been proposed to make PROLOG available in JAVA, but in
many cases there is no clear distinction between JAVA and PROLOG as they use PRO-
LOG concepts like terms and atoms directly in JAVA. Our efforts are to keep PROLOG
structures off from JAVA, but to enable in JAVA the use of existing PROLOG rules and
facts. Therefore we propose a fast, portable and intuitive connector architecture between
JAVA and PROLOG.

In our approach, objects can directly be used as PROLOG goals, without creating
complex structures in JAVA that represent the terms in PROLOG. Member variables that
are equal null in JAVA are translated into PROLOG variables. Those variables are
unified by PROLOG when querying a JAVA object as a goal in PROLOG. The values, the
variables are unified with, are set to the corresponding member variables of the JAVA
objects. We call this mechanism Object Unification. Apart from using existing JAVA
classes for Object Unification, we also provide in PROLOG a generator for JAVA classes.
The instances of generated classes unify with terms initially passed to the generator.

The remainder of this paper is organized as follows. In Section 2 we look at re-
lated work and compare those concepts with our own approach. Section 3 introduces
the components of the proposed connector. We show the mechanics of the object term
mapping in Section 3.1 and in Section 3.2 the parsing of PROLOG terms in JAVA. An
exemplary interface for JAVA and SWI PROLOG completes the connector architecture
in Section 3.3. After that, the workflow with our connector architecture is shown in
Section 4 from two viewpoints: from JAVA and from PROLOG. In Section 5 we evaluate
our approach and finally discuss future work in Section 6.

2 Related Work

Providing a smooth interaction mechanism for JAVA and PROLOG is a challenging prob-
lem that has been studied in several research papers of the last decade.

A well known and mature interface between JAVA and PROLOG is JPL [13]. To en-
able a fast communication JPL provides JAVA classes that represent directly the struc-
tures in PROLOG. This leads to much code for complex PROLOG term structures. Also,
it requires that either the JAVA developer knows how to program PROLOG or the PRO-
LOG developer knows how to code JAVA in order to build the necessary structures
in JAVA via classes like Compound. Furthermore, it is limited to the use with SWI-
PROLOG, as it is shipped and created for just this single PROLOG implementation.

An interesting approach is INTERPROLOG [2] that uses the JAVA serialization mech-
anism in order to send serialized JAVA objects to PROLOG. These strings are analysed in
PROLOG with definite clause grammars and a complex term structure is created which
describes the serialized object. However, this generated object term structure is com-
plex and contains a lot of class meta information that is not as natural for a PROLOG
programmer as the textual term representations of objects in our approach.

The concepts of linguistic symbiosis have been used in [3, 6, 7] to define a suitable
mapping. Methods in JAVA are mapped to queries in PROLOG. This differs from our
approach, as we use JAVA objects for terms as well as for queries in PROLOG.

A customisable transformations of JAVA objects to PROLOG terms was introduced
with JPC [4]. Instead of using annotations, as it is done in our approach to customise the

61

mapping, in JPC custom converter classes can be defined. These converters implement
methods which define the translation between objects and terms. This causes in a lot of
extra code and files as the user has to define the converter classes instead of just writing
annotations to existing classes.

In [5] tuProlog, a PROLOG engine entirely written in JAVA, was integrated into
JAVA programs by using JAVA annotations and generics. But other than in our approach,
PROLOG rules and facts are written directly into the JAVA code within annotations.
Querying rules and facts is done again by JAVA methods. The mapping of input and
return to arguments of a goal in PROLOG is defined with annotations. In contrast to our
attempt, this approach is strongly dependent on tuProlog and therefore not compatible
to other PROLOG engines.

In [11], we have presented the framework PBR4J (PROLOG Business Rules for
JAVA) that allows to request a given set of PROLOG rules from a JAVA application. To
overcome the interoperability problems, a JAVA archive has been generated that contains
methods to query the set of PROLOG rules. PBR4J uses XML Schema to describe the
data exchange format. From the XML Schema description, we have generated JAVA
classes for the JAVA archive. In our new approach the mapping information for JAVA
objects and PROLOG terms is not saved to an intermediate, external layer. It is part of
the JAVA class we want to map and though we can get rid of the XML Schema as used in
PBR4J. Either the mapping is given indirectly by the structure of the class or directly by
annotations. While PBR4J just provides with every JAR only a single PROLOG query,
we are now able to use different goals depending on which variables are bound. PBR4J
transmitted along with a request facts in form of a knowledge base. The result of the
request was encapsulated in a result set. With our connector architecture we do not
need any more wrapper classes for the knowledge base and the result set as it was with
PBR4J. That means with our new connector we have to write less code in JAVA. We
either assert facts from a file or persist objects with a JAVA method to the database of
PROLOG.

3 A Connector for PROLOG and JAVA

The connector for PROLOG and JAVA is based on our work with mappings between
objects in JAVA and terms in PROLOG. Before we discuss the individual parts of our
connector, we recap briefly the highly customisable Object Term Mapping (OTM) which
we have introduced in [12]. In addition to a simple, yet powerful default mapping for
almost every class in JAVA, different mappings between objects and terms also easily
can be defined. We call the mapping of an object to a PROLOG term Prolog-View on the
given object. Multiple Prolog-Views for a single object can be defined. For this purpose,
we only need three annotations in JAVA in a nested way as shown in Figure 1. Because
JAVA does not support multiple annotations of the same type within a class until ver-
sion 7, we use the annotation @PlViews to allow multiple @PlView annotations in a
single given class. A @PlView is identified by viewId and consists of the following
elements to customize the mapping of an object to a term. functor is used to change
the target term’s functor. The list orderArgs changes the arguments order and the
list ignoreArgs prevents member variables to be mapped as arguments of the target

62

Fig. 1: The Interfaces for @PlViews, @PlView and @Arg

term. The list modifyArgs consists of @Arg annotations which are used to modify
the mapping of a single member variable of the object. The member variable is refer-
enced by valueOf and the type in PROLOG can be modified with type. If the member
variable is a class type that has @PlView annotations, a particular Prolog-View can be
selected via the appropriate viewId. All in all, arbitrary complex nested term struc-
tures can be created by the mapping. The following example shows a Person class
and two different Prolog-Views on Person:

@PlViews({
@PlView(viewId="personView1",
ignoreArgs={"id"},
modifyArgs=

{@PlArg(valueOf="children", viewId="personView2")})
@PlView(viewId="personView2", functor="child",
orderArgs={"givenName")}

)
class Person {
private int id;
private String givenName;
private String familyName;
private Person[] children;
// ... constructor/ getter / setter

}

In the listing below instances of Person are given followed by the textual term
representation under the default mapping and under the Prolog-View personView1:

Person p1 = new person(1, 'Homer', 'Simpson');
Person p2 = new person(2, 'Bart', 'Simpson');
p1.setChildren(new Person[]{p2});

// default mapping of p1
"person(1,'Homer','Simpson',[person(2,'Bart','Simpson',[])])"
// mapping of p1 under the Prolog-View "personView1"
"person('Homer', 'Simpson', [child('Bart')])"

All the information needed for the creation of textual term representations are de-
rived from the classes involved in the mapping. The default mapping uses the infor-
mation of the classes structure itself. The customised mapping uses the information
contained in the annotations @PlView.

63

3.1 Creating Textual Term Representations

We only need two classes in JAVA to request PROLOG as shown in Figure 2. The con-
version as well as the parsing is implemented within the wrapper class OTT (Object-
Term-Transformer). The class Query is used to start a call to PROLOG. An example

Fig. 2: Classes for CAPJA

for the usage of these classes is shown in Figure 3. The object o1 is destined to be
unified in PROLOG. It has references to two other objects o2 and o3 which will lead
to a nested term structure in PROLOG. When the instance query gets o1 passed to its
constructor, query creates an instance of OTT, here ott1. For all the other references
in o1 instances of OTT are created in a nested way, namely ott2 for o2 and ott3 for
o3.

query

o1

o3

o2

ott1

ott2

ott3

Fig. 3: A Dependency Tree of OTT Objects

In order to create the textual term representation of o1, the instance query causes
ott1 to call its toTerm() method that triggers a recursive call of toTerm() in all
involved instances of OTT. In doing so, the first operation is to determine which fields
have to be mapped. Dependent on the viewId of the requested Prolog-View or on
the default mapping, an array of Field references is created that contains all the needed
member variables for the particular view in the corresponding order. The information
about the Fields is retrieved with help of the Reflection API in JAVA. The same way,
additional information like PROLOG types and viewIds for particular member vari-
ables are saved within such arrays. As the information about a view of a class is solid
and does not change with the instances, this field information is just created once and

64

cached for further use. For the creation of the textual term representation the functor is
determined either from a customised functor element of an @PlView annotation or
from the class name in the default case. After that, the Field array is iterated and the
string representation for its elements are created. The pattern of those strings depend on
the PROLOG type that is defined for a member. If a member is a reference to another
object, the toTerm() method for the reference is called recursively.

3.2 Parsing Textual Term Representations

After query has received a textual representation of the unified term from PROLOG, it
is parsed to set the unified values to the member variables of the appropriate objects in
JAVA. The parsing uses again the structure of the nested OTT objects as shown in Figure
3. The class OTT has the method fromTerm(String term). This method splits the
passed string into functor and arguments. The string that contains all the arguments is
split into single arguments. This is done under consideration of nested term structures.
According to the previously generated Field array the arguments are parsed. This pars-
ing happens in dependence on the defined PROLOG type of an argument. For instance,
an atom either has single quotes around its value or, if the first character is lowercase,
there are no quotes at all. If there is a quote detected, it is removed from the string
before assigning it as a value for the appropriate member variable. Assignments for
referenced objects in o1 are derived recursively by calling the fromTerm(String
term) method of the appropriate instances of OTT, in our example ott2 and ott3.

3.3 The Interface for JAVA and SWI-PROLOG

Although the complete mapping process is located in JAVA, we still need an interface
to the PROLOG implementation of choice in order to connect both programming lan-
guages. The open-source PROLOG implementation SWI-PROLOG [14] comes with the
highly specialized, and for SWI optimized, JAVA interface JPL. We have implemented
our own JAVA interface for SWI which is optimized for our mapping. Similar to JPL we
use SWI’s Foreign Language Interface (FLI) and the JAVA Native Interface (JNI). The
FLI is bundled with SWI and provides a native interface which can be used to extend
SWI by further (meta-)predicates. The FLI also provides an interface for C and is there-
fore accessible for all other programming languages which have access to C libraries.

We have JAVA on one side and the C interface FLI on the other, so we need the
glue to enable the communication between these two worlds. This is done by the JAVA
Native Interface (JNI), which enables the usage of in C defined functions in JAVA. With
the help of the JNI, we implemented a bridge between JAVA and the SWI-PROLOG sys-
tem. As mentioned, we focus on the simple transmission of strings that represent terms
in PROLOG. This differs from the interface JPL, as our interface does not need com-
plex class structures in JAVA to represent terms in PROLOG. We simply send strings to
PROLOG and receives strings from it. The transmitted strings already satisfy PROLOG’s
syntax and thus can be converted directly into terms on the PROLOG side.

Via the FLI we provide backtracking if there are more solutions. This leads to a
return that contains the next unified term in PROLOG. After sending from JAVA a string
containing a goal with the logical variable X, our interface for SWI-PROLOG returns the

65

unified term as a string back to our JAVA application. The user on the JAVA side now
can call backtrack() to send a backtrack command to SWI-PROLOG which returns
the next solution.

4 Workflows

We start from two viewpoints: JAVA and PROLOG. Each viewpoint describes the devel-
opment phase using our connector architecture.

From JAVA The default mapping enables the JAVA developer to use already existing
JAVA classes in PROLOG as facts or as goals. If the default mapping of an object in JAVA
does not provide a desired term structure in PROLOG, the textual term representation of
the object can be altered by using the appropriate @PlView annotations. To unify an
existing JAVA class the developer just has to wrap it within an instance of Query and
call its method unify in order to call the class’ textual term representation as goal in
PROLOG:

Person p = new Person();
p.setId(1);
Query q = new Query(p, "personView1");
q.unify();

The example request to PROLOG above contains an instance p of the class Person
from Section 3. Note, that the only value that is set for p is the id attribute. The other
attributes are not initialized and therefore equal null. The class Query manages the
call to PROLOG. The optional second parameter of the constructor of Query defines
which Prolog-View is used for the object p. It is specified by the viewId element of
a @PlView annotation, here personView1. When the method unify() is called
the textual term representation is created. This is done either according to the default
mapping or under the consideration of existing @PlView annotations that are defined
for the class Person or any other referenced classes in Person. This string is already
a valid term in PROLOG with arguments that represent the attributes of p and all ref-
erenced objects in p. The textual term representation has only arguments for attributes
that are mapped as defined by the default mapping or by a referenced @PlView anno-
tation. The textual term representation then is used as goal within the PROLOG query.

In the example above, most attributes of p are equal to null in JAVA. As null
is a value that can not be transformed into an appropriate type in PROLOG it has to be
handled in a particular way. We consider null to be in PROLOG a (logical-)variable
that is supposed to be unified. After sending a call to PROLOG containing null values,
the resulting variables are possibly unified in PROLOG. The unified term is sent back
as string and parsed in JAVA. Changes to the initial string sent from JAVA to PROLOG
will be detected and set to the initial object by JAVA reflections, in our example to the
instance p of Person. This means, those attributes that formerly have been equal to
null are set to the values of the variables unified in PROLOG. The original object p
now has been updated and represents the solution of the unification process in PROLOG.

66

An important feature of PROLOG is unknown to JAVA: the backtracking mecha-
nism. The method unify just returns the first solution PROLOG provides. But via
backtracking PROLOG is able to provide other unifiable solutions. These solutions can
be retrieved with another method of Query that is called backtrack(). It sends a
backtrack request to PROLOG in order to retrieve the next solution, if there is one. The
same way a the solution is set to the original object via unify(), the solution via
backtrack() is set to the variables of the original object in JAVA. As it is not sure
that there even are other solutions, backtrack() returns a boolean in JAVA whether
a solution was found by PROLOG or not.

Similar to JPL, we have implemented a third request: get all solutions of a goal in
one call. This is called findall(), named after the built-in predicate in SWI PRO-
LOG. This method returns an array of the requested objects, e. g. Person. As the method
returns multiple objects with different values in their variables, we have to create for
each solution a new object. So, when using this method the original object is not touched
at all. Creating new objects for every solution is the reason why we need the unifiable
objects to have a default constructor in JAVA.

Beside these basic methods for Object Unification there is a method for asserting
JAVA objects to the PROLOG database. This method is called persist() and just
takes the generated string representation of the PROLOG term and asserts it by using the
assertz/1 predicate. After that method call the term representation of the appropri-
ate object is available as fact in PROLOG.

From PROLOG Another viewpoint is the writing of PROLOG terms that are destined
for the use in JAVA. In contrast to the previous viewpoint, there are no suitable JAVA
classes yet within the current project. So, we show now how is easy it is to write PRO-
LOG libraries that are accessible from JAVA by generated classes.

In [12] we have described a default and a customised mapping between JAVA ob-
jects and PROLOG terms. As long as no customisation is defined for a JAVA class via
special annotations, a default mapping is applied which links a class to a certain term
in PROLOG. With annotations in JAVA the user is able to customise the mapping. These
annotations determine which of the member variables will be part of the term represen-
tation and which PROLOG type they will be (e. g. ATOM, COMPOUND, LIST). It is
possible to define several different views on a class.

We also have introduced in [12] the PVN (Prolog-View-Notation) that can be used
to define in PROLOG the mapping between JAVA objects and PROLOG terms. Expres-
sions in PVN consist of two predicates: pl_view and pl_arg. The term pl_view
describes a textual term representation of a JAVA class. The term pl_arg term in a
PVN expression is used to define the mapping of the member variables.

A Rule in PROLOG can be made accessible from JAVA using the PVN to describe a
rule’s head. From this PVN expression we generate JAVA classes with the appropriate
@PlView annotations. For this purpose we have developed two predicates in PROLOG:

create_class_from_pvn(?Pvn, ?Class)
create_annotation_from_pvn(?Pvn, ?Annotation)

67

Typically for PROLOG, both predicates can have the first or the second argument as
input. The first predicate generates from a PVN expression source code for JAVA con-
taining all necessary classes. These classes map directly to the terms in PROLOG from
which we started from. The second predicate is used to generate the @PlView annota-
tions.

5 Evaluation

To evaluate our approach we reimplemented the London Underground example as in
[3]. We made two implementations, one with JPL and one with our connector. The
structure of the London Underground is defined by connected/3 facts in PROLOG.
Speaking of the undirected graph, representing the London Underground with stations
as nodes and lines as edges, a connected fact describes in this context adjacent sta-
tions. The first and the second argument of a connected fact is a station. The third
argument is the connecting line. We give some examples for connected facts:

connected(station(green_park), station(charing_cross),
line(jubilee)).

connected(station(bond_street), station(green_park),
line(jubilee)).

...

In our first implementation we use JPL in order to retrieve a station connected to a
given station:

1 public class Line {
2 public String name;
3 public Term asTerm() {
4 return new Compound("line", new Term[]{new Atom(name)});

}
}

5 public class Station {
6 public String name;
7 public Station(String name) { this.name = name; }
8 public Term asTerm() {
9 return new Compound("station", new Term[]{

new Atom(name)});
}

10 public static Station create(Term stationTerm) {
11 String name = ((Compound)stationTerm).arg(1).name();
12 return new Station(name);

}
13 public Station connected(Line line) {
14 String stationVarName = "Station";
15 Term[] arguments = new Term[]{asTerm(),

new Variable(stationVarName), line.asTerm() };
16 Term goal = new Compound("connected", arguments);
17 Query query = new Query(goal);
18 Hashtable<String, Term> solution = query.oneSolution();

68

19 Station connectedStation = null;
20 if(solution != null) {
21 Term connectedStationTerm = solution.get(stationVarName);
22 connectedStation = create(connectedStationTerm);}
23 return connectedStation;}}

As one can see, the implementation with JPL leads to a lot of lines of code. In the
method connected the complex term structure is created in order to query the pred-
icate connected. The result handling is tedious again. With our approach we do not
have to create any term structures in JAVA. Instead, we need to implement an extra class
Connected representing the goal in PROLOG with the predicate connected/3:

1 public class Connected {
2 public Station stat1;
3 public Station stat2;
4 public Line line;
5 public Connected() { };
6 public Connected(

Station stat1, Station stat2, Line line) {
7 this.stat1 = stat1;
8 this.stat2 = stat2;
9 this.line = line;}
}

10 public class Line {
11 public String name;

}
12 public class Station {
13 private String name;
14 public Station connected(Line line) {
15 Connected connected = new Connected(this, null, line);
16 Query query = new Query(connected);
17 query.unify();
18 return connected.stat2;}

}

As the following table shows, our approach needs less lines of code to implement
the London Underground example than the implementation with JPL.

Line Station (w/o connected()) Connected connected() sum
JPL loc 4 8 0 11 23

CAPJA loc 2 2 9 5 18

However, lines of code do not say anything about the code’s complexity and infor-
mation density. Our class Connected is very simple. It contains only member vari-
ables and two simple constructors whereas in JPL already the method connected()
of the class Station is fairly complex.

With the data of the complete London Underground with 297 stations, 13 lines and
412 connections, we made 50,000 executions1 with both implementations. The result
of the performance test is presented in the following table:

1 Core i5 2 x 2.4 GHz, 6 GB RAM, Ubuntu 14.04

69

ø execution time of 50.000 calls
JPL ∼ 1.2s

CAPJA ∼ 2.6s

Castro et al. did a similar comparison between JPL and their LOGICOBJECTS [3].
Their implementation with LOGICOBJECTS is slower than the corresponding JPL im-
plementation by a factor of about 7 whereas our connector implementation is just about
2.13 times slower.

Aside from a performance improvement in form of field structure caching, as men-
tioned in Section 4, we identified that getting and setting the values of the member
variables via Reflections is slow. In the future we want to use static calls as often as pos-
sible instead of using the Reflection API. In order to make use of direct calls, we need
to generate Specialized OTT classes (SOTT) for all classes that we want to map. These
generated classes contain highly specialized toTerm() and fromTerm(String)
methods that call their member variables directly if public or with their getter and setter
methods. This attempt picks up concepts from our prior work in [11]. But this time, we
want to make use of so called Annotation Processors that extend the JAVA compiler in
order to generate additional code at compile time. Those generated SOTT classes are
only optional. The OTT class as presented in this work, still will be used in the case that
no SOTT class exists. We have implemented an early prototype in order to test these
ideas for feasibility. In an early test using SOTT classes, we have measured an average
time for 50.000 executions of about 1.5 seconds for the London Underground exam-
ple. This is a huge performance gain and is just about 25% slower than JPL, the highly
optimized interface for SWI-PROLOG.

6 Future Work

The presented interface in Section 3.3 has proven to be well applicable for SWI-PROLOG.
However, our approach is not limited to this PROLOG implementation. We currently
develop a standard interface based on pipes that is suitable for most PROLOG imple-
mentations and completes our generic approach. This way, we want to accomplish a
portable solution that is independent from any PROLOG implementation.

In addition, we further want to reduce the necessary lines of code. In our current
approach we use a wrapper class called Query for calling a PROLOG goal. Instead, we
could have used an abstract superclass that is extended by the class of an object that
is going to be mapped. This superclass manages the OTT objects that contain the logic
behind the creation of the textual term representations and the parsing. Even the request
control for unify(), backtrack() and findall() then is part of this superclass.
Using the abstract superclass the request for PROLOG from JAVA in the Underground
example in the lines 16, 17 can be reduced to a single line containing just the method
call connected.unify() which additionally saves the initialisation of a Query
object.

However, the approach with a superclass has a big drawback: we want to be able
to use almost every class in JAVA for the Object Unification. This will not work for
classes that already extend a class because JAVA does not support multiple inheritance

70

yet. In JAVA 8 there is a new feature called Default Methods that allows to implement
a method directly within a JAVA interface. Using this new feature we can implement
all the needed functions as Default Methods in an interface. Because multiple JAVA
interfaces can be implemented by a single class, we achieve with this new interface the
same reduction in lines of code as with an abstract superclass. This way, we can avoid
the multiple inheritance problem for classes.

References

1. A. Amandi, M. Campo, A. Zunino. JavaLog: a framework-based integration of Java and
Prolog for agent-oriented programming. Computer Languages, Systems & Structures 31.1,
2005. 17-33.

2. M. Calejo. InterProlog: Towards a Declarative Embedding of Logic Programming in Java.
Proc. Conference on Logics in Artificial Intelligence, 9th European Conference, JELIA, Lis-
bon, Portugal, 2004.

3. S. Castro, K. Mens, P. Moura. LogicObjects: Enabling Logic Programming in Java through
Linguistic Symbiosis. Practical Aspects of Declarative Languages. Springer Berlin Heidel-
berg, 2013. 26-42.

4. S. Castro, K. Mens, P. Moura. JPC: A Library for Modularising Inter-Language Conversion
Concerns between Java and Prolog. International Workshop on Advanced Software Devel-
opment Tools and Techniques (WASDeTT), 2013.

5. M. Cimadamore, M. Viroli. A Prolog-oriented extension of Java programming based on
generics and annotations. Proc. 5th international symposium on Principles and practice of
programming in Java. ACM, 2007. 197-202.

6. K. Gybels. SOUL and Smalltalk - Just Married: Evolution of the Interaction Between a Logic
and an Object-Oriented Language Towards Symbiosis. Proc. of the Workshop on Declarative
Programming in the Context of Object-Oriented Languages, 2003.

7. M. D’Hondt, K. Gybels, J. Viviane Seamless Integration of Rule-based Knowledge and
Object-oriented Functionality with Linguistic Symbiosis. Proc. of the 2004 ACM sympo-
sium on Applied computing. ACM, 2004.

8. T. Majchrzak, H. Kuchen. Logic java: combining object-oriented and logic programming.
Functional and Constraint Logic Programming. Springer Berlin Heidelberg, 2011. 122-137.

9. L. Ostermayer, D. Seipel. Knowledge Engineering for Business Rules in Prolog.
Proc. Workshop on Logic Programming (WLP), 2012.

10. L. Ostermayer, D. Seipel. Simplifying the Development of Rules Using Domain Specific Lan-
guages in Drools. Proc. Intl. Conf. on Applications of Declarative Programming and Knowl-
edge Management (INAP), 2013.

11. L. Ostermayer, D. Seipel. A Prolog Framework for Integrating Business Rules into Java
Applications. Proc. 9th Workshop on Knowledge Engineering and Software Engineering
(KESE), 2013.

12. L. Ostermayer, F. Flederer, D. Seipel. A Customisable Mapping between Java Objects and
Prolog Terms.
http://www1.informatik.uni-wuerzburg.de/pub/ostermayer/paper/
otm_2014.html

13. P. Singleton, F. Dushin, J. Wielemaker. JPL 3.0: A Bidirectional Prolog/Java Interface.
http://www.swi-prolog.org/packages/jpl

14. J. Wielemaker. SWI Prolog.
http://www.swi-prolog.org

71

Migration of rule inference engine to mobile platform.
Challenges and case study.

Mateusz Ślażyński, Szymon Bobek , Grzegorz J. Nalepa

AGH University of Science and Technology,
al. A. Mickiewicza 30, 30-059 Krakow, Poland

{mateusz.slazynski,szymon.bobek,gjn}@agh.edu.pl

Abstract Mobile devices are valuable sources of information about their user
location, physical and social activity, profiles and habits. Such an information
can be used to build context-aware applications, that are able to adapt their func-
tionality to user needs and preferences. A lot of research have been done in this
field of science, providing multiple context-modelling approaches like rules, on-
tologies, probabilistic graphical models, etc. There were also several solutions
developed that allow for efficient context-based reasoning. However, there is still
lack of tools and research done in the area of context-awareness with respect to
mobile environments. The solutions that were constructed for the desktop plat-
forms cannot be directly migrated to the mobile systems, as the requirements and
characteristics of this two environments are disjoint. In this paper we focus on
migrating a lightweight rule-based inference engine to a mobile platform. We de-
fine the requirements that have to be fulfilled by the mobile reasoning system in
order to be efficient and universal with respect to the variety of mobile operating
systems available nowadays.

1 Introduction

Mobile devices such as smart phones or tablets have been becoming better in terms of
hardware capabilities, including speed and storage. Moreover, they are equipped with
number of sensors gathering a lot of environmental data about device and user context.
This triggered an apparent need for complex application running on mobile platforms.
In number of situations such platforms have become viable alternatives for classic ones,
e.g. PC. Therefore, engineering of software on mobile platforms uses similar tools and
techniques to regular software engineering. This also includes methods from the domain
of knowledge engineering, since real-time processing of large numbers of data needed
to program complex mobile applications requires intelligent techniques.

Rules, are one of the most important techniques in knowledge engineering. Rule-
based tools, including rule engines are a first class citizen in number of intelligent soft-
ware systems developed on PC platforms, server and cloud. Therefore, there has been a
growing demand to use rule-based tools on mobile platforms. This turns out to be not a
trivial issue. In fact classic rule engines are very hard to be ported, due to either of the
source code base (e.g. CLIPS/Jess) or runtime requirements (e.g. Drools). This gives
motivation to investigate opportunities to port or develop a mobile rule engine. In this

72

paper we present the results of such consideration and discuss a specific case study of
the HeaRT [1] rule engine developed by us.

The rest of the paper is organized as follows: In Sect. 2 related works is discussed
along with the detailed motivation for our research. Then in Sect. 3 we specify require-
ments for porting an inference engine to a mobile environment. Based on them we
discuss possible scenarios in Sect. 4. In Sec. 5 we focus on porting HeaRT to a mobile
environment. The paper ends with the summary in Sect. 6.

2 Related works and motivation

In recent years, a lot of development was devoted to build applications that use mobile
devices to monitor and analyze various user contexts.

The SocialCircuits platform [2] uses mobile phones to measure social ties between
individuals, and uses long- and short-term surveys to measure the shifts in individual
habits, opinions, health, and friendships influenced by these ties. Jung [3] focused on
discovering social relationships between people. He proposed an interactive approach
to build meaningful social networks by interacting with human experts, and applied the
proposed system to discover the social networks between mobile users by collecting
a dataset from about two millions of users. Given a certain social relation (e.g., isFa-
therOf), the system can evaluate a set of conditions (which are represented as propo-
sitional axioms) asserted from the human experts, and show them a social network
resulted from data mining tools. Sociometric badge [4] has been designed to identify
human activity patterns, analyze conversational prosody features and wirelessly com-
municate with radio base-stations and mobile phones. Sensor data from the badges has
been used in various organizational contexts to automatically predict employee’s self-
assessment of job satisfaction and quality of interactions. Eagle and Pentland [5] used
mobile phone Bluetooth transceivers, phone communication logs and cellular tower
identifiers to identify the social network structure, recognize social patterns in daily
user activity, infer relationships, identify socially significant locations and model orga-
nizational rhythms.

Besides research projects, there exist also a variety of application that are used for
gathering information about context from mobile devices, like SDCF [6], AWARE 1,
JCAF [7], SCOUT [8], ContextDriod [9], Gimbal 2. These are mostly concerned with
low-level context data acquisition from sensors, suitable fur further context identifi-
cation. On the other hand, they do not provide support nor methodology for creating
complex and customizable context-aware systems.

Although there is a lot of frameworks and middlewares developed for context-aware
systems, they are usually limited to a specific domain and designed without taking into
consideration mobile platforms. Examples include CoBrA [10] and SOUPA [11] for
building smart meeting rooms, GAIA [12] for active spaces, Context Toolkit [13].

There is still space for research in a field of lightweight context modeling and con-
text reasoning targeted at mobile devices. Some attempts were made to develop such

1 http://www.awareframework.com/
2 https://www.gimbal.com/

73

frameworks, like SOCAM [14], or Context Torrent [15]. There were also attempts to
migrate existing rule engines to the mobile platforms. In our preliminary approach we
investigated several candidates for the mobile reasoning engines, including: Jess 3, Con-
text Toolkit [13], ContextDroid [16] and Context Engine [17]. Although some of them
were successfully migrated and launched on the Android device, none of these solution
fully supported the requirements that we believe are crucial for mobile computing with
respect to the context-based reasoning (see Section 3).

Taking all the above into consideration, our primary motivation for the work pre-
sented in this paper was to:

– investigate possible scenarios for migrating existing rule-based engines to mobile
platforms,

– define requirements that all the inference engines should meet in order to provide
efficient, lightweight context-based reasoning on mobile platforms.

In our research we focused on the rule-based reasoners, because they are character-
ized by the high intelligibility [18] capabilities, which is a crucial factor in designing
user-centric applications. Rule-based approach provides also very efficient reasoning,
and intuitive modeling languages that help the end-user to understand the system and
cooperate with it. The work presented in this paper is a continuation of our previous at-
tempt of migration HeaRT rule-based engine to Android platform, which was success-
ful only in a small fraction [19]. We managed to migrate rule-based reasoning engine to
mobile platform, however the efficiency of this migrated version was far worse than the
desktop one. Therefore, we decided to perform an extensive case study on the possible
migration scenarios, which will allow us to define universal requirements for the mobile
reasoning engine. The following section describes in details these, and shows which of
them can be fulfilled by the existing solutions.

3 Requirements for mobile inference engine

Mobile devices are now dominated by Android and iOS operating systems. However
to design a fully portable reasoning engines other systems should also be taken into
consideration. The portability of the software between different mobile platforms is
however not a trivial task. Therefore, to support the process of efficient migration of
the inference engines to mobile environments, the following requirements were identi-
fied [20]:

– Portability (R1). The inference engine should be portable and as independent of
the operating system as possible.

– Responsiveness (R2). The inference layer has to work under soft real-time con-
straints. Mobile environment is highly dynamic, and the inference layer should fol-
low rapid changes of context in such an environment.

– Resource limitation (R3). It should consume as least resources as possible to work
transparently in the background.

3 http://www.jessrules.com

74

– Privacy (R4). The reasoning service should not send any confidential data to the
external servers, but perform all the reasoning locally.

– Robustness (R5). It should work properly when the contextual data is incomplete
or uncertain. This requirement is beyond of the scope of this article and is just
briefly described in the following paragraphs.

– Intelligibility (R6). It should be able to explain its decision to the user, and thus
improve intelligibility of the system.

Due to the development of programming languages which execution is performed
by the virtual machines, it became possible to successfully migrate existing rule-based
inference engines directly onto different mobile platforms. For example Java bytecode
can be executed not only on Android operating system, which supports it natively, but
also on iOS and other platforms that provides appropriate Java Virtual Machine imple-
mentations. This may give a misleading impression that the requirement (R1) could be
easily fulfilled. Our research shown that this is not true, as the quality of the virtual
machines is not always satisfactory and hence, although portability is possible it may
indirectly affect fulfillment of other requirements. For instance, if the rule-based engine
is written in a programming language that is not natively supported by the mobile plat-
form, but depends on the virtual machine that allows executing it, the responsiveness
(R2) of such system may be affected by the inefficient implementation of the virtual
machine. What is more, depending on the complexity of the inference engine, such mi-
gration may not always fully succeed, especially if the inference engine is based on the
technology that is not supported by the mobile implementation of the virtual machine
(i.e. Hibernate 4 for knowledge management in Drools and Context Toolkit). Some tech-
nologies even though possible to migrate to mobile platform, loses their efficiency, due
to limited memory or CPU resources on the mobile device. Thus, the (R1) requirement
should be achieved by choosing a programming language that is equally and efficiently
supported by all the available mobile platforms. Currently to our knowledge there is
such solution available.

Responsiveness (R2) of the system is usually affected by the efficiency of its imple-
mentation. Hence, this requirement is very tightly bound with (R3), which states that the
mobile inference engine should consume as low CPU and memory resources as possi-
ble . Complex rule-based solutions like Drools or ContextToolkit although successfully
launched on the Android mobile devices, were very inefficient as they depend on the
parts of the JVM that is not supported by Dalvik Virtual Machine present in Android.
The very important issue that tackles the problem of resource limitation is connected
with energy consumption. Most of the sensors which are primary information providers
about the environment, when turned on all the time, decrease the mobile device battery
level very fast. This reflects on usability of the system and ecological aspects regarding
energy saving. Currently most of the solutions (including these that were designed for
mobile platforms like ContextEngine) rely on the built in mechanisms for sensor energy
consumption.

Having in mind requirement (R3), the reasoning engines that make use of this infor-
mation should be designed to best manage the tradeoff between high quality, accurate

4 http://hibernate.org/orm/

75

information form the sensors and energy efficiency [21]. Such a design of a reason-
ing engine requires on the other hand a mechanism that could cope with uncertain and
incomplete knowledge. This can be guaranteed by fulfilling the requirement (R5). It
is strictly connected with the nature of the mobile environment. Although the mobile
devices are currently equipped with a variety of sensors, the contextual data provided
by them is not always complete nor certain. For instance the location provider will not
work properly underground, where there is no access to the GPS or the Internet. Cur-
rently only a ContextDroid (former SWAN) tackles this issue by introducing expiration
time and temporal reasoning.

Another requirement that indirectly is connected with energy efficiency and there-
fore tackles the requirement (R3) is privacy requirement (R4). To improve energy ef-
ficiency of the intelligent mobile system, the most time and energy consuming tasks
could be performed externally by the reasoning server. This however requires from the
users to agree to share their private contextual information with the service provider,
which in some countries like European Union is regulated by the law and not easily
accessible. What is more, most of the users do not want to send information about their
location, activities, and other private data to external servers. Hence, the context reason-
ing should be performed locally by the mobile device. This requirement was also one
of the first motivations for our attempts to migrating reasoning engines to a mobile de-
vices so they could work as a local inference services for other applications. Although
not explicitly stated, all of the existing engines rely on the local knowledge bases. Even
Drools and ContextToolkit that allows storing knowledge in remote database can be
adapted to use only local storage.

Requirement (R6) on the other hand is the main reason why we decided to use
rule-based engines. Besides very efficient reasoning mechanisms, rule-based systems
in most cases fulfill the (R6) requirement by the definition. Most of the existing solu-
tions have an explanation mechanism, which allows to trace back the inference chain
and therefore explain the user what was the causes, conclusions and actions that was
taken based on the previous both. The Context Toolkit s the only solution that provides
intelligibility support with a special module designed for this. However, our attempts at
migrating it to the mobile environment failed due to the problems in parsing module of
Context Toolkit.

4 Possible scenarios

One of the biggest challenges for the mobile software creators is the large variety of
technologies used in the mobile operating systems. Due to the more tightly coupled
runtime environment than the one met in the traditional desktop operating system, a pro-
grammer has a very narrow choice of programming tools and languages. To make things
even worse, every one of the leading mobile platforms promotes its own ecosystem in-
compatible with any other. Therefore it is not surprising that the industry is constantly
looking for the cross-platform solutions. This section will concern possible scenarios of
the mobile inference engine development, taking into account issues mentioned in this
paragraph.

76

In the rest of the article we will focus on the three most popular platforms, namely:
Android, iOS and Windows Phone. Despite this, most of the article applies also to
Firefox OS which supports only the web technologies. There exist also a few Linux
based operating systems, supporting software written for the desktop platforms — many
of them, like Sailfish OS, are trying to reuse the Android ecosystem.

Table 1. Technologies supported by the most popular mobile platforms..

Technology / OS Android iOS Windows Phone

JVM based Native.
One-way interface only
through non-standard

Java Virtual Machines.
None.

C/C++
Two-way interface

using Android NDK. Native. Two-way interface
starting from WP 8.

Objective-C None. Native. None.

CLR based
One-way interface

through Mono.
One-way interface

through Mono. Native.

JavaScript
New devices include

V8 JavaScript engine.5

JavaScriptCore6 support
starting from iOS 7.
Many independent

solutions.

Includes proprietary
JavaScript engine.

Lua
Many implementations,

including LuaJIT. Supported without JIT. Supported without JIT.

4.1 Supported technologies

Before presenting the proposed approaches, we will briefly summarize the mobile pro-
gramming toolset available for the developers. Table 1. contains short summary of sup-
ported languages on different platforms. However, it needs some explanation carried
out in the next three paragraphs.

Firstly, we should explain our choice of the technologies presented in the table.
JVM, CLR and C-family were obvious choices as the native technologies on some plat-
form — their use would simplify implementation at least on the one family of devices.
On the other hand, JavaScript and Lua7 are presented because of their small and easily
accessible runtimes, what makes them perfect candidates for the cross-platform embed-
ded solutions. Lack of the JIT support for Lua means that we cannot use the LuaJIT8 —

5 https://code.google.com/p/v8/
6 http://trac.webkit.org/wiki/JavaScriptCore
7 http://www.lua.org
8 http://luajit.org

77

a very fast Lua implementation. There are of course other technologies missing from the
table, but we were looking only for the tested and production ready implementations.

Secondly, "one-way interface support" means that we can build an application in
the selected language, but the code written in it cannot be directly called within a na-
tive application. For example: programmer can write an entire application using Mono9

on iOS, but can not use library written in C# within native application.10 These incon-
veniences render Mono as not suitable for our purposes. JVM based languages share
the same problem — necessity of running JVM on the system dramatically reduces its
possibilities to reuse on the other platforms.

Finally, despite the shared support for the C-family languages, we cannot freely
share code written in C/C++ between all these platforms. In fact there are many dif-
ferences mainly due to different compilation toolchains and standard libraries included
in the system — for example Android uses its own Bionic C standard library. Fur-
thermore, while on iOS the C/C++ code can be freely mixed with Objective-C, both
Android and Windows Phone need a foreign function interface to call the C functions
from Dalvik/CLR virtual machines. Lately it became possible to compile Objective-C
code into Android assembler, but it is a very immature project. To conclude, shared C
codebase is possible, but we should not expect it will work on the all systems without
any platform-dependent fixes.

4.2 Proposed solutions

Leaving aside for the moment technical differences between the mobile platforms we
can distinguish different approaches to the cross-platform software development on the
basis of the code base architecture, whether it is fully or only partly shared between
supported platforms. Particularly there can be listed three border cases:

– Separated code bases (S1) — every platform has its own independent code base.
– Shared code base (S2) — all platforms share the same code base.
– Hybrid approach (S3) — there exist elements of project implemented especially

(particularly API interface) for the different platforms, but we can also distinguish
shared parts of code.

In this section we will confront all these approaches with technical characteristic of
mobile operating systems presented in the previous section.

Foremost, according the the S1 approach, we can simply have separate code bases
for every platform. In spite of the obvious disadvantages of this approach, which include
larger support and development costs, this is a perfectly sane solution for the projects
aiming mainly for the high quality implementation for the one selected platform and less
supported ports for the other systems. Moreover, this way we can take advantage of the
features characteristic for the different runtimes; in the context of the mobile libraries it
has a great impact on the quality of API available for the programmers. Therefore this

9 http://www.mono-project.com/Main_Page
10 It is not exactly true. Linking Mono code to the native iOS application is possible but trouble-

some and not production ready.

78

is a very popular approach used for so called Software Development Kits provided by
such companies like Google or Facebook.

On the other hand, when we are interested in supporting possible many (maybe even
not known in the beginning of the project) environments, the costs related to the code
maintenance can be overwhelming. S2 seems to be an universal solution for these prob-
lems, however we must remember that there is always a trade-off between universality
and expressiveness of the resulting code — programmer is forced to abstract from the
platform dependent features. From the technical point of view there are two distinct
methods to achieve the shared code base on mobile devices. In the first scenario we
could use a technology support on every platform, we have interest in. Again, in the
context of table 1 we could distinguish two possible cases presented below.

Low level approach (S2LL). Most modern operating systems support some kind of the
low level interface to the C-family languages. C/C++ code base has many advantages
— first of all it has a great performance and, secondly, it is very popular among pro-
grammers, so there should not be a problem with the reuse of the existing solutions
and libraries. Unfortunately, as it was indicated before, there are also significant differ-
ences between the low level characteristics of the operating systems — they differ in
used standard libraries and methods of the code calling from the native platform lan-
guage. These differences eventually lead to the corner cases maintained by platform
specific code contained in the conditionally compiled sections of project. Second, the
more controversial disadvantage of the low level code is that is harder to maintain than
its higher level counterparts. Due to the efficiency reasons, the low level approach is
widely adapted by the game development industry. The most popular examples include
cocos2d-x11 and Marmalade12 libraries.

High level approach (S2HL). Nowadays there can be observed the rapid growth of dy-
namic languages; particularly web technologies like JavaScript are regarded as a new
kind of a portable assembler language. Thanks to the efficient, highly optimized and
widely available runtime it recently became the most popular platform for the cross-
platform applications. Lua is an other, less known language with similar features —
lower popularity of this platform is compensated with more sane language character-
istic and even smaller runtime, ported already to the most exotic hardware platforms.
Unlike in C-family languages, there should be no need for the platform-dependent sec-
tions of code in project written using high level languages. Moreover, distribution of the
dynamic code is much easier — it does not need the compilation step and can be dis-
tributed as plain text through the Internet. The main concern about high level approach
regards its efficiency; dynamic code tends to be slower, however due to the rapid growth
of the technology stack, the gap between low level and high level code successfully de-
creases. Given these facts, it should be not surprising that currently there appear more
and more high level frameworks, which could be used to create the mobile applications
from scratch (for example PhoneGap13 or Sencha Touch14) including even more de-
11 http://www.cocos2d-x.org/
12 https://www.madewithmarmalade.com/
13 http://phonegap.com
14 http://www.sencha.com/products/touch

79

manding products like game engines (for example LÖVE15 and Loom16, both written
in Lua).

The second scenario concerns the more complicated compiling toolchain (S2CT)
— precisely, before the deployment of the project, we could translate it into the native
platform technology. This way we could work on the shared code base without worrying
about differences between the platforms. Recently this approach receives a lot of atten-
tion — there are many technologies treating C or JavaScript as the portable assembler
languages. Especially the latter, given its easy deployment on the web, is currently the
compile target of the almost every popular programming language, including even the
low level technologies. While making C or JavaScript our compile target does not differ
much from using them as the project main language, in the most optimistic scenario we
could translate the code base into different language depending on the target platform.
This way we could maintain portability of the project and also benefit from native API
on every supported platform at the same time. Remarkably, the Haxe17 language can
be compiled into JavaScript, C++, C# and Java, trying to make this optimistic scenario
possible.

Given the advantages of both S1 and S2 approaches, the hybrid approach simply
combines them through the greater modularization of project. While the core black box
part of the project can be written in the portable way, possibly using S2HL or S2LL
methods, the interface layer should be interchangeable and written in regard to each
supported platform separately. Consequently core of the project can truly abstract from
platform dependent code (as in the optimistic cases of S2) and it is possible to make
a high quality API for the end-users (as in S1). This approach is widely used by the
so called wrappers — libraries written in the high level technology, which only wrap
the low level library written already in C or other efficient technology. The proposed
architecture of the inference engine implemented using the hybrid approach is presented
in the figure 1, where the Platform Independent Runtime can mean low level machine
programmable using C-family language or some kind of virtual machine destined to run
the high level code, for example Lua interpreter or V8 JavaScript engine. The API part
of the architecture should contain an query interface and methods to load rules from
their plain representation.

5 HeaRT inference engine on mobile platforms

This section will focus on the case of porting the HeaRT inference engine [1] to the mo-
bile platforms. HeaRT is a lightweight rule-based inference engine that uses XTT2 [22]
notation for knowledge representation [23].

The first part of the section will briefly describe our efforts to port existing code
to the Android ecosystem, which was believed to be a good platform for the "proof of
concept" implementation. The second part will contain plans for the future work, based
on the experience gained from the unsuccessful attempts and research results presented
earlier in section 4.
15 https://love2d.org/
16 https://www.loomsdk.com/
17 http://haxe.org

80

Figure 1. Proposed architecture of the portable interface engine using the hybrid ap-
proach.

5.1 Previous attempts

The original implementation of HeaRT was written in the Prolog language and was exe-
cuted by SWI–Prolog, an open source ISO-compliant Prolog implementation18. Thanks
to the Prolog metaprogramming and reasoning features it was easy to represent rules as
simple logical clauses and querying could be expressed with standard Prolog queries.
Therefore the first attempts to port the engine were focused mainly on possible ways
of executing Prolog code on the mobile platforms, particularly Android as it was stated
in previous paragraph. The detailed description of these efforts can be found in [19]. In
the terminology of Section 4.2 all attempts presented below can be assigned to the S2
category.

First and conceptually the simplest attempt can be categorized as S2LL and con-
sisted of porting the SWI–Prolog environment to the Android platform. Due to the
source code written almost entirely in C it was hoped to succeed without breaking
changes in the environment. Unfortunately, it could not be carried successfully mainly
because of the two major issues:

– SWI–Prolog contains large parts of platform dependent code, dealing with the low
level facilities like threading support, console interface, etc. Due to the lack of the
libraries and different standard library on Android, migration of the SWI–Prolog
must involve further refactoring and new conditionally compiled lines of code.

– The interface between Java and SWI–Prolog was found to be not satisfactory, par-
ticularly it was not clear, whether it would work with the Dalvik Java virtual ma-
chine.

Next attempt was supposed to leave aside issues connected with the low level char-
acter of the popular Prolog environments and was oriented on their pure Java coun-
terparts (therefore it can be regarded as a S2HL type). Following the carefully carried
research four possible candidates were proposed: tuProlog19, jekejeke Prolog20, Gnu
18 http://www.swi-prolog.org/
19 http://apice.unibo.it/xwiki/bin/view/Tuprolog/
20 http://www.jekejeke.ch/idatab/doclet/intr/en/docs/package.jsp

81

Prolog for Java21 and jinniprolog22. Despite their supposed ISO-compliance, none of
them could be really regarded as a fully working Prolog enviroment. Nevertheless, after
large refactoring of HeaRT source code we were finally able to run it using the tuProlog
environment. Unfortunately, performance of this solution was unacceptable, clearly not
satisfying the R2 and R3 requirements presented in Section 3.

The last used technique concerned translation of Prolog code into Java (therefore it
was representative of the S2CT approach). Unfortunately, evaluated Prolog Café trans-
lator23, in spite of efficiency, lacked many advanced features used broadly in the HeaRT
code, explicitly it dose not support mixing of the dynamic and static predicates. Further-
more, the text representation of HeaRT rules being itself a valid Prolog code, was also
needed to be compiled to Java class, making the dynamic loading of the rules very
inflexible.

To sum up the foregoing, Prolog proved to be too unpopular language to have ade-
quate running environments on the mobile platforms. Consequently, all approaches of
S2 type have to be preceded by the creation (or adaption) of efficient and portable Pro-
log environment. Due to related development cost, we have currently resigned from this
approach.

5.2 Future plans

The current plans for the mobile HeaRT development were created according to the
S3 approach. The inference elements of HeaRT will be rewritten in the Lua language
— the main reasons of this choice are low development cost and large variety of com-
pact and efficient runtimes on even very exotic hardware. The architecture of so called
LuaHeaRT matches the one presented in Figure 1. There were identified three major
drawbacks of the selected approach:

1. The source code must be completely rewritten into language with different paradigm
and capabilities. The related costs are not negligible, but inevitable.

2. Text representation of the rules in HeaRT is also a Prolog code, therefore in original
implementation the task of processing it was performed entirely by SWI–Prolog.
In the new architecture this process will be divided into two parts: parsing realized
by parser included in the API module and semantic analysis performed entirely by
the inference engine. Thanks to the formal grammar of the rule format it will be
possible to semi-automatically generate parsers for the different platforms.

3. In the desktop version of HeaRT queries are defined as the standard Prolog queries.
For the sake of the new implementation we must specify new, possibly portable
method of creating queries. The related code should be automatically generated
(similarly to the grammar parser) and included in the API module. On the other
hand the inference engine must contain some kind of low level query API, which
could be the target of the human friendly representation of queries.

21 http://www.gnu.org/software/gnuprologjava/
22 http://code.google.com/p/jinniprolog/
23 https://code.google.com/p/prolog-cafe/

82

For the aforementioned reasons, there is no doubt that the portable implementation
of HeaRT according to the S2 approach will involve the overall redesign of the desktop
version. However, it is not entirely bad phenomenon, the end effects can be highly
beneficial for the future development of the engine.

6 Summary

In recent years, a lot of development was devoted to build applications that make use of
contextual information to behave in an intelligent way. Due to the evolution of mobile
devices which became omnipresent in every human life, the context-aware application
became also one of the primary focus of mobile system developers. However, mobile
and desktop environments are different, and therefore migrating solutions between them
is not a trivial task. In this paper we focused on the problem of migration of a rule engine
to mobile platform.

We defined requirements that every mobile reasoning engine should fulfill to pro-
vide efficient reasoning solution. We confronted these requirements with an attempt to
migrate Prolog-based rule engine HeaRT onto the mobile platform. Finally, we pre-
sented a study of different migration scenarios, and propose a solution that provides
both efficiency, portability and allows for effective source code maintenance.

References

1. Nalepa, G.J.: Architecture of the HeaRT hybrid rule engine. In Rutkowski, L., [et al.], eds.:
Artificial Intelligence and Soft Computing: 10th International Conference, ICAISC 2010:
Zakopane, Poland, June 13–17, 2010, Pt. II. Volume 6114 of Lecture Notes in Artificial
Intelligence., Springer (2010) 598–605

2. Chronis, I., Madan, A., Pentland, A.S.: Socialcircuits: the art of using mobile phones for
modeling personal interactions. In: Proceedings of the ICMI-MLMI ’09 Workshop on Mul-
timodal Sensor-Based Systems and Mobile Phones for Social Computing. ICMI-MLMI ’09,
New York, NY, USA, ACM (2009) 1:1–1:4

3. Jung, J.J.: Contextualized mobile recommendation service based on interactive social net-
work discovered from mobile users. Expert Syst. Appl. 36 (2009) 11950–11956

4. Olguin, D., Waber, B.N., Kim, T., Mohan, A., Ara, K., Pentland, A.: Sensible organizations:
Technology and methodology for automatically measuring organizational behavior. IEEE
TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS-PART B: CYBERNET-
ICS (2009) 43–55

5. Eagle, N., (Sandy) Pentland, A.: Reality mining: sensing complex social systems. Personal
Ubiquitous Comput. 10 (2006) 255–268

6. Atzmueller, M., Hilgenberg, K.: Towards capturing social interactions with sdcf: An extensi-
ble framework for mobile sensing and ubiquitous data collection. In: Proc. 4th International
Workshop on Modeling Social Media, ACM Press (2013)

7. Bardram, J.E.: The java context awareness framework (JCAF) – a service infrastructure
and programming framework for context-aware applications. In Gellersen, H.W., Want, R.,
Schmidt, A., eds.: Pervasive Computing. Volume 3468 of Lecture Notes in Computer Sci-
ence. Springer Berlin Heidelberg (2005) 98–115

8. Woensel, W.V., Casteleyn, S., Troyer, O.D.: A Framework for Decentralized, Context-Aware
Mobile Applications Using Semantic Web Technology. (2009)

9. van Wissen, B., Palmer, N., Kemp, R., Kielmann, T., Bal, H.: ContextDroid: an expression-
based context framework for Android. In: Proceedings of PhoneSense 2010. (2010)

10. Chen, H., Finin, T.W., Joshi, A.: Semantic web in the context broker architecture. In: Per-
Com, IEEE Computer Society (2004) 277–286

83

11. Chen, H., Perich, F., Finin, T.W., Joshi, A.: Soupa: Standard ontology for ubiquitous and
pervasive applications. In: 1st Annual International Conference on Mobile and Ubiquitous
Systems (MobiQuitous 2004), Networking and Services, 22-25 August 2004, Cambridge,
MA, USA, IEEE Computer Society (2004) 258–267

12. Ranganathan, A., McGrath, R.E., Campbell, R.H., Mickunas, M.D.: Use of ontologies in a
pervasive computing environment. Knowl. Eng. Rev. 18 (2003) 209–220

13. Dey, A.K.: Understanding and using context. Personal Ubiquitous Comput. 5 (2001) 4–7
14. Gu, T., Pung, H.K., Zhang, D.Q., Wang, X.H.: A middleware for building context-aware

mobile services. In: In Proceedings of IEEE Vehicular Technology Conference (VTC. (2004)
15. Hu, H., of Hong Kong, U.: ContextTorrent: A Context Provisioning Framewrok for Pervasive

Applications. University of Hong Kong (2011)
16. Palmer, N., Kemp, R., Kielmann, T., Bal, H.: Swan-song: A flexible context expression

language for smartphones. In: Proceedings of the Third International Workshop on Sensing
Applications on Mobile Phones. PhoneSense ’12, New York, NY, USA, ACM (2012) 12:1–
12:5

17. Kramer, D., Kocurova, A., Oussena, S., Clark, T., Komisarczuk, P.: An extensible, self con-
tained, layered approach to context acquisition. In: Proceedings of the Third International
Workshop on Middleware for Pervasive Mobile and Embedded Computing. M-MPAC ’11,
New York, NY, USA, ACM (2011) 6:1–6:7

18. Dey, A.K.: Modeling and intelligibility in ambient environments. J. Ambient Intell. Smart
Environ. 1 (2009) 57–62

19. Szymon Bobek, Grzegorz J. Nalepa, M.S.: Challenges for migration of rule-based reasoning
engine to a mobile platform. In Dziech, A., Czyżewski, A., eds.: Multimedia Communica-
tions, Services and Security. Volume XX of Communications in Computer and Information
Science., Springer Berlin Heidelberg (2014) accepted.

20. Nalepa, G.J., Bobek, S.: Rule-based solution for context-aware reasoning on mobile devices.
Computer Science and Information Systems 11 (2014) 171–193

21. Bobek, S., Porzycki, K., Nalepa, G.J.: Learning sensors usage patterns in mobile context-
aware systems. In: Proceedings of the FedCSIS 2013 conference, Krakow, IEEE (2013)
993–998

22. Nalepa, G.J., Ligęza, A., Kaczor, K.: Formalization and modeling of rules using the XTT2
method. International Journal on Artificial Intelligence Tools 20 (2011) 1107–1125

23. Ligęza, A., Nalepa, G.J.: A study of methodological issues in design and development of
rule-based systems: proposal of a new approach. Wiley Interdisciplinary Reviews: Data
Mining and Knowledge Discovery 1 (2011) 117–137

84

Knowledge Modeling with the Open Source Tool
myCBR

Kerstin Bach1, Christian Sauer2, Klaus Dieter Althoff3, and Thomas
Roth-Berghofer2

1 Verdande Technology AS
Trondheim, Norway

http://www.verdandetechnology.com
2 School of Computing and Technology

University of West London, United Kingdom
http://www.uwl.ac.uk

3 Competence Center Case-Based Reasoning (CC CBR)
German Research Centre for Artificial Intelligence, Kaiserslautern, Germany

http://www.dfki.de/web/competence/cccbr

Abstract. Building knowledge intensive Case-Based Reasoning applica-
tions requires tools that support this on-going process between domain
experts and knowledge engineers. In this paper we will introduce how the
open source tool myCBR 3 allows for flexible knowledge elicitation and
formalisation form CBR and non CBR experts. We detail on myCBR 3 ’s
versatile approach to similarity modelling and will give an overview of
the Knowledge Engineering workbench, providing the tools for the mod-
elling process. We underline our presentation with three case studies of
knowledge modelling for technical diagnosis and recommendation sys-
tems using myCBR 3.

1 Introduction

Case-Based Reasoning (CBR) is a methodology introduced by Riesbeck and
Schank [13] and Kolodner [8] who derived its basic principles from cognitive
science. They describe how humans manage and reuse their experience described
in episodes. Aamodt and Plaza [2] introduce a basic model for developing CBR
applications. It consists of four processes: Retrieve, Reuse, Revise and Retain.
The CBR process requires cases that consist of problem and solution description.
Problem descriptions are usually attributes values describing a problematic or
critical situation while the solution contains information on how to solve the
given problem. In the retrieve phase, the attributes describing a problem are
matched against cases in a case base. The best n cases are returned. In order
to match a given situation these cases can be adapted (Reuse). In the revision
phase, reused cases are verified before they are retained.

CBR systems always carry out the retrieve phase which is characterized by
a similarity-based comparison of features, while the remaining phases can omit-
ted. Richter [12] introduced to model of four knowledge containers describe the
required knowledge within a CBR system:

http://www.verdandetechnology.com
http://www.uwl.ac.uk
http://www.dfki.de/web/competence/cccbr

85

– Vocabulary defining the range of allowed values for attributes. For numeric
values this is usually the value range (minimum, maximum) while for sym-
bolic values this can be a list of values.

– Similarity Measures defining the relationship between attribute values in
form of a similarty assignments. Similarity measures can be formulas like
the hamming distance for numeric values or reference tables for symbolic
values.

– Adaptation Knowledge is knowledge describing how cases can be adapted in
the reuse step, often represented as rules.

– Cases are instances describing situations that have happened and are worth
capturing in order to be reused. They instantiate attributes describing the
problematic situation as well as a solution description. Their degree of for-
malization can vary.

Developing CBR systems requires a systematic development of knowledge
models by defining the requirements and building the models itself. myCBR 3 4

is an open source tool targeting at developing customized knowledge models
with an emphasis on vocabulary and similarity measure development. myCBR 3
is an open-source similarity-based retrieval tool and software development kit
(SDK). With myCBR 3 Workbench you can model and test highly sophisti-
cated, knowledge-intensive similarity measures in a powerful GUI and easily
integrate them into your own applications using the myCBR 3 SDK[3]. Case-
based product recommender systems are just one example of similarity-based
retrieval applications.

In the remaining of this paper we will give an overview of other CBR tools
and applications (section 2) as well as showcase the functionalities of myCBR 3
(section 3). In section 4 we will show how myCBR 3 has been applied in different
CBR projects while the final section will sum up the paper and give an outlook
on future work on the tool.

2 Related Research

Freely available CBR tools are for instance FreeCBR, jCOLIBRI or eXiT*CBR,
which will be briefly discussed in this section. FreeCBR5 is a rather simple CBR
engine, which allows the realization of basic CBR features. However, it does not
cover features like case revision or retention and more individualized knowledge
models, or comprehensive global and local similarity measures, are not applica-
ble either. Further, it still requires quite some effort to apply it to a high variety
of tasks. jCOLIBRI started from a task oriented framework also covering dis-
tributed reasoning [10], recently jCOLIBRI Studio [11] for more comprehensive
support of building CBR knowledge has been introduced. Up to today jCOL-
IBRI includes more machine learning and semantic web features while myCBR 3
focused on the knowledge required in the knowledge containers.

4 http://www.mycbr-project.net
5 http://freecbr.sourceforge.net/

http://freecbr.sourceforge.net/

86

COLIBRI is another platform for developing Case-Based Reasoning (CBR)
CBR software. COLIBRI’s main goal, opposed to myCBR 3, is to provide the
infrastructure required to develop new CBR systems and its associated software
components, rather than a CBR knowledge model. COLIBRI is designed to offer
a collaborative environment. It is an open platform where users can contribute
with different designs or components of CBR systems, which will be reused by
other users. Subsequently many of the components available have been developed
by third-party research groups and contributed to the platform to be shared with
the community.

As a platform, COLIBRI offers a well-defined architecture for designing CBR
systems. COLIBRI also provides a reference implementation of that architecture:
the jCOLIBRI framework. jCOLIBRI is a white-box tool that permits system
designers to have total control of the internal details of the software. The plat-
form also includes graphical development tools to aid users in the development
of CBR systems. These tools are enclosed in the COLIBRI Studio IDE and
generate applications that use the components provided by jCOLIBRI.

Furthermore, creating individualized case representations and especially flex-
ible similarity measures is the strength of myCBR 3. eXiT*CBR has also its roots
in machine learning applications and is specialized for medical diagnosis tasks [9].
It has recently been extended in order to cope with more than one case base. In
comparison to myCBR 3, the ideas behind the methodology also differ, since we
are focusing on the knowledge container model rather than the machine-learning-
related tasks. The integration of Drools in an existing framework for executing
rules on a given corpus has been introduced by Hanft et al. [7]. In this paper
Drools has been integrated in an existing OSGi environment. The approach pre-
sented here required a more comprehensive customization since myCBR 3 was
not embedded in OSGi and the requirements for the rules differed in terms of
usable knowledge and modification of cases.

In industry, most prominent CBR tools or CBR related technologies are
used by empolis in the on SMILA6 based Information Access Suite7 as well as
by Verdande Technology in DrillEdge 8 [6] . The Information Access Suite has
been applied in various help-desk scenario applications as well as in document
management while DrillEdge focuses on predictive analytics in oil well drilling.
Both companies run proprietary implementations based on academic software -
CBR-Works [18] and Creek [1] respectively.

3 Knowledge Engineering in myCBR

myCBR 3 is an open-source similarity-based retrieval tool and software devel-
opment kit (SDK)[19]. With myCBR 3 Workbench you can model and test
highly sophisticated, knowledge-intensive similarity measures in a powerful GUI
and easily integrate them into your own applications using the myCBR 3 SDK.

6 https://www.eclipse.org/smila/
7 http://www.empolis.com
8 http://www.verdandetechnology.com

https://www.eclipse.org/smila/
http://www.empolis.com
http://www.verdandetechnology.com

87

Case-based product recommender systems are just one example of similarity-
based retrieval applications.

The myCBR 3 Workbench provides powerful GUIs for modelling knowledge-
intensive similarity measures. The Workbench also provides task-oriented config-
urations for modelling your knowledge model, information extraction, and case
base handling. Within the Workbench a similarity-based retrieval functionality
is available for knowledge model testing. Editing a knowledge model is facilitated
by the ability to use structured object-oriented case representations, including
helpful taxonomy editors as well as case import via CSV files.

The myCBR 3 Software development Kit (SDK) offers a simple-to-use data
model on which applications can easily be built. The retrieval process as well as
the case loading, even from considerably large case bases, are fast and thus allow
for seamless use in applications built on top of a myCBR 3 knowledge model.

Within myCBR 3 each attribute can have several similarity measures. This
feature allows for experimenting and trying out different similarity measures to
record variations. As you can select an appropriate similarity measure at run-
time via the API, you can easily accommodate for different situations or different
types of users.

The myCBR 3 Workbench is implemented as using the Rich Client Platform
(RCP) of Eclipse and offers two different views to edit either knowledge models
or case bases. In this section we will focus on the modelling view as shown in 1.

The conceptual idea behind the modelling view is that first a case structure
is created, followed by the definition of the vocabulary and the creation of in-
dividual local similarity measures for each attribute description (eg. CCM in 1)
followed by the global similarity measure for a concept description (Car in 1).

The modelling view of the myCBR 3 Workbench (see figure 1) is showing
the case structure (left), available similarity measures (left bottom) and their
definition (center). Modelling the similarity in the Workbench takes place on
the attribute level for local similarity measures and the concept level for global
similarity measures.

3.1 Building a Vocabulary

The vocabulary in myCBR 3 consists of concepts and attributes. A concept
description can contain one or more attribute descriptions as well as attributes
referencing concepts, which allows the user creating object-oriented case rep-
resentations. In the current version myCBR 3 also allows for the import of
vocabulary items, e.g. concepts and attributes, from CSV files as well as from
Linked (Open) Data (LOD) sources.

An attribute description can have one of the following data types: Double,
Integer, String, Date and Symbol. When attributes are defined, the data types
and value ranges are given with initial default values and can be set to the
desired values in the GUI.

88

Fig. 1. Example view of the knowledge model view in the myCBR 3 workbench

3.2 Building Similarity Measures

The Workbench provides graphically supported modelling of similarity functions
that support their definition. As an attribute description can have more than
one similarity measure experimenting with knowledge modelling approaches is
facilitated. For numerical data it is providing predefined distance (or similar-
ity) functions along with predefined similarity behaviour (constant, single step
or polynomial similarity decrease). For symbolic values, myCBR 3 Workbench
provides table functions and taxonomy functions. A table function allows defin-
ing for each value pair the similarity value, while a taxonomy subsumes similarity
values for subsets of values. Depending on the size of a vocabulary, table simi-
larity measures are hard to maintain and taxonomies allow an easier overview.
For symbolic values, also set similarities are provided in order to compare mul-
tiple value pairs. For each of the similarity measures, as well as for the global
similarity measure(s) a specific, versatile editor GUI is provided.

4 Case Study

4.1 Creating Knowledge from Unstructured Documents

This approach has been developed in machine diagnosis based on experiential
knowledge from engineers[4]. Most vehicle companies provide service after de-
livering their machines to customers. During the warranty period they are able

89

to collect data about how and when problems occurred. They take this data for
improving vehicles in different ways: collected data can go back in the product
development process, it can be used for improving diagnostic systems to repair
them at dealerships or in the factory and also educating service technicians re-
pairing vehicles abroad. This is extremely important if vehicles cannot easily be
taken back to factory, e.g. services for aircrafts or trucks.

Such machine manufacturers collect information about machine problems
that are submitted by technicians containing machine data, observations and
sometimes further correspondence between an engineer or analyst with the tech-
nician at the machine. In the end, these discussions usually come up with a
solution - however, the solution is normally neither highlighted nor formalized
and the topics and details discussed highly depend on the technician and what
the Customer Support asks for. That is the reason why cases that are stored
for collecting Customer Support information can not directly be used for CBR.
Therefore we will differentiate between Customer Support Cases (CS Cases) and
CBR Cases. CS Cases contain original information collected during a discussion
between Customer Support and the field technician, while a CBR Case contains
only relevant information to execute a similarity based search on the cases. The
CBR cases content represents each CS Case, but contains machine understand-
able information.

For building the vocabulary, we extracted all nouns and organized them in
attribute values, which were directly imported into myCBR 3 and from there
discussed with the experts. Especially the given taxonomies provided great feed-
back, because we were discussing both, the terms as well as their relationship.
Further, the workbench provided great feedback in explaining CBR because the
information the CBR engine uses gets visible. Experts can see local and global
similarity measures as well as they can adjust weightings. After 4 sessions with
the experts we had a status where the case formats and vocabulary was ready
to be deployed in a prototype.

Throughout the project we kept using the workbench when refining case
formats as well as similarity measure until the experts themselves started looking
into the knowledge models themselves.

On the application’s backend, we used the myCBR 3 SDK to develop a
web-based application that searches for similar customer cases after entering all
available machine data and observations. Because of the modularity, we were
able to deploy updated knowledge models smoothly into the application.

4.2 Knowledge Formalisation for Audio Engineering

A case study on creating a case-based workflow recommendation system for au-
dio engineering support was performed in 2013 [15]. In this study the approach
to formalise the special vocabulary used in audio engineering, consisting of vague
descriptors for timbres, amounts and directions, was developed. The study intro-
duced CBR as a methodology to amend the problem of formalising the vagueness
of terms and the variance of emotions invoked by the same sound in different
humans. It was further detailed that the researchers opted for the use of CBR

90

due to CBR’s ability to process fuzzy and incomplete queries and the ability to
choose between grades of similarity of retrieved results to emulate the vagueness.
The relations between timbres, amounts and effects, were modelled into the lo-
cal similarity measures of the initial CBR knowledge model as they compose the
overall problem description part of what was later used as a case in the resulting
CBR engine.

A challenge during this case study was encountered in the form of the task
of finding an optimal grade of abstraction for the frequency levels in audio en-
gineering within the CBR knowledge model. This was of importance as in any
knowledge formalisation task, one is facing the trade-off between an over en-
gineered, too specific knowledge model and the danger of knowledge loss by
employing too much abstraction e.g. choosing the abstraction levels too high.
The challenge was met by the researchers by choosing two additional abstrac-
tion levels of frequency segments for the timbre descriptors[15].

The next knowledge modelling step consisted of determining the best value
ranges for the numerical attributes which were to be integrated into the initial
knowledge model. After discussing this approach with the domain experts, the
researchers agreed to use two ways to represent amounts in the knowledge model.
The first way used a percentage approach, ranging from 0 to 100% and the second
way used a symbolic approach. The symbolic approach was chosen because the
domain experts mentioned that from their experience the use of descriptors for
amounts, such as ’a slight bit’ or ’a touch’ were by far more common in audio
mixing sessions then a request like ’make it 17% more airy’. So the researchers
integrated, next to the simple and precise numerical approach, a taxonomy of
amount descriptors into the initial knowledge model. The taxonomy was ordered
based on the amount the symbol described, starting from the root, describing
the highest amount down to the leaf symbols describing synonyms of smallest
amounts.

The researchers used the myCBR 3 Workbench to swiftly transfer their ini-
tial elicited knowledge model into a structured CBR knowledge model. Figure 2
provides an insight in the modelling of the local similarity measure for timbre
descriptors. The first figure shows the taxonomic modelling on the left and a sec-
tion from the same similarity measure being modelled in a comparative symbolic
table on the right.

Within myCBR 3 the researchers had the choice between a taxonomic and
a comparative table approach. Considering the versatile use of taxonomies in
structural CBR[5] the researchers initially opted for the use of taxonomies. Yet
regarding the complex similarity relationships between the elicited timbre de-
scriptors the researchers also investigated whether a comparative table approach
for modelling the similarities of the timbre descriptors. Experiments to establish
the performance and accuracy of both approaches yielded no significant differ-
ence in the performance of the similarity measures but taxonomies were found
to be more easily and intuitively elicited from the audio engineer experts.

After the initial knowledge model was created the researchers performed
a number of retrieval experiments using the myCBR 3 built in retrieval test-

91

Fig. 2. Timbre descriptor taxonomy and comparative table

ing facilities. The goal of these tests was to refine the initial knowledge model,
specifically the similarity measures for the timbre descriptors. Additionally the
researchers used the feedback from domain experts to streamline the case struc-
ture to the most important attributes. This streamlining was performed within
a live system and the researchers were able to directly integrate the streamlined
CBR engine into their Audio Advisor application thanks to myCBR 3 ’s flexible
API.

4.3 Knowledge Formalisation for Hydrometalurgy Gold Ore
Processing

In this case study a twofold approach to elicitating and formalising knowledge
in the domain of hydrometallurgical processing of gold ore was researched. The
study demonstrated processes of formalising hydrometallurgy experts knowledge
into two different CBR knowledge models. The first knowledge model was than
employed in the Auric Adviser workflow recommender software [17].

Based on the knowledge gathered from the domain experts the researchers
created an initial knowledge model and distributed the knowledge into the 4
knowledge containers of CBR in the following way: The vocabulary consisted
of 53 attributes, mainly describing the ore and mineralogical aspects of an ore
deposit. With regard to the data types used, the researchers used 16 symbolic, 26
floating point, 6 boolean and 5 integer value attributes. The symbolic attributes
described minerals and physical characteristics of minerals and gold particles,
such as their distribution in a carrier mineral. Further symbols were elicited to
describe the climate and additional contexts a mining operation can be located
in, like for example the topography.

The cases were distinctive mainly with regard to the mineralogical context
of the mined ore. Thus the researchers created 5 cases describing refractory

92

arsenopyritic ores, 5 describing free milling gold ores, 2 on silver rich ores, 6
cases on refractory ores containing iron sulphides, 4 on copper rich ores and one
each on antimony sulphide rich ores, telluride ore and carbonaceous ore.

Fig. 3. Example of a similarity measure for the gold distribution within an ore

To compute the similarity of a query, composed of prospective data, and
a workflow case, the researchers modelled a series of similarity measures for
which the researchers had the choice between comparative tables, taxonomies
and integer or floating point functions. For their initial knowledge model the
researchers mainly relied on comparative tables.

The study’s approach included the idea to model as much of the complex
knowledge present in the domain of ore refinement into the similarity measures
as possible. This was based on the assumption that the similarity based retrieval
approach provided by the use of CBR would allow to capture and counter most
of the vagueness still associated with the selection of the optimal process in
the hydrometallurgical treatment of refractory ores domain. For example, it was
possible to model into the similarity measures such facts as that the ore does not
need any more treatment if it contains gold grains greater than 15 micro meters
in diameter. Such facts are easy to integrate into the similarity measure and
thus are operational (having an effect) in the knowledge model. The researchers
deemed this capability of the similarity measures to capture and represent such
‘odd’ behaviours of the knowledge model very important. The study assumes
also that these ‘odd’ facts or bits of knowledge are hard to capture by rules,
and thus has ultimately kept another, rule-based approach of modelling the
hydrometallurgical domain knowledge, IntelliGold, from succeeding on a broad
scale [20].

For the global similarity measure of the cases the researchers used a weighted
sum of the attributes local similarities. This allowed for the easy and obvious
emphasise of important attributes, such as for example ‘ Clay Present’, as the
presence of clay forbids a selection of hydrometallurgical treatments. As the
study mainly aiming for case retrieval, the need for adaptation knowledge was
minor. Therefore the researchers did not formalised any adaption knowledge.
The retrieval results achieved with the first knowledge model was described as
satisfying in accuracy and applicability by domain experts.

93

5 Conclusion and Future Work

In this paper we have presented the approach to knowledge formalisation within
myCBR 3. myCBR 3 emphasised the fact that myCBR 3 is a very versatile
tool to create CBR knowledge models with a particular versatile suit of editors
for similarity modelling. During the evaluations of the presented projects with
the stakeholders, especially the domain experts found that the GUIs offered by
myCBR 3 are intuitive, particularly with regard that they did not have prior
knowledge of CBR and the required domain knowledge modeling techniques.

Furthermore, also based on experiences from the case studies, we demon-
strated that myCBR 3 allows for on-going knowledge model improvement, even
in a running application. This fact allows also for knowledge maintenance and
refinement in live CBR applications and also enables developers to follow the
rapid prototyping approach in their projects. As shown in previous a research
cooperation with COLIBRI, as well as in a research cooperation on similarity of
event sequences, myCBR 3 is particular versatile for similarity measure based
knowledge modelling. Furthermore myCBR 3 is also easily extendable with re-
gard to its SDK and API to cater for any kind of new similarity measures [14].

For future work we are currently reviewing prototype implementations of
additional features for myCBR 3. These additional features comprise the abil-
ity of automatic extraction of vocabulary items and similarity measures from
web community data, the incorporation of drools for the generation of adaption
knowledge and the incorporation of case acquisition from databases. Furthermore
we are currently finishing the work on the next release of myCBR 3, reaching ver-
sion 3.1. We are also in the process of integrating a mobile version of myCBR 3,
catering for the needs of android application, such as fast access to assets in a
future version of myCBR 3 [16].

References

1. Aamodt, A.: Knowledge-intensive case-based reasoning in creek. In: Funk, P.,
Gonzlez-Calero, P.A. (eds.) Proceedings of the ECCBR 2004. LNCS, vol. 3155,
pp. 1–15. Springer (2004)

2. Aamodt, A., Plaza, E.: Case-based reasoning: Foundational issues, methodological
variations, and system approaches. Artificial Intelligence Communications, 7(1),
39–59 (1994)

3. Bach, K., Althoff, K.D.: Developing case-based reasoning applications using mycbr
3. In: Agudo, B.D., Watson, I. (eds.) Case-Based Reasoning Research and Devel-
opment, LNCS, vol. 7466, pp. 17–31. Springer Berlin Heidelberg (2012)

4. Bach, K., Althoff, K.D., Newo, R., Stahl, A.: A case-based reasoning approach
for providing machine diagnosis from service reports. In: Ram, A., Wiratunga, N.
(eds.) Case-Based Reasoning Research and Development (Procs. of the 19th Inter-
national Conference on Case-Based Reasoning). vol. 6880, pp. 363–377. Springer
Verlag, Berlin Heidelberg (2011)

5. Bergmann, R.: Experience Management: Foundations, Development Methodology,
and Internet-Based Applications, Lecture Notes in Computer Science, vol. 2432.
Springer (2002)

94

6. Gundersen, O.E., Sørmo, F., Aamodt, A., Skalle, P.: A real-time decision support
system for high cost oil-well drilling operations. AAAI Publications, Twenty-Fourth
IAAI Conference (2012)

7. Hanft, A., Schäfer, O., Althoff, K.D.: Integration of drools into an osgi-based bpm-
platform for cbr. In: Agudo, B.D., Cordier, A. (eds.) ICCBR-2011 Workshop Pro-
ceedings: Process-Oriented CBR (2011)

8. Kolodner, J.: Case-based reasoning. Morgan Kaufmann Publishers Inc., San Fran-
cisco, CA, USA (1993)

9. López, B., Pous, C., Gay, P., Pla, A., Sanz, J., Brunet, J.: exit*cbr: A framework
for case-based medical diagnosis development and experimentation. Artif. Intell.
Med. 51(2), 81–91 (Feb 2011)

10. Recio-Garćıa, J.A., Dı́az-Agudo, B., González-Calero, P.A.: A distributed cbr
framework through semantic web services. In: Bramer, M., Coenen, F., Allen, T.
(eds.) Research and Development in Intelligent Systems XXII (Proc. of AI 2005).
pp. 88–101. Springer (December 2005)

11. Recio-Garćıa, J.A., Dı́az-Agudo, B., González-Calero, P.A.: Template based design
in colibri studio. In: Proceedings of the Process-oriented Case-Based Reasning
Workshop at ICCBR’11. pp. 101–110 (2011)

12. Richter, M.M.: Introduction. In: Lenz, M., Bartsch-Spörl, B., Burkhard, H.D.,
Wess, S. (eds.) Case-Based Reasoning Technology – From Foundations to Appli-
cations. LNAI 1400, Springer-Verlag, Berlin (1998)

13. Riesbeck, C.K., Schank, R.C.: Inside case-based reasoning. Lawrence Erlbaum As-
sociates, Pubs., Hillsdale, N.J. (1989)

14. Roth-Berghofer, T., Sauer, C., Garcia, J.A.R., Bach, K., Althoff, K.D., Agudo,
B.D.: Building case-based reasoning applications with mycbr and colibri studio.
In: Case-Based Reasoning Research and Development. Springer (2012)

15. Sauer, C., Roth-Berghofer, T., Auricchio, N., Proctor, S.: Recommending audio
mixing workflows. In: Case-Based Reasoning Research and Development, pp. 299–
313. Springer (2013)

16. Sauer, C.S., Hundt, A., Roth-Berghofer, T.: Explanation-aware design of mobile
mycbr-based applications. In: Case-Based Reasoning Research and Development,
pp. 399–413. Springer (2012)

17. Sauer, C.S., Rintala, L., Roth-Berghofer, T.: Knowledge formalisation for hy-
drometallurgical gold ore processing. In: Research and Development in Intelligent
Systems XXX, pp. 291–304. Springer (2013)

18. Schulz, S.: Cbr-works - a state-of-the-art shell for case-based application build-
ing. In: Proceedings of the 7th German Workshop on Case-Based Reasoning,
GWCBR’99, Wrzburg. pp. 3–5. Springer-Verlag (1999)

19. Stahl, A., Roth-Berghofer, T.R.: Rapid prototyping of CBR applications with the
open source tool myCBR. In: Proceedings of the 9th European conference on Ad-
vances in Case-Based Reasoning. pp. 615–629. Springer-Verlag, Heidelberg (2008)

20. Torres, V.M., Chaves, A.P., Meech, J.A.: Intelligold-an expert system for gold plant
process design. Cybernetics & Systems 31(5), 591–610 (2000)

95

SBVRwiki (Tool Presentation)?

Krzysztof Kluza, Krzysztof Kutt and Marta Wo¹niak

AGH University of Science and Technology
al. Mickiewicza 30, 30-059 Krakow, Poland

{kluza,kkutt}@agh.edu.pl

Abstract. SBVR is a mature standard for capturing expressive busi-
ness rules along with their semantics, and is especially useful in the
communication with business people. SBVRwiki is a novel tool that al-
lows for an e�ective use of the SBVR notation. This online collaborative
solution allows for distributed and incremental rule authoring for busi-
ness analytics and users. It supports creation of vocabularies, terms and
rules in a transparent, user-friendly fashion. The tool provides visual-
ization and evaluation mechanisms for created rules, and besides basic
syntax highlighting and checking, it allows for logical analysis. As it is
integrated with the Loki knowledge engineering platform, it allows for
on-the-�y conversion of the SBVR rule base and vocabularies to Prolog.
The Dokuwiki back-end provides storage and unlimited version control,
as well as user authentication.

1 Introduction and Motivation

SBVR (Semantics of Business Vocabulary and Business Rules) [7] is a standard
for capturing expressive business rules, commonly perceived as a useful tool in
the communication between business analytics and business people. The set of
vocabularies and rules described with the use of SBVR can be an important part
of requirements speci�cation from the software engineering methodologies.

An e�ective use of the SBVR notation is non trivial, because it requires
certain knowledge engineering skills. Thus, there is a need for software supporting
business analytics in the rule acquisition process. Such software should allow
for syntax checking, automatic hinting as well as preliminary evaluation of the
resulting set of rules.

There are several SBVR-supporting tools like editors that support text-based
creation of dictionaries and business rules providing syntax highlighting and sug-
gestions; modelers that allow for generating models based on SBVR compliant
documents; or tools that allow a user to import various models and transform
them into the SBVR syntax. Considering their limitations of the existing tools
supporting SBVR authoring, our motivation is to deliver a lightweight tool al-
lowing for easy creation of the SBVR knowledge bases even for inexperienced
users. We opt for a web-based solution that allows business users and analytics
to collaborate using a familiar browser-based interface.

? The paper is supported from the Prosecco project funded by NCBR.

96

SBVRwiki uses the Dokuwiki1 back-end for storage, unlimited version control
and user authentication. The tool supports identi�cation and creation of vocab-
ularies, terms and rules in a transparent, user friendly fashion. It also provides
visualization and evaluation mechanisms for created rules.

Our tool is integrated with the Loki knowledge engineering platform [5,4],
which is based on DokuWiki as well. This allows for on-the-�y conversion of the
SBVR rule base and vocabularies to Prolog. Use of the Prolog-based represen-
tation also opens up possibilities of formalized analysis of SBVR rules.

The rest of the paper is structured as follows. Section 2 discusses the func-
tional requirements for the wiki-based collaborative platform for knowledge en-
gineering, especially for requirements analysis. Then, in Section 3 the SBVRwiki
system is presented. Future work is summarized in the �nal Section 4.

2 Functional Requirements

Wikis are broadly used in various areas including distributed requirements anal-
ysis [2,3]. They are chosen as they are easy to use, provide an e�cient way for
collaboration within a large group of people and their maintenance is almost
costless. The drawbacks of using the Wiki systems in design process are lack
of automatic analysis and con�icts detection as well as unstructured text in
which documentation is written. Moreover, users can write requirements in the
forms that are suitable for them. Thus, others can misinterpret the idea and this
can result in useless time-consuming debates. The tool presented in this paper
addresses both indicated issues. It combines simplicity of use with the SBVR
standard that enforces structured speci�cation.

Main functional requirements for an SBVR wiki-based system are as fol-
lows: 1) creation of a new SBVR project composed of vocabularies, facts, and
rules using a set of prede�ned templates, 2) authoring of a project using struc-
tured vocabularies, with identi�ed categories, 3) SBVR syntax veri�cation and
highlighting in text documents, as well as syntax hinting, 4) visualization of vo-
cabularies and rules as UML class diagrams to boost the transparency of the
knowledge base, 5) �le export in the form of SBVR XMI, 6) integration with
the existing PlWiki and BPWiki [6] platforms, 7) full support for the SBVR
syntax, including at least binary facts, 8) constant assistance during the editing
of the SBVR statements, including elimination of common errors, the use of un-
de�ned concepts, duplicated entries, etc. Using these requirements, a prototype
implementation called SBVRwiki was developed [8].

3 System Presentation

The development of the SBVR wiki was based on several implementation re-
quirements, such as: the system should be an extension (plugin) to the DokuWiki
platform by extending the capabilities of the native Dokuwiki editor; it should
operate in parallel with the PlWiki and BPWiki extensions, and should not
interfere with the operation of other add-ons installed on the platform.

1 A lightweight and open-source wiki engine, see: www.dokuwiki.org.

97

Dokuwiki o�ers several classes of plugins allowing for �ne-grained processing
of the wiki text. SBVRwiki implements two main plugin components:

� SBVRwiki Action Plugin � responsible for the �le export in the XMI (XML)
format. It also handles the user interface events and extends the built-in
Dokuwiki editor with shortcuts for common SBVR constructs.

� SBVRwiki Syntax Plugin � used to enter SBVR expressions as wiki text
using a special <sbvr> wiki markup. Using it a user can enter legal SBVR
expressions and the plugin o�ers rich syntax highlighting. Moreover, vocabu-
laries can be visualized with the dynamic translation to UML class diagrams
that are rendered by the wiki using the PlantUML tool2, see Fig. 1.

Fig. 1. Class diagram generation with PlantUML (from left: fragment of the fact dic-
tionary; a text �le to generate the class diagram; and UML class diagram generated
by the PlantUML tool)

There are several advantages of using a Wiki system as the implementation
platform. As the SBVR expressions can be stored in separate wiki pages, the
content can be simultaneously edited by a number of users. The Loki engine
can select only the relevant parts of this knowledge on the �y, so the pages can
contain not only the SBVR content, but also additional pieces of information,
such as comments, �gures, media attachments, and hypertext links to other
resources in the wiki or on the Web.

For this tool presentation, we uses a benchmark case of SBVR knowledge
base, the classic EU Rent case3, provided as a part of the SBVR speci�cation [7].

EU-Rent is a �ctional international car rental company. Renters may be
individuals or accredited members of corporate customers (a company or similar
organization). In each country, EU-Rent o�ers broadly the same kinds of cars,
ranging from �economy� to �premium� although the mix of car models varies
between countries. Rental prices also vary from country to country. However,
di�erent models of o�ered cars are organized into groups, and all cars in a group
are charged at the same rates within a country.

2 See: plantuml.sf.net.
3 You can browse the EU-Rent case using wiki on: http://home.agh.edu.pl/~kkutt/
sbvrwiki-demo/. Credentials: demo/demo.

98

A car rental is a contract between EU-Rent and a renter, who is responsible
for payment for the rental and any other costs associated with the rental (except
those covered by insurance). A rental booking speci�es: the car group required;
the start and end dates/times of the rental; the EU-Rent branch from which the
rental is to start.

During creating a new SBVR project, several steps have to be taken. How-
ever, this does not require much knowledge of the application because a user is
supported by a set of built-in guiding wizards. Using SBVRwiki, a user should
de�ne concepts �rst, then writes down facts, and �nally rules can be authored.
Concepts, facts and rules are stored in the separate Wiki namespaces. The Lexer
module of the plugin detects the previously de�ned tokens what allows for proper
syntax highlighting as well as for detecting the use of unde�ned concepts.

In the case of the EU-Rent example, a user can start from creating a dic-
tionary. It is a set of terms grouped in categories. If a user wants to describe
concepts such as additional driver or loyalty club, it is a possibility to write
down the information about these terms, such as a source, a type or a de�nition.
A user can also group them in category Customers. Finally, dictionary is saved
and clearly formatted wiki page can be displayed (see Fig. 2).

The next step consists in creating the base of facts. A user can specify what
dependencies exist between previously de�ned concepts. E.g. it can be speci�ed
that loyalty club includes club member, renter is club member, and renter is
additional driver. When all such facts are described and saved, simple UML
graphs are generated to visualize created database (see Fig. 3). In the last step,
a user speci�es rules providing constraints for modeled system. When saved, they
are also clearly formatted and visualized in simple graphs form (see Fig. 4).

Fig. 2. EU Rent Terms Dictionary

99

Fig. 3. EU Rent Facts Visualization

Fig. 4. EU Rent Rules Visualization

100

4 Future Work

Although the current version of SBVRwiki does not support all aspects of the
SBVR standard, it implements enough of its elements to allow users to create
complex models of business rules in Structured English. Its limitations are the
lack of support for multi-argument facts, polymorphism or additional attributes
for the expressions, dictionaries, facts and rules.

As the tool is implemented as a plugin for the DokuWiki system, it can
be integrated with the BPWiki plugin [6]. This would allow for speci�cation of
systems including both business processes and rules. Moreover, the use of the
Prolog-based representation in Loki opens up possibilities of formalized analysis
of the SBVR rules. In future, the tool can be also extended to use the rule engine
integrated with DokuWiki [1] for reasoning capabilities.

SBVRwiki has been recently used in the Prosecco4 research project as a tool
for authoring the SBVR rules. One of the objectives of the project is the de-
velopment of a system supporting management of SMEs (Small and Medium
Enterprises) using business process and rules with well de�ned semantics. Thus,
the tool was used to model vocabularies and rules identi�ed in the SMEs par-
ticipating in the project.

References

1. Adrian, W.T., Bobek, S., Nalepa, G.J., Kaczor, K., Kluza, K.: How to reason by
HeaRT in a semantic knowledge-based wiki. In: Proceedings of the 23rd IEEE Inter-
national Conference on Tools with Arti�cial Intelligence, ICTAI 2011. pp. 438�441.
Boca Raton, Florida, USA (November 2011)

2. Decker, B., Ras, E., Rech, J., Jaubert, P., Rieth, M.: Wiki-based stakeholder par-
ticipation in requirements engineering. Software, IEEE 24(2), 28�35 (March 2007)

3. Liang, P., Avgeriou, P., Clerc, V.: Requirements reasoning for distributed require-
ments analysis using semantic wiki. In: 2009 Fourth IEEE International Conference
on Global Software Engineering (ICGSE 2009), 13-16 July 2009, Limerick, Ireland.
pp. 388�393. IEEE (July 2009)

4. Nalepa, G.J.: Collective knowledge engineering with semantic wikis. Journal of Uni-
versal Computer Science 16(7), 1006�1023 (2010), http://www.jucs.org/jucs_16_
7/collective_knowledge_engineering_with

5. Nalepa, G.J.: Loki � semantic wiki with logical knowledge representation. In:
Nguyen, N.T. (ed.) Transactions on Computational Collective Intelligence III, Lec-
ture Notes in Computer Science, vol. 6560, pp. 96�114. Springer (2011), http:

//www.springerlink.com/content/y91w134g03344376/
6. Nalepa, G.J., Kluza, K., Ciaputa, U.: Proposal of automation of the collaborative

modeling and evaluation of business processes using a semantic wiki. In: Proceedings
of the 17th IEEE International Conference on Emerging Technologies and Factory
Automation ETFA 2012, Kraków, Poland, 28 September 2012 (2012)

7. OMG: Semantics of Business Vocabulary and Business Rules (SBVR). Tech. Rep.
dtc/06-03-02, Object Management Group (2006)

8. Wo¹niak, M.: Analysis of applications of rule-based tools in requirements engineer-
ing. Master's thesis, AGH UST (2013), Supervisor: G. J. Nalepa

4 See: http://prosecco.agh.edu.pl.

