
Text Compression: Syllables

Jan Lánský and Michal Žemlička

Charles University, Faculty of Mathematics and Physics
Malostranské nám. 25, 118 00 Praha 1, Czech Republic
zizelevak@gmail.com, michal.zemlicka@mff.cuni.cz

Text Compression: Syllables

Jan Lánský and Michal Žemlička

Charles University, Faculty of Mathematics and Physics
Malostranské nám. 25, 118 00 Praha 1, Czech Republic
zizelevak@gmail.com, michal.zemlicka@mff.cuni.cz

Abstract. There are two basic types of text compression by symbols –
in the first case symbols are represented by characters, in the second case
by whole words. The first case is useful for very short files, the second case
for very long files or large collections. We supposed that there exist yet
another way where symbols are represented by units shorter than words
– syllables. This paper is focused to specification of syllables, methods for
decomposition of words into syllables, and using syllable-based compres-
sion in combination of principles of LZW and Huffman coding. Above
mentioned syllable-based methods are compared with their counterpart
variants for characters and whole words.

1 Introduction

Knowledge on structure of coded messages can be very useful for design of a
successfull compression method. When compressing text documents, the struc-
ture of messages is dependent on used language. We can expect that documents
written in the same language will have similar structure.

Similarity of languages can be seen according many aspects. Language clas-
sification can be made, for example, according their use of fixed or free word
order or whether they have simple or rich morphology.

To the languages with rich morphology they belong for example Czech and
German. In these languages is syllable a natural element logically somewhere
between characters and words. Each word is often created by two or more sylla-
bles.

At the beginning we supposed that:

– Syllable-based compression will be suitable for middle-sized files, character-
based compression will be more suitable for small files, and word-based com-
pression will suit best for very large files.

– Syllable-based compression will be more suitable for languages with rich
morphology.

– The number of unique syllables in given language is much lower than the
number of unique words. This lead to lower memory requirements of syllable-
based compression algorithms than of word-based ones.

– The sets of syllables of two documents written in the same language are
usually more similar than sets of words of these documents.

K. Richta, V. Snášel, J. Pokorný (Eds.): Dateso 2005, pp. 32–45, ISBN 80-01-03204-3.



Text Compression: Syllables 33

2 Languages and Syllables

We can classify languages according their morphology. There are languages like
English having simple morphology where from one stem there can be derived
only a few word forms. There are also languages with rich morphology (like
Czech) where from one stem it can be derived several hundred word forms.

We will demonstrate it on some examples from Czech and English. The verb
take has in English only next 5 forms: take, takes, taking, took, taken. Czech verb
vźıt, which corresponds to the English verb take, has next 24 forms: vźıt, vźıti,
vezmu, vezmeš, vezme, vezmeme, vezmete, vezmou, vzal, vzala, vzalo, vzali, vzaly,
vezmi, vezměme, vezměte, vzat, vzata, vzato, vzati, vzaty, vzav, vzavši, vzavše.
Next difference is in creation of words with similar meaning and negations. In
English there are used combinations of more words for getting different mean-
ing, for example get on, get off. The negation in English is created by combi-
nation with word not, for example not get on. In Czech prefixes and suffixes
are used instead. To English get on, get off, not get on correspond Czech nas-
toupit, vystoupit, nenastoupit. In Czech we can create from verb skočit (jump
in English) using prefixes 9 next similar verbs: přeskočit, nadskočit, podskočit,
odskočit, rozskočit, naskočit, vskočit, uskočit, vyskočit. For each of these verbs we
can create their antonyms by using prefix ne: neskočit, nepřeskočit, nenadskočit,
nepodskočit, neodskočit, nerozskočit, nenaskočit, nevskočit, neuskočit, nevyskočit.
For each of these 20 verbs there exist 24 grammatical forms. So from this one
word skočit we can derive over 400 similar words, but these words are composed
from only a few tens of syllables.

2.1 Syllables

According Compact Oxford English Dictionary [10] syllable is defined as: ‘A unit
of pronunciation having one vowel sound, with or without surrounding conso-
nants, and forming all or part of a word.’

As the decomposition to syllables is used in data compression, it is not nec-
essary to decompose words into syllables always correctly. It is sufficient if the
decomposition produces groups of letters that occur quite frequently. We there-
fore use simplified definition below that is not equivalent with the grammatically
correct definition. ‘Syllable is a sequence of sounds, which contains exactly one
maximal subsequence of vowels.’ This definition implies that the number of syl-
lables in a word is equal to the number of maximal sequences of vowels in the
same word. For example, the word famous contains two maximal sequences of
vowels: a and ou, so this word is created from two syllables: fa and mous. Word
pour contains only one maximal sequence of vowels ou, so whole this word is
created by only one syllable.

Decomposition words into syllables is used for example for text formatting
when we want to split word exceeding end of line. Disadvantage of this way is
that we cannot decompose all words and some words must be left unsplitted.

One of the reasons why we selected syllables is that documents contain less
unique syllables than unique words. Example Czech document (Karel Čapek:



34 Jan Lánský, Michal Žemlička

Hordubal) with the size of 195 kB has 33,135 words form which are 8,071 distinct
and 61,259 syllables from which are 3,187 distinct. English translation of bible
[9] with the size of 4MB has 767,857 words from which are 13,455 distinct and
1,073,882 syllables from which are 5,604 distinct.

2.2 Problems in Decomposition of Words into Syllables.

Decomposition of words into syllables is not always unique. To determine it,
we must often know origin of the word. Some problems will be demonstrated
on selected Czech words. We supposed that for compression it is sufficient to
use some approximation of correct decomposition of words into syllables. We
supposed that this approximation would have only a small negative effect on
reached degree of compression.

An example of non-uniqueness of decomposition of words into syllables is
the word Ostrava which can be correctly decomposed into Os-tra-va and also
into Ost-ra-va. Generally sequence of letters st is often a source of ambiguity of
decomposition of Czech words to syllables.

An example of a variant decomposition of similar sequences of letters, which
is caused by origin of words, is words oblet́ı and obreč́ı, that have first two letters
same. Word oblet́ı (will fly around) was created by adding prefix ob to the word
let́ı (flies). Word obreč́ı (will cry over) was created by adding prefix o to the
word breč́ı (cries). So the word oblet́ı is decomposed into ob-le-t́ı, word obreč́ı is
decomposed into o-bre-č́ı. A big group of problems is brought by words of foreign
origin and their adapted forms.

Sometimes it can by difficult to recognize real number of syllables of given
word. Although the word neuron is a prefix of the word neuronit, these words
have different decomposition to syllables. Word neuron is decomposed to neu-
ron, word neuronit is decomposed to ne-u-ro-nit. In the first case the sequence of
letters neu is composed by one syllable, in the second case it is composed from
two syllables.

Full correctness of decomposition of words into syllables can be reached only
at the price of very high effort. For the use in compression it is not impor-
tant whether the decomposition is absolutely correct, but whether the produced
groups of letters are frequent enough.

Other goal is to formalize terms letter, vowel, consonant, word, syllable, and
language. When we try to define expressions vowel and consonant, we must
interesting about position letter in the word. For example in Czech letters r and
l can be according their context both vowels and consonants. In English similar
role is played by the letter y.

2.3 Definition of Syllable.

Definition 1. Let Σ be finite nonempty set of symbols (alphabet). Symbol λ 6∈ Σ
is called empty word. Let ΣP ⊆ Σ be set of letters, then ΣN = Σ\ΣP is called
set of nonletters. Let ΣC ⊆ ΣN be set of digits, then ΣZ = ΣN\ΣC is called set
of special characters.



Text Compression: Syllables 35

Definition 2. Let Σ be finite nonempty set of symbols. Let ΣP ⊆ Σ be set of
letters. Let ΣM ⊂ ΣP be set of small letters, then ΣV = ΣP\ΣM is called set of
capital letters. If there exists bijection ψ : ΣM → ΣV, then ΣP is called correct
set of letters.

Note 1. The set of letters for most of natural languages is correct, but exists
exceptions like German. In German letter ß can be according context or small
or capital letter. If we want to work with non-correct sets of letters, we must
modify definition 2.

Definition 3. Let Σ be finite nonempty set of symbols. Let ΣP ⊆ Σ be set of
letters.

Let φ : (Σ ∪ {λ})×ΣP × (Σ ∪ {λ}) → {0, 1, 2, 3} be a function. Let β ∈ ΣP,
let α, γ ∈ (ΣP ∪ {λ}). Then:

– If φ(α, β, γ) = 0 then β in context α, γ is called vowel. (β ∈ ΣA).
– If φ(α, β, γ) = 1 then β in context α, γ is called consonant. (β ∈ ΣB)
– If φ(α, β, γ) = 2 then β in context α, γ is consisting from vowel β1 followed

by consonant β2. As β1 and β2 are together one letter, they cannot be split
into different syllables.

– If φ(α, β, γ) = 3 then β in context α, γ is consisting from consonant β1

followed by vowel β2. As β1 and β2 are together one letter, they cannot be
split into different syllables.

Note 2. It is probable that there exist languages where we do not need to know
context α, γ to decide if letter β is a vowel or a consonant. In both Czech and
English the use of context is necessary.

In Czech can letters r and l be according their context used as vowels or as
consonants. If α or γ are vowels, then β = r (respectively β = l) is a consonant,
in the opposite case it is a vowel. Examples: mlčet, mluvit, vrtat, vrátit.

In English the letter y in context of two vowels has the role of a consonant
(example: buying).

In English words of type trying φ(r, y, i) has value 2, so y is composed from
vowel y1 followed by consonant y2.

We supposed that there exist a language where φ(α, β, γ) can have value 3,
but in English and Czech it is not so.

The size of context one from left and right side is sufficient for Czech and
for most of English words. We suppose that this size of context can be sufficient
too.

Definition 4. Let Σ be a finite nonempty set of symbols. Let ΣP ⊂ Σ be a set
of letters. Let ΣC ⊂ ΣN be a set of digits. Let ΣC ∩ΣP = ∅. Let α = α1, . . . , αn,
αi ∈ Σ. If one of the following cases is valid, then α is called a word over
alphabet Σ.

If αi ∈ ΣZ for i = 1, . . . , n, word α is called other.
If αi ∈ ΣC for i = 1, . . . , n, word α is called numeric.
If αi ∈ ΣM for i = 1, . . . , n, word α is called small.



36 Jan Lánský, Michal Žemlička

If αi ∈ ΣV for i = 1, . . . , n, Word α is called capital.
If α1 ∈ ΣV & αi ∈ ΣM for i = 2, . . . , n, word α is called mixed.

Note 3. Numeric words and other-words are called together as words from non-
letters. Small, capital, and mixed words are called as words from letters.

Definition 5. Let Σ be finite nonempty set of symbols. Let α = α1, . . . , αn, αi ∈
Σ. Let β1, ..., βm are words over alphabet Σ. Let βi · βi+1 are not words over
alphabet Σ for i = 1, . . . ,m − 1. Let α = β1 · ... · βm. Then β1, ..., βm is called
decomposition of the string α into words.

Note 4. From definitions 4 and 5 follows that decomposition of strings into words
is fast unique. There is an exception when after two ore more capital letters
follows at least one small letter (example CDs), but this case is very rare in
natural languages.

There exist two types of algorithms of decomposition of strings into words.
Both types differ only in solving that exception. Algorithms of type A1 create
from this string capital-word and mixed-word (example C and Ds). Algorithms
of type A2 create from this string capital-word and small-word (example CD
and s).

Words are decomposed into syllables (see Def. 9).

Definition 6. Language L is an ordered 6-tuple (Σ,ΣP , ΣC , ΣM , φ, A), where

– Σ is a finite nonempty set of symbols.
– ΣP ⊂ Σ is a correct set of letters.
– ΣC ⊂ ΣN is a set of digits, where ΣN = Σ\ΣP .
– ΣM ⊂ ΣP is a set of small letters.
– φ : (Σ ∪ {λ}) × Σ × (Σ ∪ {λ}) → {1, ..., 4} is a function which according

definition 3 specify whether letter β in context α, γ ∈ (Σ ∪ {λ}) is a vowel
or a consonant.

– A is an algorithm which for each string α = α1, . . . , αn, αi ∈ Σ finds some
decomposition of given string into words.

Definition 7. Let L = (Σ,ΣP , ΣC , ΣM , φ, A) be a language. Let α, γ ∈ Σ∗
B,

β ∈ Σ∗
A, |β| ∈ {1, 2, 3}. If α · β · γ is a word over alphabet σ, then it is syllable

of the language L.

Note 5. Notation α ∈ Σ∗
B (respective β ∈ Σ∗

A) mean that β is a sequence of
consonants (respective vowels).

From definitions 4 and 7 follows that each syllable is also a word. So we will
recognize five types of syllables: other syllables, numeric syllables, small syllables,
capital syllables, and mixed syllables.

Condition that each syllable must be also word is necessary. For example,
the string xxAxx is not word, therefore it cannot be (according Def. 7) syllable.

Definition 8. Let L = (Σ,ΣP , ΣC , ΣM , φ, A) be a language. Let α = α1, . . . , αn,
αi ∈ ΣP is a word over alphabet Σ.



Text Compression: Syllables 37

If (∃k)αk ∈ ΣA, then α is called word decomposable into syllables.
If (∀k)αk ∈ ΣA then α is called non-syllable word.

Definition 9. Let L = (Σ,ΣP , ΣC , ΣM , φ, A) be a language. Let α = α1, . . . , αn,
αi ∈ ΣP is a word decomposable into syllables. Let β1, ..., βm be syllables of the
language L. Let α = β1 · ... · βm, then β1 · ... · βm is called decomposing word α
into syllable.

Definition 10. Let L = (Σ,ΣP , ΣC , ΣM , φ, A) be a language. Let P be an al-
gorithm which input is document D decomposed into words by algorithm A into
words α1, ..., αn over alphabet Σ. If for all αi they are valid both the follow-
ing conditions, then P is called algorithm of decomposition into syllables for
language L.

– If αi is a word decomposable into syllables, then output of the algorithm is a
decomposition of the word αi into syllables.

– If αi is a non-syllable word, numeric-word, or other-word, then output of the
algorithm is a word αI .

Definition 11. Let P be an algorithm of decomposition into syllables for lan-
guage L1. If B is an algorithm of decomposition into syllables for all other lan-
guages L, then we say that P is a universal algorithm of decomposition into
syllables. If there exist a language L2 for which P is not algorithm of decompo-
sition into syllables, then we say that P is specific algorithm of decomposition
into syllables.

Note 6. Each universal algorithm of decomposition into syllables P has to use
all information from definition of language L. In the other case we can construct
language for which P will not be an algorithm of decomposition into syllables.

2.4 Examples of languages

There are two examples of languages: English and Czech. Czech languages has
in comparison with English new diacritical letter.

English language can be characterized as LEN = (Σ,ΣP , ΣC , ΣM , φ, A) where:

– Σ = ANSI character set
– ΣP = {a, . . . , z, A, . . . , Z}
– ΣC = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
– ΣM = {a, . . . , z}
– φ is defined as:

• (∀α ∈ (Σ ∪ {λ}),∀β ∈ (M\{y, Y }),∀γ ∈ (Σ ∪ {λ})) φ(α, β, γ) = 0
• (∀α ∈ (Σ ∪ {λ}),∀β ∈ (ΣP \M),∀γ ∈ (Σ ∪ {λ})) φ(α, β, γ) = 1
• (∀α ∈ ((Σ\M) ∪ {λ}),∀β ∈ {y, Y },∀γ ∈ ((Σ\M) ∪ {λ})) φ(α, β, γ) = 0
• (∀α ∈ (ΣP \M),∀β ∈ {y, Y },∀γ ∈M) φ(α, β, γ) = 2
• (∀α ∈M,∀β ∈ {y, Y },∀γ ∈ (Σ ∪ {λ})) φ(α, β, γ) = 1
• (∀β ∈ {y, Y },∀γ ∈M)φ(α, β, γ) = 1
• where M = {a, e, i, o, u, y, A,E, I,O, U, Y }



38 Jan Lánský, Michal Žemlička

– A = A1 from Note 4.

Czech language can be characterized as LCZ = (Σ,ΣP , ΣC , ΣM , φ, A) where:

– Σ = ANSI character set
– ΣP = {a,. . . ,z,A,. . . ,Z,á,č,ď,é,ě,́ı,ň,ó,̌r,̌s,̌t,ú,̊u,ý,ž,Á,Č,Ď,É,Ě,́I,Ň,Ó,Ř,Š,Ť,Ú,

Ů,Ý,Ž}
– ΣC = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
– ΣM = {a,. . . ,z,á,č,ď,é,ě,́ı,ň,ó,̌r,̌s,̌t,ú,̊u,ý,ž}
– φ is defined as:

• (∀α ∈ (Σ ∪ {λ}),∀β ∈M,∀γ ∈ (Σ ∪ {λ})) φ(α, β, γ) = 0
• (∀α ∈ (Σ M),∀β ∈ {r, l, R, L},∀γ ∈ ((Σ ∪ {λ})\M)) φ(α, β, γ) = 0
• else φ(α, β, γ) = 1
• where M = {a,á,e,é,ě,i,́ı,o,ó,u,ú,̊u,y,ý,A,Á,E,É,Ě,I,́I,O,Ó,U,Ú,Ů,Y,Ý}

– A = A1 from Note 4.

2.5 Algorithms of Decomposition Into Syllables

We describe four universal algorithms of decomposition into syllables: universal
left PUL, universal right PUR, universal middle-left PUML, universal middle-
right PUMR. These four algorithms are called as algorithms of class PU. The
names of these algorithms are derived from way these algorithms work. Inputs
of these algorithms are language L = (Σ,ΣP , ΣC , ΣM , φ, A) and document D =
α1, . . . , αn, αi ∈ Σ. These algorithms are composed from two parts. The first
part is an initialization and this is common for all algorithms of the class PU.
The second part is different for each algorithm.

At the beginning of the initialize part we decompose document D into words
by algorithm A. Algorithm of class PU is processing single words. Words from
non-letters are automatic declared as syllables. For each word from letters is
according function φ decided whose its letters are consonants and which are
vowels. Maximal blocks (blocks that cannot be extended) of vowels are found
afterwards. Blocks of vowels longer than three are not usually in natural lan-
guages, so maximal length of block of vowels is set to three. These blocks of
vowels will create bases of syllables. For each block of vowels we must keep in
memory its begin and end. Consonants, which are in the word before first block
of vowels, are added to this block. Consonants, which are in the word after last
block of vowels, are added to this block.

Single algorithms of class PU are different in the way of adding consonants,
which are between two blocks of vowels. After these ways of adding are algorithms
named.

Algorithm universal left PUL adds all consonants between blocks of vowels
to the left block.

Algorithm universal right PUR adds all consonants between blocks of vowels
to the right block.

Algorithm universal right PUMR in the case of 2n (even count) consonants
between blocks adds to both blocks n consonants. In the case of 2n + 1 (odd



Text Compression: Syllables 39

count) consonants between blocks it adds to the left block n consonants and to
the right block n+ 1 consonants.

Algorithm universal right PUML in case of 2n (even count) consonants be-
tween blocks adds to both blocks n consonants. In the case of 2n+1 (odd count)
consonants between blocks it adds to the left block n+ 1 consonants and to the
right block n consonants. The only exception from this rule is the case when
between blocks it is only one consonant, this consonants is added to the left
block.

Example: We will decompose word priesthood into syllables. We are using
language LEN. Blocks of vowels are (in order): ie, oo.

correct decomposition into syllables: priest-hood
universal left PUL: priesth-ood
universal right PUR: prie-sthood
universal middle-left PUML: priest-hood (correct form)
universal middle-right PUMR: pries-thood

3 Compression methods

We used hypothesis that compressed text is structured into sentences and it
is described by following rules. A sentence begins with mixed word and ends
with other word, which contains a dot. Inside the sentences are switching reg-
ularly small words and other words. If the sentence begins with capital-word,
then inside are switching regularly capital-words and other-word. Numeric-words
appear rarely and are usually followed by other-words.

When we decompose words into syllables, we have problem with this model.
Each word has different count of syllables. Small-word is usually followed by
other-word, whereas small-syllable can be followed not only by other-syllables
but also by another small-syllable.

To improve a compression of alphabet of syllables (or words) we have created
for each language a database of frequent words. More details will be in section 4.
Words from this database are used for initialization of compressing algorithms.
When coding alphabet of given document we can code only words, which are
not from out databases of frequent words. This is useful for smaller documents,
on the bigger documents is that effect lower.

3.1 LZWL

Algorithm LZW [6] is a dictionary compression character-based method. Syllable-
based version of this method has been named LZWL. Algorithm LZWL can work
with syllables obtained by all algorithms of decomposition into syllables. This
algorithm can be used for words (see Def. 4) too.

First we shortly recall classical method LZW [6]. Algorithm is using dictio-
nary of phrases, which is represented by data structure trie. Phrases are num-
bered by integers afterwards order of adding.



40 Jan Lánský, Michal Žemlička

In initialization step the dictionary is filled up with all characters from al-
phabet. In each next step it is searched for maximal string S, which is from
dictionary and matches the prefix of still non-coded part of the input. Number
of phrase S is sent to the output. A new phrase is added to the dictionary. This
phrase is created by concatenation of string S and character that follows after
S in file. Actual input position is moved forward by the length of S.

Decoding has only one situation for solving. We can receive number of phrase,
which is not from dictionary. In this case we can create that phrase by concate-
nation of the last added phrase with its first character.

Syllable-base version is working over alphabet of syllables. In initialization
step we add to the dictionary empty syllable and small syllables from database
of frequent syllables. Finding string S and coding its number is analogical with
character-based version, only that string S is a string of syllables. Number of
phase S is encoded to output. It is possible that string S can be empty syllable.
If S is empty syllable, then we must get from file one syllable called K and
encode K by methods for coding new syllables, see section 4.2. Syllable K is
added to dictionary. Actual position in the file is moved forward by the length
of S, in the case when S is empty syllable, the input position is moved forward
by the length of K.

In adding a phrase to dictionary there is a difference to character-based
version. Phrase from the next step will be called S1. If S and S1 are both
non-empty syllables, then we add new phrase to the dictionary. New phrase is
created by concatenation S1 with the first syllable of S. This solution has two
advantages. The first advantage is that strings are not created from syllables
that appear only once. Second advantage is that we cannot receive in decoder
number of phrase that is not from dictionary.

3.2 HuffSyllable

HuffSyllalbe is statistical compression method based on adaptive Huffman coding
and using structure of sentence in natural language. The idea of this algorithm
was inspired by HuffWord [7]. Algorithm LZWL can work with syllables ob-
tained by all algorithms of decomposition into syllables mentioned above. This
algorithm can be used for words too.

For each type of syllables (small, capital, mixed, number, other) it is build
adaptive Huffman tree [2], which is coding syllables of given type. In the initial-
ization step of algorithm we add to Huffman tree for small syllables all syllables
and their frequencies from database of frequent syllables.

In each step of the algorithm it is calculated expected type of actually pro-
cessed syllable K. If syllable K has different type than it is expected, then an
escape sequence is generated. Syllable K is encoded by Huffman tree correspond-
ing to the syllable type. Calculating of expected type of syllable uses information
from encoded part of input. We need to know the type of last syllable. If the
last syllable is other-syllable, then it is known that this syllable contains a dot
and that the type of the last syllable is letter-syllable.



Text Compression: Syllables 41

Table 1. Expected types of syllables according type of previous syllable.

previous / expected type of syllable Expected syllable

small small
capital capital
mixed small
number other
other syllable without dot, last syllable from letters is not capital small
other syllable with dot, last syllable from letters is not capital mixed
other, last syllable from letters is capital capital

4 Technical Details

We supposed that all natural languages have their own characteristical set of
syllables. Its approximation for English and Czech was created by set of testing
documents. We created for each language and algorithm of decomposition into
syllables one database of frequent syllables from letters. For each language we
also created databases of frequent other syllables. Condition for adding syllable
to database was that its frequency is greater than 1 : 65,000. Each database
of syllables from letters contains approximately 3,000 syllables, whose sum of
frequency is 96–98 % of all syllables. Each database of other syllables contains
approximately 100 syllables, which sum of frequency is 99.5 % of all syllables.

These databases are used in initializations steps of compressing algorithms.
This can improve compression ratio on smaller documents.

Although we have database of frequent syllables, sometimes we receive syl-
lable K, which is not from this database and we must encode it. They are two
basic ways. The first way is to encode K as code of length of K followed by
the codes of individual characters from the syllable. The second (and better)
way is to encode K as code of syllable type followed by code of length of K
and codes of individual characters. We use the second way, because domain of
coding function for distinct characters is given by the type of syllable and as it
is smaller than in the first way. Numeric syllables are coded differently.

Encoding type of syllable depends on types of previous syllable and other
criteria as in HuffSyllable. Length of codes for each types are 1, 2, 3, and 4.
Average code length is 1.5 bits.

For encoding length of syllables are used two static Huffman trees, the first
one for letter-syllables and the second one for other-syllables. Trees are initialized
from statistics received from text documents.

For encoding distinct characters there are used two adaptive Huffman trees,
the first one for syllables from letters and the second one for other syllables.

Numeric-syllables are coded differently from other types of syllables. We
discover that numbers in text are naturally divided into a few categories. The
first category contains small numbers (1–100), the second category represent year
(1800–2000), in the third category there are very large numbers (for example



42 Jan Lánský, Michal Žemlička

5,236,964) that usually have separated groups of digits to blocks by three. But
these large numbers are decomposed into numeric-words and other-words. So we
set maximal length of numeric-word to 4, longer numeric-words are split. For
coding number of digits 2-bits binary coding is used. For coding distinct digits
binary phased coding [4] is used.

5 Experimental Results

2,00

2,50

3,00

3,50

4,00

4,50

5,00

5 - 50 kB 50 - 100 kB 100 - 500 kB 500 - 2000 kB 2000 - 5000
kB

Size of file

C
om

pr
es

s 
ra

tio
 in

 b
pc

 (l
ow

er
 v

al
ue

 is
 b

et
te

r)

English: compress 4.0 Czech: compress 4.0
English: LZWL on syllables Czech: LZWL on syllables
English: LZWL on words Czech: LZWL on words

Fig. 1. Comparison of LZW-based methods on English and Czech

For testing there were used two sets of documents in plain text format. The
first set contains 69 documents in Czech with total size of 15 MB. Most of these
documents were received from [11]. The second set contains 334 documents in
English with total size of 144 MB. In this set there are documents from project
Gutenberg [12] and bible.txt from Canterbury corpus [9]. From each file form
project Gutenberg there were removed first 12 kB of information about project
because it was the same in all documents.



Text Compression: Syllables 43

Table 2. Comparison of compression ratio in bits per character on English documents

Method\file 5–50 kB 50–100 kB 100–500 kB 500–2000 kB 2000–5000 kB

LZWL+PUL 3.31 3.09 2.87 2.64 2.37
LZWL+PUR 3.36 3.14 2.92 2.69 2.39
LZWL+PUML 3.32 3.10 2.88 2.65 2.38
LZWL+PUMR 3.32 3.10 2.89 2.66 2.38
LZWL(words) 3.22 3.03 2.86 2.62 2.36
compress 4.0 3.79 3.57 3.34 3.27 3.08
HS+PUL 3.23 3.18 3.15 3.10 2.97
HS+PUR 3.30 3.26 3.22 3.18 3.03
HS+PUML 3.26 3.22 3.19 3.15 3.02
HS+PUMR 3.27 3.23 3.20 3.16 3.02
HS(words) 2.65 2.58 2.52 2.38 2.31
ACM(words) [3] 2.93 2.74 2.55 2.35 2.27
FGK [2] 4.59 4.60 4.60 4.58 4.54
bzip2 [8] 2.86 2.60 2.40 2.21 2.03

Table 3. Comparison of compression ratio in bytes per character on Czech documents

Method\file 5–50 kB 50–100 kB 100–500 kB 500–2000 kB 2000–5000 kB

LZWL+PUL 4.14 3.83 3.59 3.34 —
LZWL+PUR 4.07 3.77 3.56 3.32 —
LZWL+PUML 4.07 3.77 3.56 3.31 —
LZWL+PUMR 4.07 3.77 3.55 3.31 —
LZWL(words) 4.56 4.19 3.99 3.69 —
compress 4.0 4.35 4.08 3.90 3.81 —
HS+PUL 3.97 3.89 3.89 3.81 —
HS+PUR 3.86 3.79 3.80 3.75 —
HS+PUML 3.86 3.79 3.80 3.74 —
HS+PUMR 3.87 3.79 3.80 3.75 —
HS(words) 3.71 3.51 3.43 3.21 —
ACM(words) 3.83 3.50 3.29 3.14 —
FGK 4.97 4.95 5.00 4.99 —
bzip2 3.42 3.10 2.88 2.67 —



44 Jan Lánský, Michal Žemlička

1,50

2,00

2,50

3,00

3,50

4,00

4,50

5,00

5,50

5 - 50 kB 50 - 100 kB 100 - 500 kB 500 - 2000 kB 2000 - 5000
kB

Size of file

C
om

pr
es

s 
ra

tio
 in

 b
pc

 (l
ow

er
 v

al
ue

 is
 b

et
te

r)

English: Huffman coding on characters Czech: Huffman coding on characters
English: HuffSyllable on syllables Czech: HuffSyllable on syllables
English: HuffSyllable on words Czech: HuffSyllable on words

Fig. 2. Comparison of Huffman-based methods on English and Czech texts

6 Conclusion

In this paper we have introduced idea of syllable-based compression, its ad-
vantages and disadvantages. We have formally defined letters, syllable, words
and algorithm of decomposition into words. We have introduced four univer-
sal algorithms of decomposition into words. We have created two syllable-based
compression methods that use alternation of syllable types in sentences. The
first method is based on algorithm LZW, the second on Huffman coding. The
experimental results of these algorithms confirm our predictions, that tested
syllable-based algorithms outperformed their character-based counterparts for
both tested languages. Comparison of word-based and syllable-based versions
of Huffman and LZW codings led to the result that in English the word-based
versions of both algorithms outperform their syllable-based counterparts and
in Czech the results are ambiguous: for Huffman coding word-beased version
outperformed syllable-based one, for LZW coding the syllable-based one outper-
formed the word-based one.

In the future we want to decrease space and time requirements of imple-
mented algorithms. We planned to addapt next syllable-based algorithms from
their character-based versions, for example bzip2. We want to test our algo-
rithms on more languages with rich morphology, for example on German and
Hungarian.



Text Compression: Syllables 45

References

1. D. A. Huffman. A method for the construction of minimum redundancy codes.
Proc. Inst. Radio Eng., 40:1098–1101, 1952.

2. D. E. Knuth. Dynamic Huffman coding. J. of Algorithms, 6:163–180, 1985.
3. A. Moffat, R. M. Neal, and I. H. Witten. Arithmetic coding revisited. ACM

Transactions on Information Systems, 16:256–294, 1998.
4. P. Elias. Universal codeword sets and representation of the integers. IEEE Trans.

on Information Theory, 21(2):194–203, 1975.
5. S. W. Thomas, J. McKie, S. Davies, K. Turkowski, J. A. Woods, and J. W. Orost.

Compress (version 4.0) program and documentation, 1985.
6. T. A. Welch. A technique for high performance data compression. IEEE Computer,

17(6):8–19, 1984.
7. I. Witten, A. Moffat, and T. Bell. Managing Gigabytes: Compressing and Indexing

Documents and Images. Van Nostrand Reinhold, 1994.
8. The bzip2 and libbzip2 official home page. http://sources.redhat.com/bzip2/ as

visited on 6th February 2005.
9. Canterbury corpus. http://corpus.canterbury.ac.nz.

10. Compact Oxford English Dictionary. http://www.askoxford.com/ as visited on 3rd
February 2005.

11. eknihy. http://go.to/eknihy as visited on 2nd February 2005.
12. Project Gutenberg. http://www.promo.net/pg.




