
Constant Bandwidth Server Revisited

Luca Abeni
University of Trento

Via Sommarive 9, Povo,
38123 Trento (Italy)

luca.abeni@unitn.it

Giuseppe Lipari
Scuola Superiore Sant’Anna

Piazza Martiri della Libertà 33,
56127 Pisa (Italy)

g.lipari@sssup.it

Juri Lelli
Scuola Superiore Sant’Anna

Piazza Martiri della Libertà 33,
56127 Pisa (Italy)
j.lelli@sssup.it

ABSTRACT
The Constant Bandwidth Server (CBS) is an algorithm for
providing temporal protection and real-time guarantees to
real-time sporadic tasks. Recently, an implementation of
this algorithm called SCHED_DEADLINE has been included in
the Linux kernel. Therefore, the CBS algorithm is now used
to serve more generic tasks than do not obey to the classical
sporadic task model. One important type of tasks which was
not considered by the original CBS algorithm is the so called
“self-suspending task model”, where a task instance can sus-
pend itself waiting for an external event. Even if the original
algorithm is adapted so that the temporal protection prop-
erty continues to hold, it is difficult for developers to provide
guarantees and to select the most appropriate server param-
eters for such tasks. This paper investigates the problem of
using the CBS algorithm for serving self-suspending tasks,
by analysing it from a theoretical point of view and showing
how to select the server parameters (budget and periods)
for self-suspending tasks. Finally, the effectiveness of these
proposals is shown through both simulations and real exper-
iments on Linux / SCHED_DEADLINE.

1. INTRODUCTION
The Constant Bandwidth Server (CBS) [1] is a reservation-
based scheduling algorithm originally introduced in 1998 to
handle tasks characterised by variable execution times and
soft real-time requirements.

This goal was achieved by efficiently providing temporal
protection between tasks: each task is reserved a specified
amount of execution time every period, and is guaranteed
to have the possibility to execute for the reserved time re-
gardless of the behaviour of the other tasks. This prop-
erty (which characterises all the reservation-based schedul-
ing algorithms) is respected even if the tasks do not have

This work has been partially supported by the 7th Frame-
work Programme JUNIPER (FP7-ICT-2011.4.4) project,
founded by the European Community under grant agree-
ment n. 318763.

EWiLi’14, November 2014, Lisbon, Portugal.

Copyright retained by the authors.

a regular/periodic activation/execution pattern. Moreover,
the CBS allows tasks to execute earlier (consuming some of
their future reserved time) if there is enough idle time in the
system.

The CBS algorithm also provides real-time guarantees to
sporadic real-time tasks that respect the so-called Liu and
Layland task model [14]: if every task is assigned a budget
larger than its worst-case execution time and a server period
smaller than the minimum inter-arrival time between two
instances, then every instance of the task is guaranteed to
complete before its deadline. This property is called Hard
Schedulability.

For real-time applications, the temporal protection property
is as important as the traditional memory protection (or
address space protection) mechanism provided by general-
purpose Operating Systems (OSs). As a matter of fact, some
general-purpose OS kernels started to use some temporal
protection mechanisms to bound the amount of execution
time used by fixed priority (real-time) processes or threads.
For example, the Linux kernel provides a mechanism called
RT throttling to avoid the risk that a high-priority real-time
process starves all the other applications in the system. It
can be considered as a first necessary step to allow non priv-
ileged users to use real-time priorities. Although RT throt-
tling is useful in many situations and can achieve its goals
in general, it lacks a strong theoretical foundation; hence, it
is not possible to provide a complete schedulability analysis.
Moreover, processes or threads characterised by aperiodic /
irregular arrival / execution patterns can end up consuming
more CPU time than expected, compromising the real-time
performance of the other ones (because, for example, of the
infamous deferrable server problem [20]: the utilisation of a
deferrable server is larger than the ratio between runtime
and period).

To address this issue, and to allow the predictable execu-
tion of real-time application without starving the non real-
time ones, an implementation of the CBS algorithm, named
SCHED_DEADLINE [10], has been recently included in the main-
line Linux kernel (and is available without having to patch
the kernel since version 3.14).

Thanks to SCHED_DEADLINE, it is possible to use the CBS to
schedule every application that can run on a Linux-based
OS, including applications that were not originally devel-
oped with the Liu and Layland task model in mind. Of



course, this fact provides new interesting possibilities, but
also raises some issues: how to provide real-time guaran-
tees to such tasks (which do not respect the original Liu
and Layland model)? How to assign the CBS parameters to
them?

One important task model which was not considered by the
original CBS is the self-suspending task model, in which tasks
can self-suspend waiting for external events. For example,
a task may suspend waiting for the response of a hard-
ware device, the response of a server or from a co-processor.
Tasks that make use of the GPU can be typically mod-
elled as self-suspending tasks. The CBS algorithm and the
SCHED_DEADLINE implementation, interpret every suspension
as an end-of-instance; therefore, it is difficult to provide
guarantees to self-suspending tasks scheduled by the CBS
algorithm, and it is not easy to select the most appropriate
budget and period for such tasks.

While the problem of analysing self-suspending tasks has
already been addressed in the real-time systems literature
[13], we are not aware of other papers that address the same
problem in the context of resource reservation algorithms
like the CBS.

In this paper, we address this problem first from the theoret-
ical point of view: after recalling the algorithm in Section 2,
we propose one alternative rule for the algorithm in Section
2.2. Moreover, in Section 3 we analyse the problem of setting
the CBS parameters for a self-suspending task. In Section
4 we show a set of simulation experiments on synthetically
generated tasks set to evaluate the proposed methodology.
Finally in Section 5 we discuss related work, and in Section
6 we present our conclusions.

2. REVISITING THE CBS
The original CBS algorithm has been designed to schedule
real-time tasks which can be described by the so-called “Liu
and Layland real-time task model” (each real-time task can
be modelled as sequences of jobs that never block). In this
section, after quickly recalling the original model and algo-
rithm, we show how the original CBS can be easily modified
to serve real-time tasks that do not respect such a strict
model.

2.1 Original Task Model and Algorithm
Traditionally, a real-time task τi is modelled as a stream of
jobs Ji,j , with the jth job of the task (named Ji,j) arriving
(becoming ready for execution) at time ri,j , executing for a
time ci,j and finishing at time fi,j . Each job is also char-
acterised by an absolute deadline di,j which is respected if
fi,j ≤ di,j . Notice that job Ji,j never blocks, so it is ready
for execution from time ri,j to time fi,j .

Based on these definitions (which characterise the previ-
ously mentioned “Liu and Layland real-time task model”),
the CBS algorithm was defined as follows:

1. A real-time task τi can be associated to a CBS (repre-
senting a CPU reservation) in order to schedule it

2. The CBS associated to task τi is characterised by a
budget qsi and by an ordered pair (Qs

i , T
s
i ), where Qs

i

is the maximum budget and T s
i is the so called server

period (or reservation period). A scheduling deadline
dsi is also associated to the CBS

3. The CBS associated to task τi is said to be active at
time t if there are pending jobs for task τi; that is, if
there exist a job Ji,j such that ri,j ≤ t < fi,j . A CBS
is said to be idle if it is not active

4. When a job Ji,j of a task τi served by an active CBS
arrives, a request is enqueued

5. When a job Ji,j of a task τi served by an idle CBS

arrives, if qsi ≥ (dsi − ri,j)
Qs

i

Ts
i

then the CBS generates

a new scheduling deadline dsi = ri,j + T s
i and the bud-

get is recharged to the maximum value Qs
i : qsi = Qs

i .
Otherwise, the job is served with the current schedul-
ing deadline and budget

6. Whenever a task τi served by a CBS executes for a time
δ, the budget qsi is decreased accordingly: qsi = qsi − δ

7. When qsi = 0, it is recharged to the maximum value
Qs

i , and the scheduling deadline is postponed by one
server period T s

i : q
s
i = Qs

i , d
s
i = dsi + T s

i

8. When a job finishes, the next pending job for the task,
if any, is served using the current budget and schedul-
ing deadline. If there are no pending jobs, the CBS
becomes idle.

According to these rules, every active real-time task is as-
signed a scheduling deadline dsi , which is used by an EDF
scheduler to decide which task to execute at any time in-
stant.

If U =
∑

i

Qs
i

Ts
i

≤ 1, it can be proved that the finishing time

of every job will be smaller than the scheduling deadline of
the task at the instant of the job completion (see Theorem
1 in [1]). Since the values of the scheduling deadline dsi only
depends on the parameters of the served task τi (that is,
on the execution and arrival times of τi’s jobs) and on the
assigned CBS parameters (budget Qs

i and server period T s
i ),

it is possible to prove that the worst-case behaviour of task
τi does not depend on the behaviour of the other tasks (see
Lemma 1 in [1]). This is known as temporal protection (or
temporal isolation) property.

Thanks to this temporal protection property provided by the
CBS algorithm, it is possible to ensure that all the deadlines
of all the jobs of task τi will be respected by setting Qs

i ≥
maxj{ci,j} and T s

i ≤ minj{ri,j+1 − ri,j}. This is known as
hard schedulability property. It is also possible to perform a
stochastic/probabilistic analysis to provide an upper bound
for the probability of missed deadlines for each single task
τi [2].

2.2 Self-Suspending Tasks
As already mentioned, the algorithm description presented
above (which is basically the original CBS) assumes that
each real-time task τi served by a CBS blocks only when a
job finishes, and then wakes up when the next job arrives.
Examples can be a periodic task that only blocks waiting for
a periodic timer (which is used to activate the various jobs)



or a sporadic task that only blocks waiting for the event
that activates the next job. For these tasks, a job Ji,j can
be described by its arrival time ri,j , its deadline di,j , and its
execution time ci,j .

There are two reasons for this assumption. The first one is
the simplicity of implementation in the kernel: every time
the task blocks the kernel interprets this event as end-of-job;
and every time the task is unblocked, the kernel interprets
is as a new job activation. The second reason concerns the
behaviour of the algorithm: if a job blocks on some other
event different from a job completion (for example, on a file
descriptor waiting for data coming from an external device),
the scheduler has to be modified to properly handle this
situation so that the CBS properties are not broken. In
particular, if the remaining budget and scheduling deadline
are not correctly updated the temporal protection property
risks to be broken.

However, although the original assumption about non self-
suspending jobs can help in simplifying the scheduler, it is
not realistic in practice: a job Ji,j of a real task τi might
block (even multiple times) before finishing, hence describ-
ing its execution through a single execution time ci,j might
be too simplistic. A more realistic task model considers self-
suspending tasks, where job Ji,j executes for a time c0i,j ,

then blocks for a time s0i,j , executes for a time c1i,j , blocks

for a time s1i,j , etc... In other words, Ji,j is composed by ki,j

different segments, having execution times c0i,j . . . c
ki,j

i,j , and
between segment h and segment h + 1 the job sleeps for a
time shi,j .

In order to be really usable in practice, a modern CBS
implementation (such as SCHED_DEADLINE) has to correctly
support self-suspending tasks, hence both the two problems
mentioned above have to be addressed. As a result, it is
important to understand how to adjust the budget and the
scheduling deadline when a job of the task blocks and un-
blocks (between two consecutive segments). A first idea
could be to use the original CBS “wake up rule” (rule 5)
for all the wake-ups (even if a new job is not arrived). Such
a rule, which was used by the original CBS algorithm only
when a new job Ji,j arrives (at time ri,j) performs the fol-
lowing check:

qsi ≥ (dsi − ri,j)
Qs

i

T s
i

. (1)

If the condition holds, it is necessary to compute a new bud-
get and a new scheduling deadline, otherwise the old ones
can be re-used without compromising the CBS properties
[1, 3].

The rule can be informally explained as follows: the sched-
uler checks if the fraction of CPU time that the job will use
(given by the current budget qsi divided by the time dsi −ri,j

from now to the scheduling deadline) is larger than
Qs

i

Ts
i

or

not:

qsi ≥ (dsi − ri,j)
Qs

i

T s
i

⇒
qsi

dsi − ri,j
≥

Qs
i

T s
i

(2)

If this condition is true, then the task cannot be sched-
uled using the current scheduling deadline and the current

budget, because it would consume a fraction of CPU time
larger than Qs

i/T
s
i , breaking the temporal protection prop-

erty. The solution used in the original paper was to generate
a new scheduling deadline dsi = ri,j + T s

i and a new budget
qsi = Qs

i so that the condition is verified.

When considering self-suspending tasks, the same deadline
assignment rule can be re-used to check if the current schedul-
ing deadline dsi and budget qsi can be used when a job wakes
up at time t (at the beginning of a new segment). How-
ever, other approaches could also be used. For example, it
is possible to set

qsi = (dsi − t)
Qs

i

T s
i

(3)

and leave dsi unchanged thus preserving the bandwidth limit.
This will be referred as revised wake-up rule in the rest of
the paper.

The solution adopted in the original paper makes sense for
new job arrivals (because it tries to associate a new deadline
equal to ri,j + T s

i to each job), but can have bad effects on
the task’s response times when other kinds wake-ups hap-
pen. The revised wake-up rule discussed above (decrease the
current budget leaving the scheduling deadline unchanged),
instead, could be more useful when the wake-up does not
correspond to a new job arrival, because it allows to con-
tinue serving the current job with the current scheduling
deadline.

3. ANALYSIS
When considering only non self-suspending tasks, configur-
ing the CBS parameters Qs

i and T s
i is pretty simple: for

example (as already mentioned) if Qs
i ≥ maxj{ci,j} and

T s
i ≤ minj{ri,j+1 − ri,j} then the deadlines of all the jobs

Ji,j of task τi will be respected (regardless of the behaviours
of all the other tasks running in the system). In particular,
for periodic tasks τi with ri,j+1−ri,j = Pi it is possible to set
T s
i = Pi. Although smaller values of T s

i are sometimes used
when performing stochastic analysis [2] or adaptive schedul-
ing [4], T s

i = Pi is generally preferred in order to reduce the
number of context switches and the resulting overhead.

However, when considering self-suspending tasks assigning
the CBS parameters might require more care. In order to
better understand how to properly schedule a self-suspending
task using the CBS algorithm, consider the simplest exam-
ple of periodic self-suspending task, in which every job has
only 2 segments: each job Ji,j of the task executes for a
time c0i,j , then sleeps for a time si,j , executes for a time c1i,j
and finally finishes. If the server period T s

i is set equal to
Pi, the only thing that can be guaranteed about the execu-
tion of the first segment of Ji,j is that it will finish before
t′ = ri,j + ⌈c0i,j/Q

s
i ⌉T

s
i −Qs

i +(c0i,j%Qs
i ). Hence, the job will

sleep from t′ to t′+si,j and the second segment of the job will
start at t′′ = t′ + si,j . Even when considering Qs

i >> c0i,j ,
in the worst case the second segment of the job will start at
time

t′′ = ri,j + T s
i −Qs

i + c0i,j + si,j (4)

which if T s
i = Pi and c0i,j + si,j > Qs

i is larger than di,j =
ri,j+Pi = ri,j+T s

i . Since the actual start time of the second
segment of Ji,j (as opposed to the worst-case start time) will



depend on the execution of the other tasks in the system,
in this case the temporal protection property is not useful
to provide real-time performance guarantees to the task. In
this case, the difference between the two different “wake-up
rules” presented in the previous section does not affect the
worst-case performance of the tasks, but only the average
performance.

Hence, in order to have a better control on the worst-case
real-time performance of self-suspending real-time tasks sched-
uled by a CBS it could be useful to set T s

i < Pi; in particular,
T s
i = Pi/R, with R ∈ N .

Reducing the value of T s
i (while keeping the ratio Qs

i/T
s
i

constant), it is possible to have a better control on the
jobs’ response times (at the cost of a larger number of pre-
emptions). In particular, when T s

i → 0 (and consequently
Qs

i → 0) the finishing time for the job becomes:

lim
Ts
i
,Qs

i
→0

ri,j +

⌈

c0i,j
Qs

i

⌉

T s
i −Qs

i + (c0i,j%Qs
i ) + si,j

+

⌈

c1i,j
Qs

i

⌉

T s
i −Qs

i + (c1i,j%Qs
i ) =

= ri,j +
c0i,j
Qs

i

T s
i + si,j +

c1i,j
Qs

i

T s
i

because T s
i → 0 ⇒ Qs

i → 0, T s
i → 0 ⇒ ⌈c0i,j/Q

s
i ⌉ → c0i,j/Q

s
i ,

and T s
i → 0 ⇒ c0i,j%Qs → 0. This is the so called “fluid flow

execution model”, according to which every task executes in
parallel with the other tasks at a speed Qs

i/T
s
i . Notice that

the fluid flow execution model is a mathematical abstrac-
tion which is not reasonable in practice (T s

i → 0 makes no
sense in a real system), but provides interesting results for
comparison.

According to this model, the first segment of the job executes
in c0i,j(T

s
i /Q

s
i ) time units, so the second segment starts a

time t′′ = ri,j + c0i,j(T
s
i /Q

s
i ) + si,j and the job finishes at

time

ri,j + c0i,j
T s
i

Qs
i

+ si,j + c1i,j
T s
i

Qs
i

= (c0i,j + c1i,j)
T s
i

Qs
i

+ si,j (5)

If Ch
i = maxj{c

h
i,j} and Si = maxj{si,j}, then it is possible

to say that in the (ideal) fluid flow execution model each job
would respect its deadline if

Qs
i

T s
i

=
C0

i + C1
i

Pi − Si

(6)

hence in a real system (with T s
i = Pi/R >> 0) the ratio

between the CBS maximum budget Qs
i and the server period

T s
i should be larger than (C0

i + C1
i )/(Pi − Si).

Notice that the discussion above has been performed con-
sidering only two segments, but can be generalised: in case
of tasks with segments 0...k,

Qs
i

T s
i

≥

∑k

h=0
Ch

i

Pi −
∑k−1

h=0
Sh
i

(7)

 0

 0.5

 1

 1.5

 2

 2.5

 3

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

P
e
rc

e
n
ta

g
e
 o

f 
m

is
s
e
d
 d

e
a
d
lin

e
s

Utilisation

R=1, original
R=1, revised
R=2, original
R=2, revised
R=3, original
R=3, revised
R=4, original
R=4, revised

Figure 1: Percentage of missed deadlines for self-

suspending tasks served by a CBS, for various con-

figurations of the CBS parameters and wake-up rule.

4. EXPERIMENTAL RESULTS
The suitability of the CBS algorithm (with the two different
“wake-up rules” described in this paper and with different
Pi/T

s
i values) has been tested through a large set of simu-

lations and real experiments (based on SCHED_DEADLINE).

Both simulations and real experiments have been performed
by using some randomly generated sets of traditional and
self-suspending real-time tasks. In order to generate such
task sets, taskgen [9] has been used to generate a set of
(Ci, Pi) pairs with a given utilisation U =

∑

i
Ci/Pi. The

algorithm generates N randomly distributed numbers Ui ∈
(0, 1), whose sum is equal to the desired system utilisation:
∑

i
Ui = U . Then, the periods Pi are randomly generated

according to a uniform distribution in [10ms, 100ms] and Ci

are set equal to the task utilisation multiplied by the task
period: Ci = UiPi. Some of the pairs are interpreted as“tra-
ditional” (non self-suspending) periodic tasks τi = (Ci, Pi),
served by CBSs (Qs

i = Ci, T
s
i = Pi), while the remaining

pairs represent self-suspending tasks with jobs composed by
2 segments. For each one of these pairs, a sleeping time Si is
randomly generated with a uniform distribution between 0
and 2/3Pi; then the execution time C0

i of the first segment is
randomly generated with a uniform distribution between 0
and (Pi−Si)Ci/Pi. Finally, the execution time C1

i of the sec-
ond segment is computed as C1

i = (Pi−Si)Ci/Pi−C0
i . Each

self-suspending task is served with a CBS (Qs
i = Ci/R, T s

i =
Pi/R), with R = 1, 2, 3, 4. Since these assignments respect
Equation 7, a fluid flow schedule would not cause any missed
deadline. However, since T s

i > 0 some missed deadlines can
be expected, and the next experiments evaluate the impact
of R and of the wake-up rule on such missed deadlines.

4.1 Simulations
The simulations have been performed by using RTSim [18],
generating 50 sets of tasks for eachN,U configuration (where
N is the number of tasks and U is the system utilisation).

As an example, Figure 1 shows the probability to miss a
deadline (expressed as a percentage) when considering 1
CPU, N = 6 tasks, and different values of the utilisation U



Wake-Up Rule R Simulation Experiment

Original 1 0.0097604371 0.0100367111
Original 2 0.0014936333 0.0062934666
Original 3 0.0001274509 0.0025347555
Original 4 0.0000000000 0.0001720666
Revised 1 0.0060903104 0.0073498888
Revised 2 0.0000825723 0.0010361999
Revised 3 0.0000543774 0.0000895111
Revised 4 0.0000075500 0.0001192444

Table 1: Probability to miss a deadline obtained via

simulation or through some experiments on a real

system.

going from 0.6 to 0.95 (the results obtained on the 50 runs
with the 50 different tasksets have been averaged). The fig-
ure compares the original CBS and the revised wake-up rule
presented in Section 2.2, with T s

i = Pi/R and R = 1..4.
From this first experiment, it is possible to notice that:

1. As expected, the deadline miss probability generally
increases when increasing the system utilisation U

2. The revised rule generally works better (causes less
missed deadlines) than the original CBS

3. Decreasing T s
i (increasing R) helps to greatly reduce

the probability of missing deadlines (arriving to nearly
0 even for high system utilisations)

Also notice that setting T s
i = Pi/2 already allows to re-

duce the probability to miss a deadline to less than 0.5%,
for almost all the values of the utilisation (and using the
revised wake-up rule further improves the real-time perfor-
mance without introducing the additional overhead of higher
values of R). Finally, the real-time performance of the“pure
periodic”(non self-suspending) tasks have been checked, ver-
ifying that such tasks do not miss any deadline; this proves
that the temporal protection property is respected.

4.2 Experiments on a Real System
After evaluating the proposed approach through simulations,
some experiments have been performed by running real peri-
odic tasks on Linux 3.15.6, with the SCHED_DEADLINE schedul-
ing policy. The experiments have been performed on an ma-
chine based on an Intel Xeon W3690 CPU (having 6 cores)
running at 3.47GHz. The Linux kernel used for the exper-
iments (3.15.6) already includes also the SCHED_DEADLINE

policy which implements the original CBS algorithm, and
has been modified to optionally provide the revised wake-up
rule presented in Section 2.2.

The real-time tasks used for the experiments are imple-
mented by an application called rt-app. Using this ap-
plication it is possible to run on a real system the same
tasksets used for the previous simulations (of course, in the
real system effects like the kernel latency or some other kind
of overhead can affect the results). Since each run of each
experiment is 60s long, the real experiments require much
more time than the simulation; hence, only some interesting
number of tasks / utilisation configurations have been used.

Wake-Up Rule R Deadline Miss Probability

Original 1 0.0005650666
Original 2 0.0000368583
Original 3 0.0000416083
Original 4 0.0000275916
Revised 1 0.0004005916
Revised 2 0.0000000000
Revised 3 0.0000120999
Revised 4 0.0000000000

Table 2: Probability for a self-supending task to miss

a deadline, measured in some experiments on a real

system using multiple CPU cores.

First of all, rt-app has been used to execute on a single core
the tasksets simulated for N = 6, U = 0.8. The results are
shown in Table 1. From the table, it is possible to notice
that the results obtained in real experiments with small val-
ues of R are comparable with the simulation results, proving
the accuracy of the simulation model and the correctness of
the SCHED_DEADLINE implementation. However, notice that
increasing R (decreasing the server period T s

i ) the difference
between the results of the real experiments and the results
of the simulations increases (in particular, the number of
missed deadlines in real experiments becomes considerably
larger than in simulations), because of the overhead implied
by small server periods (which is not modelled in the simu-
lations). In any case, decreasing the server period decreases
the probability of missing a deadline, even in real exper-
iments (although the performance improvement is smaller
than for simulations).

Finally, notice that even in real experiments the revised
CBS is able to improve the real-time performance of self-
suspending tasks respect to the original CBS. A more de-
tailed analysis showed that the revised CBS “suffers” in real
experiments more than in simulations because in practice
the revised wake up rule tends to reduce the current runtime
to values which are too small, and the kernel immediately
sets it to 0.

Some additional experiments have been performed on multi-
core configurations (using 4 of the 6 cores available on the
Xeon CPU) with SCHED_DEADLINE using global EDF to sched-
ule the tasks on multiple cores based on their scheduling
deadlines. In general, these experiments confirmed the ini-
tial results for example, Table 2 reports the deadline miss
probabilities for self-suspending tasks measured with 16 tasks
and utilisation U = 3.8 (remember that with 4 cores the
utilisation should be ≤ 4). Again, both reducing the server
period and using the revised wake-up rule allow to reduce
the number of deadlines missed by self suspending tasks;
notice that with R = 2 or R = 4 the revised rule allows to
avoid any missed deadline.

5. RELATED WORK
The reservation approach is not new [15, 19], and has been
previously implemented in various Operating System ker-
nels, including Linux [17]. SCHED_DEADLINE [10] implements
a reservation-based CPU scheduler and is the first example
of this kinds of schedulers that has been accepted in the
mainstream version of a popular and commonly used OS



kernel. Various different modified version of Linux imple-
menting advanced real-time scheduling algorithms also ex-
ist [7, 16, 8], but none of them has been integrated in the
mainline version of the kernel. Some other works aim at in-
troducing real-time scheduling algorithms in an existing OS
kernel such as Linux without modifying the kernel source [5].

While the original CBS algorithm [1] has been extended
in various ways [11] and many more advanced reservation-
based algorithms have been proposed in literature [6, 12],
SCHED_DEADLINE implemented the original algorithm because
of its simplicity. The improvements proposed in this paper
keep the original algorithm simplicity (less than 30 lines of
code have been modified, including comments) while im-
proving the performance as shown in Section 4, and have
been inspired by practical usage of the CBS implementa-
tion provided by SCHED_DEADLINE. Some work to formally
analyse the schedulability of self-suspending tasks has been
done [13], but it does not consider reservation-based algo-
rithms.

6. CONCLUSIONS
This paper described some issues experienced when using
the new SCHED_DEADLINE scheduling policy to schedule real
tasks. In particular, when considering self-suspending task
the strategy used to assign scheduling parameters to tasks
should be changed. It can also be argued that the rule used
by the original CBS algorithm to handle tasks wake-ups
should be revised, in order to properly handle the wake-
ups that do not correspond to new job arrivals. Simula-
tions show that both decreasing the server period and using
the revised wake-up rule improve the real-time performance
of self-suspending tasks, and these results are confirmed by
some experiments with real applications running on a Linux-
based machine, performed on SCHED_DEADLINE.

7. REFERENCES
[1] L. Abeni and G. Buttazzo. Integrating multimedia

applications in hard real-time systems. In Proceedings
of the IEEE Real-Time Systems Symposium, Madrid,
Spain, December 1998.

[2] L. Abeni and G. Buttazzo. Stochastic analysis of a
reservation-based system. In Proceedings of the 15th
International Parallel and Distributed Processing
Symposium., San Francisco, California, April 2001.

[3] L. Abeni and G. Buttazzo. Resource reservation in
dynamic real-time systems. Real-Time Systems,
27(2):123–167, 2004.

[4] L. Abeni, L. Palopoli, G. Lipari, and J. Walpole.
Analysis of a reservation-based feedback scheduler. In
Proc. of the Real-Time Systems Symposium, Austin,
Texas, November 2002.

[5] M. Asberg, T. Nolte, S. Kato, and R. Rajkumar.
Exsched: An external cpu scheduler framework for
real-time systems. In Embedded and Real-Time
Computing Systems and Applications (RTCSA), 2012
IEEE 18th International Conference on, pages
240–249, Aug 2012.

[6] S. A. Banachowski, T. Bisson, and S. A. Brandt.
Integrating best-effort scheduling into a real-time
system. In RTSS, pages 139–150, 2004.

[7] J. Calandrino, H. Leontyev, A. Block, U. Devi, and

J. Anderson. LITMUSRT : A testbed for empirically
comparing real-time multiprocessor schedulers. In
Real-Time Systems Symposium, 2006. RTSS ’06. 27th
IEEE International, pages 111–126, Dec 2006.

[8] M. Dellinger, P. Garyali, and B. Ravindran. Chronos
linux: a best-effort real-time multiprocessor linux
kernel. In Proceedings of the 48th Design Automation
Conference, pages 474–479. ACM, 2011.

[9] P. Emberson, R. Stafford, and R. I. Davis. Techniques
for the synthesis of multiprocessor tasksets. In
Proceedings 1st International Workshop on Analysis
Tools and Methodologies for Embedded and Real-time
Systems (WATERS 2010), pages 6–11, Brussels,
Belgium, July 2010.

[10] D. Faggioli, F. Checconi, M. Trimarchi, and
C. Scordino. An EDF scheduling class for the Linux
kernel. In Proceedings of the Eleventh Real-Time
Linux Workshop, Dresden, Germany, September 2009.

[11] G.Lipari and S. Baruah. Greedy reclaimation of
unused bandwidth in constant bandwidth servers. In
IEEE Proceedings of the 12th Euromicro Conference
on Real-Time Systems, Stokholm, Sweden, June 2000.

[12] C. Lin and S. A. Brandt. Improving soft real-time
performance through better slack reclaiming. In RTSS
’05: Proceedings of the 26th IEEE International
Real-Time Systems Symposium, pages 410–421,
Washington, DC, USA, 2005. IEEE Computer Society.

[13] C. Liu and J. Anderson. Task scheduling with
self-suspensions in soft real-time multiprocessor
systems. In Real-Time Systems Symposium, 2009,
RTSS 2009. 30th IEEE, pages 425–436, Dec 2009.

[14] C. L. Liu and J. Layland. Scheduling alghorithms for
multiprogramming in a hard real-time environment.
Journal of the ACM, 20(1), 1973.

[15] C. W. Mercer, S. Savage, and H. Tokuda. Processor
capacity reserves: Operating systems support for
multimedia applications. In Proceedings of the IEEE
International Conference on Multimedia Computing
and Systems, May 1994.

[16] D. Niehaus and N. Watkins. A flexible scheduling
framework supporting multiple programming models
with arbitrary semantics in linux. In Proceedings of the
Eleventh Real-Time Linux Workshop (RTLWS),
Dresden, September 2009.

[17] S. Oikawa and R. Rajkumar. Linux/RK: A portable
resource kernel in Linux. In Proceedings of the IEEE
Real-Time Systems Symposium Work-In-Progress,
Madrid, December 1998.

[18] L. Palopoli, G. Lipari, G. Lamastra, L. Abeni,
G. Bolognini, and P. Ancilotti. An object-oriented tool
for simulating distributed real-time control systems.
Software: Practice and Experience, 32(9):907–932,
2002.

[19] R. Rajkumar, K. Juvva, A. Molano, and S. Oikawa.
Resource kernels: A resource-centric approach to
real-time and multimedia systems. In Proceedings of
the SPIE/ACM Conference on Multimedia Computing
and Networking, January 1998.

[20] J. Strosnider, J. Lehoczky, and L. Sha. The deferrable
server algorithm for enhanced aperiodic responsiveness
in hard real-time environments. Computers, IEEE
Transactions on, 44(1):73–91, Jan 1995.


