
On the Energy Efficiency of Parallel Multi-core vs
Hardware Accelerated HD Video Decoding

Yahia Benmoussa Univ.
Bretagne Occidentale,
UMR6285, Lab-STICC,
France. Univ. M’hamed

Bougara, LIMOSE, Algeria
yahia.benmoussa@univ-

brest.fr

Jalil Boukhobza
Univ. Bretagne Occidentale,

UMR6285, Lab-STICC,
F29200 Brest, France

jalil.boukhobza@univ-
brest.fr

Eric Senn
Univ. Bretagne Sud,

UMR6285, Lab-STICC,
F56100 Lorient, France

eric.senn@univ-ubs.fr

Djamel Benazzouz
Univ. M’hamed Bougara,

LMSS, Boumerdes, Algeria
dbenazzouz@yahoo.fr

ABSTRACT
Hardware video accelerators are used on mobile devices to
provide support for energy efficient real time High definition
(HD) video decoding. Recently, the rise of multi-core archi-
tectures on those devices increased their performances and
make real time HD video decoding possible using parallel
processing on the GPP cores only. What is even more in-
teresting to know is the level of energy efficiency these kind
of multi-core General Purpuse Processor (GPP) can achieve
as compared to hardware video accelerators. In this paper,
we propose an experimental evaluation of the energy effi-
ciency of the two video decoding approaches. An accurate
energy measurement was achieved on a recent low-power 40
nm mobile SoC containing a quad-core ARM processors and
a video hardware accelerator. The results show that parallel
multi-core HD decoding enhances both the performance and
the energy efficiency as compared to the use of a single core.
However, the hardware accelerated decoding is about three
times more energy efficient. Based on the experimental ob-
servations, some challenges for enhancing parallel multi-core
video decoding energy efficiency are pointed out.

Categories and Subject Descriptors
H.5.1 [Information Interfaces and Presentation]: Mul-
timedia Information Systems; D.4.8 [Operating Systems]:
Performance; C.3 [Special Purpose and Application Based
Systems]: Real-time and embedded systems

Keywords
Parallel video decoding, Energy efficiency, multi-core SoC

EWiLi’14, 13-14 November 2014, Lisbon, Portugal.
Copyright retained by the authors.

1. INTRODUCTION
Video decoding is both processing intensive and real time

application. To fulfill these constraints, the processor equip-
ping the mobile devices may need to run at more and more
high frequency especially in the context of an increasing de-
mand on HD videos.

However, due to the thermal and power issues faced in the
design of modern microprocessors, it is no longer possible to
increase continuously the clock frequency. In fact, using high
frequencies leads to a drastic increase in the thermal dissipa-
tion and the energy consumption due to the quadratic rela-
tion between the dynamic power consumption and the clock
frequency. This is more critical in the case of energy con-
strained mobile devices such as smartphones and tablets. To
overcome this issue, modern embedded processor architec-
tures use the parallelism to increase the performance with-
out the need to increase the frequency [9].

In the field of video decoding, the parallelism can enhance
the energy efficiency on the energy constrained device. It can
be implemented in a specialized hardware video accelerators
whose energy efficiency is well established [18]. However, the
hardware accelerators are a proprietary solutions and lack
of flexibility. In fact, they are not open and their use depend
on some API provided by the vendor. Moreover, it may take
a long time to implement a new video standard on hardware
circuits unlike the software based solutions running on GPP.
For example, the latest mobile device still does not support
hardware accelerator for the new HEVC standard.

Recently, the new SoC equipping mobile devices include
more and more GPP cores. For example, the latest ARM
big.LITTLE architecture contains four Cortex A7 and four
Cortex A15 processors [3]. What is even more interesting to
know is the level of performance and energy efficiency these
kind of multi-core GPP processors can achieve as compared
to hardware video accelerators. The objective is to provide
a video decoding solution that conciliates both the energy
efficiency and the flexibility of video decoding.

In this study, we investigate the performance and energy
efficiency of parallel multi-core video decoding as compared
to the hardware accelerator based approach. For this pur-
pose, we propose an experimental methodology based on

power consumption measurement achieved on an embedded
platform containing four GPP cores and a video hardware
accelerator. The obtained results showed that the hardware
accelerator is three time more energy efficient than the op-
timal parallel multi-core video decoding. Moreover, they
allowed to point out some challenges to enhance the energy
efficiency of the parallel multi-core video decoding.

The remainder of this paper is organized as follows : Re-
lated works on energy consideration of parallel video decod-
ing are discussed in section 2. In section 3, some background
material regarding the power consumption and the energy
efficiency of parallel video decoding is presented. The exper-
imental methodology and the obtained results are described
in section 4 and 5 respectively. Finally, the conclusions and
some future work perspectives are given in section 6.

2. RELATED WORKS
In [10], is introduced some architecture design basis of

hardware accelerated H.264/AVC HD video decoding. The
advantages, in terms of performance and energy consump-
tion, of H.264/AVC video decoding using hardware acceler-
ator are highlighted in [18]. In the same way, a more general
study [12] investigates the reasons of energy inefficiency of
GPPs and proposes guidelines to reduce the energy break-
down as compared to video hardware accelerator. The en-
ergy efficiency of hardware accelerated video decoding is well
established, however, the video standards evolve quickly and
hardware vidoe accelerator does not provide the flexibility
to adapt to those changes [16].

DSP-based solutions aim to conciliate the flexibility of
GPPs and the energy efficiency of hardware accelerator. In
[9], the authors focus on the performance and energy effi-
ciency of DSPs due to the use of pipeline and parallelism in
CMOS circuits. In [6, 5], the authors compare the perfor-
mance and the energy efficiency of GPP and DSP. However,
the HD video decoding was not considered in these stud-
ies. Moreover, DSP-based video decoding seems to be aban-
doned by mobile device manufacturer in favor of hardware
video accelerators which are more energy efficient.

With the rise of modern SoC integrating more and more
processor cores, many studies investigated the performance
and the energy efficiency of parallel video decoding on these
architectures. In [13], they compared different video decod-
ing parallelism levels (MB, slice and frame) on multi-core
architecture. In [4], the authors focus on the energy effi-
ciency of parallel H.264/AVC decoding on multi-core pro-
cessor. They have evaluated the energy saving as compared
to mono-core decoding. However, they have not considered
hardware acceleration in their study.

In this study, we propose a comprehensive experimental
methodology to investigate the energy efficiency of paral-
lel multi-core video decoding as compared to that based on
hardware video accelerators. As far as we know, no prior
work provided a clear evaluation data of the two approaches.

3. BACKGROUND
We describe hereafter some elementary background re-

lated to the energy consumption in electronic -circuits and
the role of parallelism in reducing the energy consumption
especially in case of video decoding.

3.1 Energy consumption

Figure 1: Architecture driven frequency scaling

In CMOS digital circuits, the total power consumption is
the sum of the static and dynamic power :

Ptot = Pstatic + Pdyn (1)

where Pstatic and Pdyn are defined as :

Pstatic = Ileak.V (2) Pdyn = Ceff .V
2.f (3)

Ileak is the leakage current, V is the supply voltage associ-
ated to the clock frequency f and Ceff is the circuit effective
capacitance [9].

The static power is related to the circuit fabrication tech-
nology and does not depend on its activity. Below 65-nm
circuits feature size, it becomes significant and poses new
low-power design challenges [14]. On the other hand, the dy-
namic power is related to the circuit activity. For example,
in case of a microprocessor, the dynamic power depends on
the type of instructions executed and on the data accessed.
In equation 3, this is represented by the Ceff parameter de-
fined as Ceff = A.C, where C is the circuit capacitance and
A is the the activity factor.

Figure-1 illustrates a simplified representation of a CMOS
circuit which processes a set of sequential data D (encoded
video frames) using a block B (video decoder). The block B
operates at frequencies f

2
and f corresponding to the supply

voltage levels V1 = 0.925V and V2 = 1.15V respectively1. If
t is the processing time when B operates at a frequency f
(Figure 1-a), then the energy consumption is EV2 = PV2 .t
where PV2 = Ceff .V

2
2 .f . If we suppose the processing time

at frequency f
2

(Figure-1-b) is doubled, then the ratio be-
tween the energy EV1 consumed by the circuit at the fre-
quency f

2
with V1 = 1.06V , and EV2 is :

EV1

EV2

=
Ceff .V

2
1 .

f
2
.2.t

Ceff .V 2
2 .f.t

= (
V1

V2
)2 ' 65%

In this case, scaling down the voltage and the frequency
decreases the power consumption to PV1 = Ceff .V

2
1 .

f
2

'
2
5
.PV2 which leads to 35% energy saving at the cost of a

decreased performance. This may represent a scenario where
the operating system scales down dynamically the processor
frequency at run time when it detects a load decrease. This
illustrates a system-driven voltage scaling.

In order to save energy without sacrificing performance,
an architectural-driven voltage scaling [9] can be achieved by
using two B blocks which are both clocked at a frequency f

2
and supplied with a voltage V1 as described in Figure-1-c.

1V1 and V2 are the associated to the frequencies 800 and 400
MHz of the Cortex A9 processor used in our experiments.

Figure 2: Video decoding parallelism levels

P2.V1 and E2.V1 refer to the power and the energy consump-
tion associated to this configuration. Since the two blocks
are operating in parallel, the execution time does not de-
crease and the ratio between E2.V1 and EV2 is :

E2.V1

EV1

=
Ceff .V

2
1 .

f
2
.t + Ceff .V

2
1 .

f
2
.t

Ceff .V 2
2 .f.t

= (
V1

V2
)2 ' 65%

In this configuration, the total power consumption P2.V1

is the sum of the power consumptions of the two blocks,
which is equal to 2.Ceff .V

2
1 .

f
2

= 4
5
.PV2 . The energy saving

is equal to 35% without sacrificing the performance but at
a cost of an additional circuit area and static power.

3.2 Parallel video decoding
As illustrated in Figure-2, a H.264/AVC video sequence is

composed of a set of frames. Each frame may contain several
slices and each slice contains several macroblocks (MB = 16
x 16 pixels). The H.264 standard defines three main types
of slices: I, P, and B. An I slice uses intra prediction and is
independent of the slices in other frames. In intra prediction
a MB is predicted based on adjacent blocks. A P-slice uses
motion estimation and intra prediction and depends on one
or more slices in a previous frames, either I, P or B. Motion
estimation is used to exploit temporal correlation between
slices. Finally, B-slices use bidirectional motion estimation
and depend on slices from previous and future frames. Each
slice can be decoded independently of the slices within the
same frame whatever its type.

The parallelism of video decoding can be achieved at a
frame, slice or MB levels [15]. At a frame level, the frames
may be decoded in parallel on different processing units.
The drawback of such an approach is that it does not scale
very well because the number of independent slices is limited
at a given time. On the other hand, a higher scalability
is possible at a slice level. However, this depends on the
encoder setting to enable multi-slice frames. At MB level,
a very good scalability can be achieved when the decoding
is implemented on hardware codecs. On the other hand,
parallel MB decoding on many core processors is not efficient
due to a considerable inter-processor and synchronization
overhead [2].

In this study, we compare slice-based parallelism on multi-
core ARM processors and hardware accelerated video decod-
ing using MB level parallelism.

4. METHODOLOGY
The proposed experimental methodology aims to com-

pare between the energy efficiency of parallel multi-core and

Figure 3: i.MX6 SoC power domains

A
p
p
lica

tio
n
s

Videos

Test sequences Big Buck Bunny
Rate 24 Frames/s
Resolution 720p (1280x720)
Bit-rate (Kb/s) 2Mb/s

GStreamer
ARM codec plug-in ffdec h264
HW codec plug-in vpudec

Linux
Kernel version Linux 3.10.17
DVFS driver cpufreq

H
a
rd

w
a
re

HW codec
Model Proprietary (Freescale)
Frequencies (MHz) 264

ARM
Model Quad-core Cortex A9 + NEON
Frequencies (MHz) 400, 800, 1000

SoC
Model Freescale i.MX6 quad
Technology 40 nm

Table 1: Hardware and software setup

hardware accelerated HD video decoding. It is based on
power consumption measurement on a real embedded plat-
form containing a multi-core processor and a hardware video
codec. We describe hereafter the used hardware and soft-
ware, then the performance and energy consumption mea-
surement methodology.

4.1 Hardware Setup
We use in our experiment the SABRE development board

containing the low-power i.MX6 Quad-core SoC. This SoC
consists of a Quad Cortex A9 ARM cores and a set of spe-
cialized processing units such as a Graphical Processing Unit
(GPU) and a Video Processing Unit (VPU) (See Figure-3.
Each Cortex A9 processor supports 3 frequencies : 400 MHz,
800 MHz and 1000 MHz. The VPU is a hardware accelera-
tor implementing H.264/AVC encoding/decoding standard.
It is clocked at 264 MHz and supports full HD video decod-
ing up to 60 Hz rate. In what follows, the VPU term serves
to designate the video hardware accelerator.

4.2 Software Setup
On this hardware platform, the Linux operating system

version 3.0.17 was used with cpufreq enabled to drive the
ARM cores frequency scaling. The userspace governor was
activated to allow the control of the clock frequency at the
application level. The H.264/AVC video decoding was achieved
using GStreamer [11], a multimedia development framework.
The ARM decoding, was performed using ffdec h264, an
open-source plug-in based on the widely used ffmpeg/libav-
codec library compiled with the support of NEON SIMD
instructions set. For the hardware accelerated decoding, we
used vpudec, a proprietary GStreamer H.264/AVC plug-in
provided by Freescale. As a test video, we use the well
known Big Buck Bunny sequence. We encode it in 720p
resolution (1280x720), 2Mb/s bit-rate and 24Hz rate using
x264 encoder. We configured the encoder to set the number
of slice per frame to 4 by means of the –slices option. The
objective is to fully exploit the 4 available ARM cores on the

Figure 4: Performance of video decoding

400 MHz 800 MHz 1000 MHz
1 core 7,16 13,71 17,03
2 cores 12,30 (x 1.71) 24,55 (x 1.79) 28,02 (x 1.64)
4 cores 18,35 (x 2.56) 33,36 (x 2.43) 39,80 (x 2.33)
VPU 90,57 (x 12.64) 90,61 (x 6.60) 91,05 (x 5.34)

Table 2: Video decoding performances (fps)

i.MX6 SoC while decoding the video. Table-1 summarizes
the used hardware and software setup.

4.3 Performance measurement
We started by measuring the performance of video decod-

ing using a single core, dual-core, quad-core decoding at all
the available clock frequencies (400, 800 and 1000 MHz) and
the VPU decoding. The number of cores used for decoding
the video is selected by setting the value of max threads pa-
rameter of the ffdec h264 plug-in. The VPU and multi-core
video decoding is selected by choosing the corresponding
GStreamer plug-in : (ffdec h264 or vpudec). For each con-
figuration, we calculated the number of decoded frame per
second (fps). The libavcodec library supports both slice and
frame multi-threaded decoding. However, the ffdec h264
plug-in does not allow to select explicitly which method to
use and the automatic selection mechanism tends to select
systematically the frame-level multi-threading. To fix this
issue, the plug-in was forced to use the slice-level method
by setting active thread type = FF THREAD SLICE in the
pthread.c source file.

4.4 Energy consumption measurement
The used SABRE board has two power domains which

can be measured separately. The ARM power domain in-

1 core 2 cores 4 cores VPU
0

50

100

150

200

250

300
Processor usage

P
er

ce
nt

ag
e

(%
)

Figure 5: Video decoding processor usage

Figure 6: Energy consumption of video decoding

400 MHz 800 MHz 1000 MHz
1 core 19.16 27.24 33.85
2 cores 15.46 (x 0.80) 22.57 (x 0.82) 26.16 (x 0.77)
4 cores 13.55 (x 0.70) 20.30 (x 0.74) 25.12 (x 0.74)
VPU 6.41 (x 0.33) 6.53 (x 0.23) 6.61 (x 0.18)

Table 3: Video decoding energy (mJ/frame)

clude the 4 ARM cores plus the cache memory and the SoC
power domain include the VPU, 2DGPU, 3DGPU and the
OpenVG [1]. At each power domain was inserted Rshunt, a
0.02 Ω shunt resistor (See Figure-3).

5. EXPERIMENTAL RESULTS

5.1 Performances
The power consumptions is then measured using the Open-

PEOPLE framework [7], a multi-user and multi-target power
and energy optimization platform and estimator. It includes
the NI-PXI-4472 digitizer allowing up to a 100 KHz sam-
pling resolution. At a given time, the power consumption
is P = Vc.Vshunt

Rshunt
. The energy consumption is obtained by

summing the elementary power consumption obtained using
1 KHz sampling rate multiplied by the sampling duration.

In case of multi-core ARM video decoding, only the ARM
power domain consumption is measured. On the other hand,
the sum of the ARM power domain and the SoC power are
measured in case of VPU decoding since both the ARM cores
the the VPU are involved in the decoding process.

Table-2 shows the performances results of the video de-
coding. One can observe that in case of multi-core decoding,
the decoding speed is higher than the displaying rate using
2 cores or 4 cores starting from 800 MHz clock frequency. In
case of VPU video decoding, the decoding speed is (x 3.75)
higher than the displaying rate regardless of the ARM cores
frequency2. This is illustrated in Figure-4 where the flat red
surface represents the displaying rate (24 fps).

The values between the parenthesis in Table-2 represent
the performance scaling factor as compared to mono-core
video decoding. One can observe that using four ARM cores
allows only x2.4 performance increase. This is mainly due to
the unbalanced workload. In fact, the video encoder divides
each frame into equal-size slices. However, the decoding
workload depends on the slice scene complexity. Thus, a
decoding thread assigned to a given slice may terminate be-

2The frequency of the VPU frequency (264 MHz) remains
constant when varying the frequency of the ARM cores

5 10 15 20 25 30
0

0.5

1

1.5

2

Time (s)

P
ow

er
 (

W
)

ARM−core

Video decoding

SoC

VPU Power consumption

a) Hardware accelerated HD video decoding
(ARM : 400 Mhz / VPU : 264 Mhz)

0 10 20 30 40

0

0,5

1

Time (ms)

P
ow

er
 (

W
)

Video frame
decoding

VPU Power consumption

ARM−coreARM
idle

ARM
active

SoC

b) Frame−by−frame hardware accelerated (VPU) HD
video decoding (ARM : 400 Mhz, VPU : 264 Mhz)

Figure 7: VPU Video decoding power consumption

fore the other ones. During this time, it goes into a blocked
status waiting the other threads to terminate.

On the other hand, the scaling factor is much more higher
(from x5 to x12) in case of VPU decoding. This is due to
MB level parallelism implemented in the VPU.

The measured processor usages3 illustrated in Figure-5
confirm these observations. In fact, in case of single-core
video decoding (one thread), the processor usage is 100%
which means that the decoding thread is all time in ac-
tive state. However, it is around 160% and 260% in case
of dual-core and quad-core decoding respectively. On the
other hand, when using the VPU, the processor usage is
about 15% because the ARM cores are almost time in idle
mode waiting for the frame to be decoded by the VPU.

5.2 Energy consumption
Table-3 shows the energy consumption of video decoding

using the ARM cores and the VPU. The values between
parenthesis in Table-2 represent the energy reduction fac-
tor as compared to single core decoding. As expected, for
a given clock frequency, increasing the number of cores al-
lows to reduce the energy consumption (See Figure-6). For
example, as compared to mono-core decoding, the optimal
multi-core configuration (4 cores, 800 MHz) deceases the en-
ergy by a factor of x0.74 while increasing the performance
by a factor of x2.43.

On the other hand, the energy saving is much more im-
portant in case of VPU video decoding (0.23 scaling factor)
as compared to mono-core decoding at 800 MHz and x0.36
as compared to the optimal multi-core video decoding (4
cores, 800 MHz). This can be explained by both a high
decoding performance and a very low power consumption

3processor usage = (
∑

i Ti)/Texe where Ti is the time that

the ith thread got a processor core (active time), Texe is the
decoding time.

5 10 15 20 25 30
0

0.5

1

1.5

2

Time (s)

P
ow

er
 (

W
)

ARM−core

Video decoding

a) Parallele (4 cores) HD video decoding
(400 Mhz)

5 10 15 20 25 30
0

0.5

1

1.5

2

Time (s)

P
ow

er
 (

W
)

ARM−core

Video decoding

b) Parallele (4 cores) HD video decoding
(800 Mhz)

5 10 15 20 25 30
0

0.5

1

1.5

2

Time (s)

P
ow

er
 (

W
)

ARM−core

Video decoding

c) Parallele (4 cores) HD video decoding
(1000 Mhz)

Figure 8: HD Video decoding energy consumption

of the VPU. As illustrated in Figure-7-a, one can observe
that the decoding time of the 480 video frames terminated
in almost 5 seconds. During this decoding phase, the power
consumption of the SoC power domain increases with only
0.2 W which correspond to the VPU power consumption.
This low value can be explained by the low frequency (264
MHz) of the VPU. During this time, the ARM cores power
consumption is negligible. In fact, as illustrated in Figure-
7-b showing the frame-by-frame power consumption varia-
tion, the ARM cores are almost time in idle state waiting
the VPU to decode a video frames. In the idle state, the
ARM cores execute the WFI (Wait For Interrupt) instruc-
tion were almost the processor clocks are gated to reduce
the power consumption.

Unlike the VPU decoding, multi-core video decoding can
not conciliate the performance and the energy efficiency. As
illustrated in Figure-8, at 400 MHz frequency (See Figure-
8-a), the power consumption is low (v 0.3 mW), but the
decoding time is very long. On the other hand, at the higher
frequencies, the decoding time is reduced but the power con-
sumption increases considerably (See Figure-8-b and c).

One can highlight that the unbalanced workload over the
processor cores may be source of energy inefficiency. In fact,

during a thread waiting time, the processor core continues
to consume energy while doing nothing. One approach to fix
this issue is to set the clock frequency of each core depend-
ing on the slice decoding workload or to transit a processor
core to low power mode during its inactivity using Dynamic
Power Management (DPM) as proposed in [17]. However,
this is not possible in case of the used i.MX6 SoC since it
does not support a per-core DVFS/DPM.

6. CONCLUSION
This paper is a use case study based on the i.MX6 SoC.

The experimental results showed that multi-core video de-
coding allows to enhance both the performance and the en-
ergy efficiency of HD video decoding as compared to sin-
gle core decoding. However, the hardware video accelerator
is three time more energy efficient than multi-core optimal
multi-core video decoding.

Although, these results may be different on other archi-
tecture, the obtained data allows to have a general idea the
the energy consumption levels of HD video decoding on a
recent heterogeneous SoC.

According to the rapid evolution of the SoC which tend
to integrate more and more cores [8], one may expect that
the energy efficiency of multi-core video decoding can be en-
hanced if a larger number of cores are used [19]. Moreover,
as pointed out in the results discussion, the energy efficiency
of multi-core video decoding may also be enhanced if it is
combined with per-core DVFS/DPM strategies. The objec-
tive is to avoid wasting the energy due to idling the cores.
We plan to investigate these issues in a future works using
the Exynos5 SoC containing 8 cores supporting a per-core
DVFS/DPM.

Acknowledgment
This work was supported by BPI France, Région Ile-de-
France, Région Bretagne and Rennes Métropole through the
French Project GreenVideo.

7. REFERENCES
[1] i.MX 6Dual/6Quad Power Consumption

Measurement, Freescale Semiconductor, 2012.

[2] M. Álvarez Mesa, A. Ramı́rez, A. Azevedo,
C. Meenderinck, B. Juurlink, and M. Valero.
Scalability of macroblock-level parallelism for h. 264
decoding. In Parallel and Distributed Systems
(ICPADS), 2009 15th International Conference on,
pages 236–243. IEEE, 2009.

[3] ARM. big.little processing.
http://www.arm.com/products/
processors/technologies/biglittleprocessing.php, 2014.

[4] E. Baaklini, S. Rethinagiri, H. Sbeity, and S. Niar.
Scalable row-based parallel h.264 decoder on
embedded multicore processors. Signal, Image and
Video Processing, pages 1–15, 2014.

[5] Y. Benmoussa, J. Boukhobza, E. Senn, and
D. Benazzouz. Energy consumption modeling of
h.264/avc video decoding for gpp and dsp. in
Proceedings of 16th Euromicro Conference on Digital
System Design, 2013.

[6] Y. Benmoussa, J. Boukhobza, E. Senn, and
D. Benazzouz. GPP vs DSP: A performance/energy

characterization and evaluation of video decoding. in
Proceedings of the IEEE 21st International Symposium
On Modeling, Analysis And Simulation Of Computer
And Telecommunication Systems, 2013.

[7] Y. Benmoussa, E. Senn, J. Boukhobza, M. Lanoe, and
D. Benazzouz. Open-PEOPLE, a collaborative
platform for remote & accurate measurement and
evaluation of embedded systems power consumption.
in Proceedings of the IEEE 22nd International
Symposium On Modeling, Analysis And Simulation Of
Computer And Telecommunication Systems, 2014.

[8] S. Borkar. Thousand core chips: A technology
perspective. In Proceedings of the 44th Annual Design
Automation Conference, DAC ’07, pages 746–749.
ACM, 2007.

[9] A. Chandrakasan, S. Sheng, and R. Brodersen.
Low-power CMOS digital design. IEEE Journal of
Solid-State Circuits, 27(4):473 –484, 1992.

[10] T.-C. Chen, S.-Y. Chien, Y.-W. Huang, C.-H. Tsai,
C.-Y. Chen, T.-W. Chen, and L.-G. Chen. Analysis
and architecture design of an hdtv720p 30 frames/s h.
264/avc encoder. Circuits and Systems for Video
Technology, IEEE Trans. on, pages 673–688, 2006.

[11] C. M. Don Darling and B. Singh. Gstreamer on texas
instruments OMAP35x processors. Proceedings of the
Ottawa Linux Symposium, pages 69–78, 2009.

[12] R. Hameed, W. Qadeer, M. Wachs, O. Azizi,
A. Solomatnikov, B. C. Lee, S. Richardson,
C. Kozyrakis, and M. Horowitz. Understanding
sources of inefficiency in general-purpose chips.
SIGARCH Comput. Archit. News, 38(3):37–47, 2010.

[13] D. Kiliçarslan, C. G. Gürler, Ö. Özkasap, and A. M.
Tekalp. Energy efficient video decoding on multi-core
devices. In Proceedings of the 2nd International
Conference on Energy-Efficient Computing and
Networking, pages 63–66. ACM, 2011.

[14] N. Kim, T. Austin, D. Baauw, T. Mudge, K. Flautner,
J. Hu, M. Irwin, M. Kandemir, and V. Narayanan.
Leakage current: Moore’s law meets static power.
Computer, 36(12):68–75, 2003.

[15] C. Meenderinck, A. Azevedo, M. Alvarez, B. Juurlink,
and A. Ramirez. Parallel scalability of h. 264. In
Proceedings of the first Workshop on Programmability
Issues for Multi-Core Computers, 2008.

[16] G. J. Smit, A. B. Kokkeler, P. T. Wolkotte, and M. D.
van de Burgwal. Multi-core architectures and
streaming applications. In Proceedings of the 2008
international workshop on System level interconnect
prediction, SLIP ’08, pages 35–42. ACM, 2008.

[17] Y.-H. Wei, C.-Y. Yang, T.-W. Kuo, S.-H. Hung, and
Y.-H. Chu. Energy-efficient real-time scheduling of
multimedia tasks on multi-core processors. In
Proceedings of the 2010 ACM Symposium on Applied
Computing, SAC ’10, pages 258–262. ACM, 2010.

[18] K. Xu, T.-M. Liu, J.-I. Guo, and C.-S. Choy. Methods
for power/throughput/area optimization of
H.264/AVC decoding. Journal of Signal Processing
Systems, 60(1):131–145, 2010.

[19] S. Zhu, Z. Yu, S. Cui, Z. Yu, and X. Zeng. H.264 video
parallel decoder on a 24-core processor. In ASIC
(ASICON), 2013 IEEE 10th International Conference
on, pages 1–4, 2013.

