On Open Source Tools for Behavioral Modeling
and Analysis with fUML and Alf

Zoltan Micskei*, Raimund-Andreas Konnerth, Benedek Horvath, Oszkar
Semerath, Andrds Voros, and Déniel Varré*

Budapest University of Technology and Economics
Magyar tudésok krt. 2., 1117, Budapest, Hungary
* {micskeiz,varro}@mit.bme.hu

Abstract. Executable and well-defined models are a cornerstone of model
driven engineering. We are currently working on a transformation chain
from UML models to formal verification tools. In the context of the UML
language, the f{UML and Alf specifications offer a standardized way for
the semantics of the basic model elements and a textual specification lan-
guage. Open source modeling tools started to adapt these specifications.
However, their support is of varying degree. This paper summarizes our
experiences with the open source tools regarding f{UML and Alf support,
and different model transformation technologies in order to analyse them
with formal verification tools.

Keywords: fUML, Alf, tool, open source, verification, MDE

1 Introduction

Model driven engineering (MDE) is changing software and systems development
in different application domains. In MDE, models are the primary artifacts from
which other artifacts (code, deployment descriptions, etc.) are generated [2].
Thus MDE is based on modeling languages and transformations. However, de-
velopment processes and tools need to be adjusted to the MDE paradigm.

The Unified Modeling Language (UML) is a general purpose, widely used
modeling language used for describing the different aspects of software systems.
It offers several modeling notations to express not only the structure but the
behavior of the modeled system (e.g. with state machines, activities). But UML
is criticized because of the lack of a precise definition of the language [3]. For this
reason, the Object Management Group (OMG) created the Semantics of a Foun-
dational Subset for Ezecutable UML Models (fUML) [12] and Action Language
for Foundational UML (Alf) [11] specifications. Together these specifications
offer a precise semantic definition of the basic static and dynamic language el-
ements and a textual notation, which are needed to have an executable system
model. Thus, fUML can be used as a basic building block in a UML-based MDE
approach [5].

Some commercial MDE tools already offer an executable variant of UML.
Some of these are using f{UML (e.g. No Magic’s Cameo Simulation Toolkit for

MagicDraw) or are using other approaches (e.g. xtUML in the BridgePoint mod-
elling tool of Mentor Graphics). These tools are able to execute, debug and
transform UML behavioral models.

Fortunately, more and more open source tools have started to include some
kind of executable UML functionality, and support for fUML or Alf. However,
due to the nature of open source, these developments are sometimes overlapping
and redundant, some projects are not active any more, and their technology
readiness level and documentation is uneven. Thus, if someone wants to engage
in a UML-based MDE project the following questions naturally arise.

1. What open source tools are available for f{UML and Alf?
2. What are their maturity level?
3. How can the different tools be connected to solve a complex problem?

We are currently working on a tool chain to provide verification of UML
behavioral models in the communication domain by transforming them to the
input of formal model checkers and back-annotating the results. The goal of the
verification is to prove the deadlock freedom of protocols. When developing the
initial prototypes, we tried to base our work on open source components for
fUML or Alf. This paper primarily aims at summarizing our experience of using
these open source components for model analysis purposes.

Section 2] introduces our modeling and analysis approach, then collects the
fUML and Alf tools we are aware of. Section [3] details the avalilable transfor-
mation technologies, and presents our Eclipse-based transformation prototype
implementation. Section [4] summarizes our experiences and some open issues
with the specifications and the tooling.

2 Overview

The goal of our project is to provide formal analysis for behavioral UML models
by transforming these models to the input languages of formal verification tools
(e.g. model checkers). We aim to use a combination of UML diagrams as input
to capture static and dynamic aspects. In order to facilitate the adaptation of
the tool chain to different back-end tools, we intend to use intermediate models
between the source engineering model and the target verifier model, which is
proposed in numerous model analysis approaches [4J6]. In this paper, we propose
to use existing standard UML behavioral specifications (namely, f{UML and Alf)
and open source tools to realize this approach.

2.1 Open Source Tools for f{UML and Alf

The goal of the fUML specification of the OMG is to give a precise semantic def-
inition for a subset of UML. This subset includes parts of the classes, behaviors,
activities and actions packages of UML Superstructure, but does not include
state machines or sequence diagrams. The standardization including compos-
ite structures (such as components, ports...) is ongoing [I0]. The specification

Table 1: Open source f{UML and Alf tools as of 2014-07

Tool Version Modification Platform Goal
3 fUML Ref. Impl. 1.1.0 2013-06 Java/console Interpreter
2 Moka 1.0.0 2014-06 Eclipse fUML execution engine
oliz . - clipse execution engine
£ Moli 1.0 2014-06 Eclip fUML ion engi
«y Alf Ref. Impl. 0.4.0 2014-05 Java/console Interpreter
< Papyrus Alf Editor - 2014-07 Eclipse Editor

contains the definition of (1) an abstract syntazx for the subset of UML Infrastruc-
ture/Superstructure, (2) an ezecution model for the operational semantics, (3)
Java language semantic definitions for the behavior of the elements, (4) a model
library (functions for primitive types, channels), and (5) axiomatic semantics for
a base UML.

The Action Language for Foundational UML (Alf) is a standardized textual
language for specifying executable behavior. It can be used to extend a graphical
UML model (e.g. to define actions or guards). However, it can also express struc-
tural model elements, thus an entire UML model can be described in a textual
language. The specification consists of (1) an EBNF grammar for the Alf lan-
guage, and (2) a modeling library for primitive types, functions and collections.
UML state machines are not in f{UML, thus Alf does not cover it; but Annex A
of the specification gives an example for such a mapping.

Table [l|summarizes the tools with fUML or Alf support we are aware of. The
following is a short description of the f{UML and Alf tools in Table

fUML Reference Implementation [9] The Reference Implementation was created
along the draft specification to validate the semantics and to help further tool
development. The reference implementation is a console Java application that
takes a model in XMI as an input, executes an activity given as a parameter,
and provides a detailed trace about the execution. It was developed by Model
Driven Solutions.

Moka [14] Moka is an incubation component of the open source modeling en-
vironment Papyrus. It contains an fUML execution engine, and is able to an-
imate and debug UML activities. Moreover, it includes a PSCS-based [10] en-
gine. Breakpoints can be set in the code, and the activity can be started with
an Eclipse debug configuration. The execution is animated (object and control
flow). Moka is developed by CEA List.

Moliz [7] The moliz project is concerned with the execution, testing and de-
bugging of UML models. It provides an fUML execution engine with step by
step simulation and breakpoint support. Extension projects based on the Moliz
engine provide non-functional analysis or testing of models. Moliz is developed
by the BIG group of Vienna University, and supported by LieberLieber Software
GmbH (a company developing extensions to Sparx’s Enterprise Architect).

High Level UML fuML Intermediate Level Formal Methods
| Requirements Seéuence Diaé. Teméoral Loéic N
\
| Modelling (" State Machine F{(D3{Activity Diagram F{2}»(__Alf Model _ <3)*{_Formal Model]\)
- | v ¥ Y
| Analysis (_ ErrorTrace } { Simulation } { Model Checking]/

Fig. 1: Overview of the modeling and analysis approach

Alf Reference Implementation [8] The Alf Open Source implementation is a refer-
ence implementation similar to the f{UML Reference Implementation. It handles
the full Alf syntax at the ”extended compliance level“, which level is specified
in the Alf language specification. It uses the f{UML Reference Implementation
execution engine to provide an interpreter for Alf code units. It is provided as a
console Java application and was developed by Model Driven Solutions.

Alf editor in Papyrus [I3] The goal of this component is to offer a textual editor
in Papyrus to specify operations and activities in the Alf language. The editor
would offer syntax highlighting and validation of Alf code. However, the current
implementation is still in development with several limitations.

2.2 The Proposed Modeling and Analysis Approach

Fig. [1] presents how fUML and Alf fit into the approach sketched above. The
behavioral model is first defined by UML state machines, which are then trans-
formed to an fUML activity diagram (Step 1). An fUML model can be simulated
and debugged then with one of the existing f{UML execution engines.

We propose to use Alf as an intermediate modeling formalism. fUML con-
structs can be directly mapped to Alf languages elements. (Note we use “Alf
model” to refer to the parsed, abstract syntax representation, and “Alf code” to
the concrete textual syntax). This transformation is depicted as Step 2 on Fig.
which takes a model containing class definitions and activity diagrams enriched
with Alf code for the definition of the basic actions, and transforms the model to
a full Alf description. Then Step 3 starts from this Alf model and transforms it
to the target formal modeling language of UPPAAL (after abstracting from some
details irrelevant from an analysis point of view).

Up to now, we created a prototype that implemented Step 2 and 3 using open
source technologies to identify the open issues. The prototype was developed in
Eclipse over models represented in EMF. Papyrus was used for handling UML
models. A crutial part in the approach is to implement the transformations
between the different models, which will be elaborated in the next section.

3 Transformation Technologies

A model transformation (MT) defines a mapping from a source language to
a target language. Model transformations are specified in a language which is

[Activity Diagram Alf Code UPPAAL

f<<ioop node>>Ti <= input] | while (i <= input){

V2R
it++;
} i++ = Input

= input

next next

exp="(i<sinpu
LoopNode :WhileStatement
inner _ test block condition | | ‘Edge | [[
OpagueAction :Relation 1 I “Block I I ~ConditionTest I H trg B
— 1 [Concemen Felation i ug
- i op="<=" :Edge :Edge
VariableRef name = i 1 VariableRef 1 I 3 | | 8 |
name - i arer i T m—— T
name = "input” name = | 1 _ atl
1
1

:VarRef

“Update “Guard
name = "input” o:

exp="itt exp="(i<=input)"

Fig. 2: Transformation chain example: from Papyrus activity diagram through
Alf specification to Uppaal real-time system model

executed by a transformation engine on a source model to create a target model.
A complex MT can be split into multiple steps to form a transformation chain.

Figure 2| shows a simple iterator example of the transformation of Step 2
and 3 described in with concrete syntax in the top row and model
representation in the bottom row. Activity diagrams define guards and actions
by Alf code, but the control flow is defined by explicit transition arrows and
composite nodes. First, the activity diagram is translated to full Alf code, where
the actions are mapped to statements and the flow is defined by structures (while
statements). Then the Alf code is mapped to an Uppaal formal model where
the statements are represented by atomic state transitions, and the control is
managed by explicit edges with guard expressions.

We show how this MT problem can be solved using different MT approaches
using the Alf-to-Uppaal transformation. We also highlight the differences and the
benefits of the techniques from the following aspects: source model processing,
target model construction, trace handling and debugging possibilities.

Transformation program A first approach to implement a MT is to create a
problem specific transformation program written in a general-purpose imperative
programming language like Java. It is easy to start development without relying
on any third-party MT tool. However, such MT programs are error-prone and
hard to maintain resulting in a long development process.

shows the skeleton of an example Java transformation code, where
both the source and target models are handled as arbitrary Java (EMF) objects.
The source model is traversed by complex control structures, where navigation
is available only through direct references (see Mark 1)in . The trans-
formation code is responsible for finding the required relations in the model, i.e.
possible state transitions in between Alf statements. Objects of the target EMF
model are created via factory methods, attributes and references are defined by
setter methods as in common Java objects (Mark 2)). Traceability management
is ad hoc, and usually implemented with temporally maps (Mark 3)).

UPPAAL] Alf Code

instanceof Factory.create <=d s,sl,s c
[=1 SR " g [TN [€
glh:\WhileStatement by :WhileStatement S
ock d fck ondition '\,
:Block :ConditionTest

Increment M “Relation
op="<= | F
name = " VarRef =

“Location name = "i" Location

VarRef :Update Guard
name = "input" exp-"ivs exp-"liczinput)

(a) Transformation program illustration (b) Model transformation program run

Location transform(WhileStatement w) { '—| w.block.increment.variableRef.name GJ
for(Statement s: w.block.statements) {
/* map the inner states */}
for(Location 1 : locations) {
/* Link the locations to a circle */}

// Map the condition) e.setSource(locationMap.get(
// Set the guards of the outgoing edges 9

edgeMap.get(w.condition)));

1 = factory.createlocation(); 9 |

¥

(c) Example Transformation program implemented in java

module A1f2UPPAAL; create OUT : Machine from IN : Block {

rule State2lLocation { rule Condition2Guard { 9 to = new objects

from s: Alf!State from = from c: Alf!Condition
to 1: UPPAAL!Location} objects + to positiveGuard: UPPAAL!Guard(location <- /*...*/
rule Transition2Edge { condition expression <- /*...*/)
from s1: Alf!State, negativeGuard: UPPAAL!Guard(location <- /*...*/
s2: Alfl!State (/* next state */) expression <- /*...*/)}}

to e: UPPAAL!Edge(src <- /*...*/
trg <- /*...%/)}

(d) Example model ATL transformation rules

Fig. 3: Hlustration of transformation programs and model transformation tools

Model Transformation Tool There are several dedicated MT languages to specify
transformation rules. Those rules are automatically executed by transformation
engines on the source model to produce the output model. The transforma-
tion development process is scaling well with respect to the number of rules,
However, there are also some constructs that are difficult to formulate in the
transformation language, hard to integrate with other tools or transformation
steps implemented in imperative code, and it has little debugging support.

The ATLAS Transformation Language (ATL) [I] provides a language to spec-
ify, and a toolkit to execute MTs. shows an example ATL code to map
Alf specification to Uppaal model, which is illustrated in A rule is
defined by a (from,to) pair, where the from part declaratively selects objects
from the source model instead of model traversal (at Mark 1) s, s1 and s2 are
selected, where s1 and s2 have to be subsequent statements). The to part spec-
ifies the object to be created and the values of their attributes. During model
generation, a trace model is automatically produced.

Model Queries and Functional Programs Declarative graph query frameworks
like EMF-IncQuery[I5] provide language for defining high level graph patterns

Alf Code UPPAAL |

[Alf Code UPPAAL
. Guard
nex . ="liic-ingut]
: eser— = = next et @
ileStatemen ~ oy o
lock — con -Edg(Edge O T whilestatement
Block || |_:ConditionTest . 1 o
e “Location Block |] :ConditionTest
“Increment Relation emplate ST H L
ot - Soee @| increment I’
VariableRer i
1 src [VariableRel
1 Location name = "i"

Relation
match

Relatio Guard
exp="li<zinput]"

Update

(a) .Functional templates with model (b) Query based model generation
queries

Pattern Template
pattern While(W,Condition,State){ def dispatch transform(WhileStatement w) {

WhileStatement . condition (M, Condition); ﬁ val inner=WhilePattern.getStates(w).map[createState]

WhileStatement.block.states (W, State); } val condition=WhilePattern.getCondition(w).transform

/* link the edges */ }

pattern Relation(R,0p1,0p2){
Relation.left(R,0pl);
Relation.right(R,0pl);
Relation.op(R,"<=");}

def dispatch transform(Relation condition) {
val m=RelationPattern.getMatch(condition)
createGuard()=>[exp="""«m.opl.name»<=«m.op2.name»"" "]}

(c) Example EMF-IncQuery patterns with Xtend functional program

Patterns on Source Metamodel Trace Generation Template on Target
@ pattern Statement(S) Object(Location,1) o
Object(Edge,e)
f = Statement(From) -> 1
® pattern nextState(From,To) t = StatementETo)) 51 Reference(src,e,f) e
Reference(trg,e,t)
cas . cas ; P Object(Guard,g)
© pattern PositiveWhileCondition(1"¢:’;‘i"§ _C dition StartL Attribute(exp,g," ($Expression$)”) ©
StartLoop,Condition,Expression) nextState(Condition,StartLoop) -> e Reference(guard, incoming, g)
. . R s Object(Guard,g)
O pattern NegativeWhileCondition(UUtigiﬂi _C it FinishL N Attribute(exp,g," ! ($Expression$)”) @
FinishLoop,Condition,Expression) nextState(Condition, FinishLoop)-> e Reference(guard,outgoing, g)

(d) Query based views: Match the source model, create the target model

Fig. 4: Two model generation approaches based on EMF-IncQuery

and efficiently find their match in a model. Model queries provide an advanced
language with high expressive power to navigate model structures with required
properties, which can be evaluated on the source model. These queries can be
used by the developer or a transformation program. The left column of
shows two example patterns: the While pattern selects the while statements with
its inner statements and loop conditions, the Relation lists the comparison
expressions with the left and right operators. The left side of shows
the matches on the example model.

Functional approaches proved their usefulness in the implementation of data
transformations. Their main advantages are 1) compact representation 2) easy
extendability and 3) composability. Template based code generation and model
transformation widely uses functional approaches. The Xtend language adds
functional elements to Java language like lambda expressions while keeps the
imperative elements. The right column of shows the skeletons of the
transformer functions: the first transforms a while statement, the second maps
a relation condition.

Our experiences shows that a functional Xtend code using EMF-IncQuery
queries is efficient for implementing model transformations. It can be used sim-
ilarly to MT tools and it eliminates known navigation issues of Xtend. This
approach allows the developer to 1) freely mix the two techniques (query the
model from the template code, or use pure functions in a pattern), 2) directly
call and debug templates and queries or 3) reuse rules by other transformations.

Query Based Views as Model Transformations IncQuery patterns can be used to
define views to represent relations of the source model in a target model. Those
query based view models are automatically and incrementally maintained. Views
can be used as visualisation, or as model transformation. The visualiser aids the
developer to correct bugs. A trace model is automatically derived.

shows four example for the use of query based views, and [Figure 4b|
illustrate it with the running example, where the matches and their images are
marked with Mark 1)- Mark 4). Mark 1) defines that each match of a Statement
should be mapped to a new 1 Location in the Uppaal model. The trace of the
mapping can be used in other rules, for example Mark 2) collects the subsequent
statements from the control graph of the Alf model with the nextState pattern
and creates an e edge between the images of the statements. Pattern Mark
3) gets the first statement of the cycle body and names it to StartLoop and the
edge where the loop enters called incoming. Similarly Mark 4) selects the exiting
statement first statement where the loop exits called FinishLoop, the edge is
named outgoing. The model creation rules then maps the Alf loop conditions
to Uppaal guard expressions and inserts it to the incoming and outgoing edges
positively and negatively.

While query based views provide a restricted subclass of model transforma-
tions, this loss of generality is balanced by the fact that this class of model
transformations is (source-)incremental by its nature, i.e. changes in the source
model are propagated to the target model incrementally.

Summary From the above transformation approaches we choose the third one
in our prototype implementation. EMF-IncQuery was used for the efficient and
scalable queries of model elements. Xtend was used to map the source to the tar-
get model according to the defined EMF-IncQuery patterns. The lessons learnt
during the development are summarized in the next section.

4 Experience and Open Issues

This section summarizes our experiences during the development of the previ-
ously presented transformation.

Experience with fUML and Alf:

— No list of tools: Although it seems trivial, but even collecting the available
tools required considerable effort. This paper provides a snapshot, but it will
become outdated. As fUML and Alf is still not yet widespread, OMG could
promote them by listing the tools on its website along the specifications.

Few examples: There are few example fUML models or Alf code available.
Moreover, version and tool incompatibility further hinders the reuse of ex-
amples (e.g. a model exported in XMI could not always be loaded in an other
tool, the UML specification changed in recent years, etc.).

Reference implementations: The fUML and Alf reference implementations
are fulfilling their purpose, they help to understand the specifications. Ad-
vanced functions are not in their scope, but they provide a good starting
point for tool developers.

Semantic information: Semantic information that could help the verification
is not present in the Alf model (e.g. current compound state in a hierarchical
or parallel activity). It can be added to the transformation tool as annota-
tions.

Alf grammar: The current version of Alf grammar uses complex structures
of language elements to ensure unambiguity of the language. This structure
is effectively handled by matching graph patterns during the transformation.

Open issues with the tools:

In the released version of Papyrus, Alf code cannot be specified for the be-
havioral elements, thus we attached them as simple text in comment blocks.
We had to create our own (limited) Alf metamodel for the transformations
as the available ones were incomplete in the pre-Luna versions of the Eclipse-
based tools.

The tools would need a functionality to restrict the available elements (e.g.
an Alf language element should not be used in a certain application domain).

Maturity of the tools:

5

Proven: the Eclipse platform and its core services (e.g. EMF, Xtext) provided
a solid base for tool development.

Incubation: Although still in incubation phase, it was relatively easy to use
EMF-IncQuery due to its easy-to-use tooling and examples. (Note, we con-
sulted also with local developers of the tool).

Prototype: The fUML engines (Moka, Moliz) are working and there are some
examples and documentation available. However, they are still in prototypes
phase (e.g. in a simple scenario we were able to produce NullReferenceEx-
ception in Moka).

Alpha: The Alf editor in Papyrus is still in active development (e.g. most of
the code is in the sandbox repository, it supports only a limited part of Alf).

Conclusion

Support for the executable extensions of UML started to appear in open source
modeling tools. This paper summarized these tools and our experiences with
them, obtained during the development of a prototype transformation chain.
Our findings showed that advancement in the tooling is promising, but there is
still a long road ahead. As a summary, the questions raised in the introduction
can be answered as follows:

1.

2.

3.

There is a growing number of open source tools supporting fUML and Alf,
they are summarized in [Table 1

These tools are mainly under development, their maturity level is sum-
marised in Section 4

There are several transformation approaches, which are summarized with
their advantages and disadvanteges in Section

Acknowledgments. This work was partially supported by Ericsson Hungary.

References

10.

11.

12.

13.

14.

15.

. ATLAS Group: The ATLAS Transformation Language (2014), http://www.

eclipse.org/atl/

Brambilla, M., Cabot, J., Wimmer, M.: Model-Driven Software Engineering in
Practice. Morgan & Claypool (2012)

Broy, M., Cengarle, M.: UML formal semantics: lessons learned. Software & Sys-
tems Modeling 10(4), 441-446 (2011)

Hu, Z., Shatz, S.: Explicit modeling of semantics associated with composite states
in UML statecharts. Automated Software Engineering 13(4), 423-467 (2006)

. Jouault, F., Tisi, M., Delatour, J.: fUML as an assembly language for MDA. In:

Int. Workshop on Modeling in Software Engineering (MiSE). pp. 61-64 (2014)
Latella, D., Majzik, 1., Massink, M.: Automatic verification of a behavioural subset
of UML statechart diagrams using the SPIN model-checker. Formal Aspects of
Computing 11(6), 637-664 (1999)

Mayerhofer, T., Langer, P.: Moliz: A model execution framework for UML models.
In: Int. Master Class on Model-Driven Engineering: Modeling Wizards. pp. 3:1-3:2.
MW 12, ACM (2012)

ModelDriven.org: Action language for UML (Alf) open source implementation
(2014), http://modeldriven.org/alf/

ModelDriven.org: Foundational UML reference implementation (2014), http://
portal.modeldriven.org/project/foundationalUML

Object Management Group: Precise semantics of UML composite structures RFP
(2011), http://www.omg.org/cgi-bin/doc?ad/11-12-07

Object Management Group: Action Language for Foundational UML (Alf) (2013),
formal/2013-09-01

Object Management Group: Semantics of a Foundational Subset for Executable
UML Models (fUML) (2013), formal/2013-08-06

Papyrus: Alf support in Papyrus (2014), http://wiki.eclipse.org/Papyrus/
UserGuide/fUML_ALF

Papyrus: Moka overview (2014), http://wiki.eclipse.org/Papyrus/UserGuide/
ModelExecution

Ujhelyi, Z., Bergmann, G., Hegediis, A., Horvéth, A., Izs6, B., Réth, L., Szatmari,
Z., Varré, D.: EMF-IncQuery: An integrated development environment for live
model queries. Science of Computer Programming (2014), in Press.

http://www.eclipse.org/atl/
http://www.eclipse.org/atl/
http://modeldriven.org/alf/
http://portal.modeldriven.org/project/foundationalUML
http://portal.modeldriven.org/project/foundationalUML
http://www.omg.org/cgi-bin/doc?ad/11-12-07
http://wiki.eclipse.org/Papyrus/UserGuide/fUML_ALF
http://wiki.eclipse.org/Papyrus/UserGuide/fUML_ALF
http://wiki.eclipse.org/Papyrus/UserGuide/ModelExecution
http://wiki.eclipse.org/Papyrus/UserGuide/ModelExecution

	On Open Source Tools for Behavioral Modeling and Analysis with fUML and Alf
	Introduction
	Overview
	Open Source Tools for fUML and Alf
	The Proposed Modeling and Analysis Approach

	Transformation Technologies
	Experience and Open Issues
	Conclusion

