
4th International Symposium on

Data-Driven Process
Discovery and Analysis
SIMPDA 2014
November 19-21, 2014
Milan, Italy

Editors:
Paolo Ceravolo
Rafael Accorsi
Barbara Russo

Foreword

The fourth edition of the International Symposium on Data-driven Process Discovery and
Analysis (SIMPDA 2014) conceived to offer a forum where researchers from different
communities and the industry can share their insight in this hot new field.

With the increasing automation of business processes, growing amounts of process data
become available. This opens new research opportunities for business process data
analysis, mining and modeling. The aim of the IFIP 2.6 - International Symposium on Data-
Driven Process Discovery and Analysis is to offer a forum where researchers from different
communities and the industry can share their insight in this hot new field.

Submissions aim at covering theoretical issues related to process representation,
discovery and analysis or provide practical and operational experiences in process
discovery and analysis. Language for papers and presentations is English. In this fourth
edition, 20 papers were submitted that were reviewed by a minimum of two reviewers, 13
was accepted for publication in the pre-symposium volume. According to the format of a
symposium the discussion during the event is considered a valuable element that can help
to improve a work presented and the approach in presenting results. For this reason
authors of accepted papers will be invited to submit extended articles a post-symposium
volume of Lecture Notes in Business Information Processing, scheduled in 2015.

Our thanks go to the authors who submitted to the conference, to the board of reviewers
that made a great work in the review process and in promoting this new event, and to all
those who participate in the organization of the events.

We are very grateful to Università degli Studi di Milano, for its financial support, IFIP, the
University of Freiburg, the Free University of Bozen-Bolzano.

Paolo Ceravolo
Rafael Accorsi
Barbara Russo
SIMPDA co-Chairs 

I

Table of Contents

* Research Papers

History-based Construction of Log-ProcessAlignments for Conformance
Checking:Discovering What Really Went Wrong 
M. Alizadeh, M. de Leoni and N. Zannone

pp. 1-15
Finding Suitable Activity Clusters for Decomposed Process
Discovery 
B.F.A. Hompes, H.M.W. Verbeek and W.M.P van der Aalst

pp. 16-30
Discovery of Frequent Episodes in Event Logs 
M. Leemans and W. van der Aalst

pp. 31-45
Business Process Measurement in Small Enterprises after the
Installation of an ERP Software  
S. Siccardi and C. Sebastiani

pp. 46-59
Reasoning on Data-Aware Business Processes with Constraint
Logic  
M. Proietti and F. Smith

pp. 60-75
CoPra2Go: an APP for Coding Collaboration Processes 
E. Nowakowski, I. Seeber, R. Maier and F. Frati

pp. 76-90
Scalable Dynamic Business Process Discovery with the
Constructs Competition Miner 
D. Redlich, T. Molka, W. Gilani, G. Blair and A. Rashid

pp. 91-107
Scalable Process Monitoring through Rules and Neural Networks  
A. Perotti, G. Boella and A. D'Avila Garcez

pp. 108-122
Using Monotonicity to Find Optimal Process Configurations Faster 
D. Schunselaar, E. Verbeek, H. A. Reijers and W. van der Aalst

pp. 123-137

II

* Demonstrations

Tracking Hot Topics for the Monitoring of Open-World Processes 
R. Pareschi, M. Rossetti and F. Stella

pp. 138-149
Using Semantic Lifting for Improving Educational Process Models
Discovery and Analysis 
A. Hicheur, J. Assu Ondo, B. Gueni, M. Fhima, M. Schwarcfeld
and N. Khelifa

pp. 150-161
From Declarative Processes to Imperative Models 
J. Prescher, C. Di Ciccio and J. Mendling

pp. 162-173

* Research Plans

A Methodology for Generating Artificial Event Logs to Compare
Process Discovery Techniques 
T. Jouck, M. Swennen and B. Depaire

pp. 174-178
Process Mining Extension To SCAMPI  
A. Valle

pp. 179-183

III

Conference Organization

* Conference Co-Chairs

* Advisory Board

Karl Aberer, EPFL, Switzerland

Ernesto Damiani, Università degli Studi di Milano, Italy

Tharam Dillon, La Trobe University, Australia

Marcello Leida, EBTIC (Etisalat BT Innovation Centre), UAE

Erich Neuhold, University of Vienna, Austria

Maurice van Keulen, University of Twente, The Netherlands

Philippe Cudre-Mauroux, University Of Fribourg, Switzerland

* Ph.D. Award Committee

Gregorio Piccoli, Zucchetti spa, Italy

Paolo Ceravolo, Università degli Studi di Milano, Italy

Marcello Leida, EBTIC (Etisalat BT Innovation Centre), UAE

* Publicity Chair

Fulvio Frati, Università degli Studi di Milano, Italy 

Paolo Ceravolo Rafael Accorsi Barbara Russo

Università degli Studi di Milano,
Italy

University of Freiburg, Germany Free University of Bozen-Bolzano

� �

IV

Program Committee

Irene Vanderfeesten, Eindhoven University Of Technology, The Netherlands

Maurice Van Keulen, University Of Twente, The Netherlands

Manfred Reichert, University Of Ulm, Germany

Schahram Dustdar, Vienna University Of Technology, Austria

Mohamed Mosbah, University Of Bordeaux, France

Meiko Jensen, Ruhr-University Bochum, Germany

Helen Balinsky, Hewlett-Packard Laboratories, Uk

Valentina Emilia Balas, University Of Arad, Romania

Karima Boudaoud, Ecole Polytechnique De Nice Sophia Antipolis, France

George Spanoudakis, City University London, Uk

Richard Chbeir, University Of Bourgogne, France

Gregorio Martinez Perez, University Of Murcia, Spain

Ebrahim Bagheri, Ryerson University, Canada

Jan Mendling, Vienna University Of Economics And Business, Austria

Farookh Hussain, University Of Technology Sydney, Australia

Marcello Leida, Ebtic (Etisalat Bt Innovation Centre), Uae

Wil Van Der Aalst, Technische Universiteit Eindhoven, The Netherlands

Ronald Maier, University Of Innsbruck, Austria

Chintan Amrit, University Of Twente, The Netherlands

Marco Montali, Free Unviersity Of Bozen - Bolzano, Italy

Elizabeth Chang, University New South Wales, Australia

Peter Spyns, Flemish Government, Belgium

Angelo Corallo, University Of Salento, Italy

Antonio Maña Gómez, University Of Málaga, Spain

Mustafa Jarrar, Birzeit University, Palestinian Territory

Isabella Seeber, University Of Innsbruck, Austria

Chi Hung, Tsinghua University, China

V

Alessandra Toninelli, Engineering Group, Italy

Haris Mouratidis, University Of Brighton, Uk

Abder Koukam, University Of Technology, Utbm France

Fabrizio Maria Maggi, University Of Tartu, Estonia

Massimiliano De Leoni, Eindhoven Tu, Netherlands

Edgar Weippl, Tu Vienna, Austria

Pnina Soffer, University Of Haifa, Israel

Jianmin Wang, Tsinghua University Beijing, China

Minseok Song, Unist, South Korea

Roland Rieke, Fraunhofer Sit, Germany

Josep Carmona, Upc - Barcelona, Spain

Mark Strembeck, Wu Vienna, Austria

Matthias Weidlich, Imperial College, Uk

Mohamed Mosbah, University Of Bordeaux

Maria Leitner, University Of Vienna, Austria

Benoit Depaire, University Of Hasselt, Belgium

Barbara Weber, University Of Innsbruck, Austria

Babiga Birregah, University Of Technology Of Troyes, France 

VI

Sponsors

�

VII

History-based Construction of Log-Process
Alignments for Conformance Checking:
Discovering What Really Went Wrong?

Mahdi Alizadeh, Massimiliano de Leoni, and Nicola Zannone

Department of Mathematics and Computer Science,
Eindhoven University of Technology

P.O. Box 513, 5600 MB Eindhoven, The Netherlands
{m.alizadeh,m.d.leoni,n.zannone}@tue.nl

Abstract. Alignments provide a robust approach for conformance check-
ing which has been largely applied in various contexts such as auditing
and performance analysis. Alignment-based conformance checking tech-
niques pinpoint the deviations causing nonconformity based on a cost
function. However, such a cost function is often manually defined on the
basis of human judgment and thus error-prone, leading to alignments
that do not provide the most probable explanations of nonconformity.
This paper proposes an approach to automatically define the cost func-
tion based on information extracted from the past process executions.
The cost function only relies on objective factors and thus enables the
construction of the most probable alignments, i.e. alignments that pro-
vide the most probable explanations of nonconformity. Our approach
has been implemented in ProM and assessed using both synthetic and
real-life data.

Keywords: Conformance checking, alignments, cost functions

1 Introduction

Modern organizations are centered around the processes needed to deliver prod-
ucts and services in an efficient and effective manner. Organizations that oper-
ate at a higher process maturity level use formal/semiformal models (e.g., UML,
EPC, BPMN and YAWL models) to document their processes. In some case these
models are used to configure process-aware information systems (e.g., WFM or
BPM systems). However, in most organizations process models are not used to
enforce a particular way of working. Instead, process models are used for discus-
sion, performance analysis (e.g., simulation), certification, process improvement,
etc. However, reality may deviate from such models. People tend to focus on
idealized process models that have little to do with reality. This illustrates the
importance of conformance checking [1,2,9].

? This work has been funded by the NWO CyberSecurity programme under the PriCE
project and the Dutch national program COMMIT under the THeCS project.

1

Conformance checking aims to verify whether the observed behavior recorded
in an event log matches the intended behavior represented as a process model.
The notion of alignments [2] provides a robust approach to conformance check-
ing, which makes it possible to pinpoint the deviations causing nonconformity.
An alignment between a recorded process execution and a process model is a
pairwise matching between activities recorded in the log and activities allowed
by the model. Sometimes, activities as recorded in the event log (events) cannot
be matched to any of the activities allowed by the model (process activities).
For instance, an activity is executed when not allowed. In this case, we match
the event with a special null activity (hereafter, denoted as �), thus resulting
in so-called moves on log. Other times, an activity should have been executed
but is not observed in the event log. This results in a process activity that is
matched to a � event, thus resulting in a so-called move on model.

Alignments are powerful artifacts to detect nonconformity between the ob-
served behavior as recorded in the event log and the prescribed behavior as
represented by process models. In fact, when an alignment between a log trace
and process model contains at least one move on log or model, it means that
such a log trace does not conform the model. As a matter of fact, the moves
on log/model indicate where the execution is not conforming by pinpointing the
deviations that have caused this nonconformity.

In general, a large number of possible alignments exist between a process
model and a log trace, since there may exist manifold explanations why a trace
is not conforming. It is clear that one is interested in finding the most probable
explanation. Adriansyah et al. [4] have proposed an approach based on the prin-
ciple of the Occam’s razor: the simplest and most parsimonious explanation is
preferable. Therefore, one should not aim to find any alignment but, precisely,
one of the alignments with the least expensive deviations (one of the so-called
optimal alignments), according to some function assigning costs to deviations.

Existing alignment-based conformance checking techniques (e.g. [2,4]) require
process analysts to manually define a cost function based on their background
knowledge and beliefs. The definition of such a cost function is fully based on hu-
man judgment and, thus, prone to imperfections. These imperfections ultimately
lead to alignments that are optimal, according to the provided cost function, but
that do not provide the most probable explanation of nonconformity.

In this paper, we propose an alternative way to define a cost function, where
the human judgment is put aside and only objective factors are considered. The
cost function is automatically constructed by looking at the logging data and,
more specifically, at the past process executions that are compliant with the
process model. The intuition behind is that one should look at the past history
of process executions and learn from it what is the most probable explanations of
nonconformity. We believe that the most probable explanation of nonconformity
of a certain process execution can be obtained by analyzing the behavior observed
for such a process execution in each and every state and the behavior observed
for other confirming traces when they were in the same state. Our approach

2

gives a potentially different cost for each move on model and log (depending on
the current state), leading to the definition of a more sensitive cost function.

The approach has been fully implemented as a software plug-in for the open-
source process-mining framework ProM. To assess the practical relevance of our
approach, we performed an evaluation using both synthetic and real event logs
and process models. In particular, we tested it on a real-life case study about the
management of road-traffic fines by an Italian town. The results show that our
approach significantly improves the accuracy in determining the most probable
explanation for nonconformity compared to existing techniques.

The paper is organized as follows. Section 2 introduces preliminary concepts.
Section 3 presents our approach for constructing optimal alignments. Section 4
presents experiment results, which are discussed in Section 5. Finally, Section 6
discusses related work and concludes the paper with directions for future work.

2 Preliminaries

This section introduces the notation and preliminaries for our work.

2.1 Labeled Petri Nets, Event Logs, and Alignments

Process models describe how processes should be carried out. Many languages
exist to model processes. Here, we use a very simple formalism, which however
allow one to define all the aspects to take into account for this paper:

Definition 1 (Labeled Petri Net). A Labeled Petri net is a tuple (P, T, F,A, `,mi,mf)
where

– P is a set of places;
– T is a set of transitions;
– F ⊆ (P × T) ∪ (T × P) is the flow relation between places and transitions

(and between transitions and places);
– A is the set of labels for transitions;
– ` : T → A is a function that associates a label with every transition in T ;
– mi is the initial marking;
– mf is the final marking.

The label of a transition identifies the activity represented by such a transition.
Multiple transitions can be associated with the same activity label; this means
that the same activity is represented by multiple transitions. This is typically
done to make the model simpler. Some transitions can be invisible. Invisible
transitions do not correspond to actual activities but are necessary for routing
purposes and, as such, their execution is never recorded in event logs. Given
a Labeled Petri net N , InvN ⊆ A indicates the set of labels associated with
invisible transitions. As a matter of fact, invisible transitions are also associated
with labels, though these labels do not represent activities. We assume that a
label associated with a visible transition cannot be also associated with invisible
ones and vice versa.

3

Fig. 1: A process model for managing road traffic fines. The green boxes repre-
sent the transitions that are associated with process activities while the black
boxes represent invisible transitions. The text below the transitions represents
the label, which is shortened with a single letter as indicated inside the transi-
tions.

In the remainder, the simpler term Petri net is used to refer to Labeled Petri
nets. The state of a Petri net is represented by a marking, i.e. a multiset of tokens
on the places of the net. A Petri net has an initial marking mi and a final marking
mf . When a transition is executed (i.e., fired), a token is taken from each of its
input places and a token is added to each of its output places. A sequence of
transitions σM leading from the initial to the final marking is a complete process
trace. Given a Petri net N = (P, T, F,A, `,mi,mf), ΓN indicates the set of all
complete process traces.

Example 1. Fig. 1 shows a process model for handling road traffic fines in Italy
[14]. A process execution starts with recording a traffic fine in the system and
sending it to Italian residents. Traffic fines might be paid before or after they are
sent out by police or received by the offenders. If the fine is not paid in 180 days,
a penalty is added. In addition, offenders may appeal against fines to prefecture
and/or judge. If an appeal is accepted, the fine management is closed. Finally, if
the fine is not paid by the offender, eventually the process terminates by handing
over the case for credit collection.

Given a Petri net N = (P, T, F,A, `,mi,mf), a log trace σL ∈ A∗ is a se-
quence of events where each event records the firing of a transition. In partic-
ular, each event records the label of the transition that has fired. An event log
L ∈ B(A) is a multiset of log traces, where B(X) is used to represent the set of
all multisets over X. Here we assume that no events exist for activities not in
A; in practice, this can happen: in such cases, such events are filtered out before
the event log is taken into consideration.

Not all log traces can be reproduced by a Petri net, i.e. not all log traces
perfectly fit the process description. If a log trace perfectly fits the net, each

4

γ1 =
c s n t � � o �
c s n t l r o i3

γ2 =
c s n t o � �
c s n t � l i6

γ3 =
c s n t o �
c s n � � d

Fig. 2: Alignments of σ1 = 〈c, s, n, t, o〉 and the process model in Fig. 1

“move” in the log trace, i.e. an event observed in the trace, can be mimicked by
a “move” in the model, i.e. a transition fired in the net. After all events in the log
trace are mimicked, the net reaches its final marking. In cases where deviations
occur, some moves in the log trace cannot be mimicked by the net or vice versa.
We explicitly denote “no move” by �.

Definition 2 (Legal move). Let N = (P, T, F,A, `,mi,mf) be a Petri net. Let
SL = (A \ InvN)∪ {�} and SM = A∪ {�}. A legal move is a pair (mL,mM) ∈
(SL × SM) \ (�,�) such that

– (mL,mM) is a synchronous move if mL ∈ SL, mM ∈ SM and mL = mM ,
– (mL,mM) is a move on log if mL ∈ SL and mM =�,
– (mL,mM) is a move on model if mL =� and mM ∈ SM .

ΣN denotes the set of legal moves for a Petri net N .

In the remainder, we indicate that a sequence σ′ is a prefix of a sequence
σ′′, denoted with σ′ ∈ prefix(σ′′), if there exists a sequence σ′′′ such that σ′′ =
σ′ ⊕ σ′′′, where ⊕ denotes the concatenation operator.

Definition 3 (Alignment). Let ΣN be the set of legal moves. An alignment of
a log trace σL and a Petri net N = (P, T, F,A, `,mi,mf) is a sequence γ ∈ Σ∗N
such that, ignoring all occurrences of�, the projection on the first element yields
σL and the projection on the second element yields a sequence 〈a1, . . . , an〉 such
that there exists a sequence σ′P = 〈t1, . . . , tn〉 ∈ prefix(σP) for some σP ∈ ΓN
where, for each 1 ≤ i ≤ n, `(ti) = ai. If σ′P ∈ ΓN , γ is called a complete
alignment of σL and N .

Fig. 2 shows three possible complete alignments of a log trace σ1 = 〈c, s, n, t, o〉
and the net in Fig. 1. The top row of an alignment shows the sequence of events
in the log trace, and the bottom row shows the sequence of activities in the net
(both ignoring �). Hereafter, we denote |L the projection of an alignment over
the log trace and |P the projection over the net.

As shown in Fig. 2, there can be multiple possible alignments for a given log
trace and process model. The quality of an alignment is measured based on a
provided cost function K : Σ∗N → R+

0 , which assigns a cost to each alignment
γ ∈ Σ∗N . Typically, the cost of an alignment is defined as the sum of the costs of
the individual moves in the alignment. An optimal alignment of a log trace
and a process trace is one of the alignments with the lowest cost according to
the provided cost function.

As an example, consider a cost function that assigns to any alignment a cost
equal to the number of moves on log and model for visible transitions. If moves
on model for invisible transitions ik are ignored, γ1 has two moves on model, γ2

5

has one move on model and one move on log, and γ3 has one move on model
and two moves on log. Thus, according to the cost function, γ1 and γ2 are two
optimal alignments of σ1 and the process model in Fig. 1.

2.2 State Representation

At any point in time, a sequence of execution of activities leads to some state, and
this state depends on which activities have been performed and in which order.
Accordingly, any process execution can be mapped onto a state. As discussed
in [3], a state representation function takes care of this mapping:

Definition 4 (State Representation). Let (P, T, F,A, `,mi,mf) be a Petri
net. Let R be the set of possible state representations of sequences in A∗ A state
representation function abst : A∗ → R produces a state representation abst(σ)
for each process trace σ ∈ Γ .

Several state-representation functions can be defined. Each function leads to a
different abstraction, meaning that multiple different traces can be mapped onto
the same state, thus abstracting out certain trace’s characteristics. The following
are examples of state-representation functions:

Sequence abstraction. It is a trivial mapping where the abstraction preserves
the order of activities. Each trace is mapped onto a state that is the trace
itself, i.e. for each σ ∈ A∗, abst(σ) = σ.

Multi-set abstraction. The abstraction preserves the number of times each
activity is executed. This means that, for each σ ∈ A∗, abst(σ) = M ∈ B(A)
such that, for each a ∈ A, M contains all instances of a in σ.

Set abstraction. The abstraction preserves whether each activity has been
executed or not. This means that, for each σ ∈ A∗, abst(σ) = M ⊆ A such
that, for each a ∈ A, M contains a if it ever occurs in σ.

Example 2. Table 1 shows the state representation of some process traces of the
net in Fig. 1 using different abstractions. For instance, trace 〈c, p, p, s, n〉 can be
represented as the trace itself using the sequence abstraction, as {c(1), p(2), s(1), n(1)}
using the multi-set abstraction (in parenthesis the number of occurrences of ac-
tivities in the trace), and as {c, p, s, n} using the set abstraction. Traces 〈c, p, s, n〉
and 〈c, p, p, s, n, p〉 are also mapped to state {c, p, s, n} using the set abstraction.

3 History-based Construction of the Most Probable
Alignments

This section presents our approach to construct alignments that give the most
probable explanations of deviations based on objective facts, i.e. the historical
logging data, rather than on subjective cost functions manually defined by pro-
cess analysts. To construct an optimal alignment between a process model and
an event log, we use the A-star algorithm, analogously to what proposed in [4].

Section 3.1 discusses how the cost of an alignment is computed, whereas
Section 3.2 briefly reports on the use of A-star to compute the most probable
alignment.

6

Table 1: Examples of state representation using different abstractions

Sequence # Multi-set # Set #
〈c, p〉 25 {c(1), p(1)} 25 {c, p} 25
〈c, s, n, p〉 15 {c(1), p(1), s(1), n(1)} 15

{c, p, s, n} 45〈c, p, p, s, n〉 5 {c(1), p(2), s(1), n(1)} 5
〈c, p, p, s, n, p〉 25 {c(1), p(3), s(1), n(1)} 25
〈c, s, n, a, d〉 10 {c(1), s(1), n(1), a(1), d(1)} 10 {c, s, n, a, d} 10
〈c, s, n, p, a, d〉 10 {c(1), s(1), n(1), p(1), a(1), d(1)} 10 {c, s, n, p, a, d} 10
〈c, s, n, p, t, l〉 25 {c(1), s(1), n(1), p(1), t(1), l(1)} 30

{c, s, n, p, t, l} 60
〈c, s, p, n, t, l〉 5
〈c, p, s, n, p, t, l〉 5 {c(1), s(1), n(1), p(2), t(1), l(1)} 30〈c, s, p, n, p, t, l〉 25
〈c, s, n, p, t, l, r, o〉 50 {c(1), s(1), n(1), p(1), t(1), l(1), r(1), o(1)} 50 {c, s, n, p, t, l, r, o} 50

3.1 Definition of cost functions

The computation of the most probable alignment relies on a cost function that
accounts for the probability of an activity to be executed in a certain state.
The definition of such a cost function requires an analysis of the past history as
recorded in the event log to compute the probability of an activity to immediately
occur or to never eventually occur when the process execution is in a certain
state.

The cost of moves depends on probabilities. For this purpose, we need to
introduce a functions’ class F ⊆ [0, 1] → R+ such that f ∈ F if and only if
f(0) = ∞ and f is monotonously decreasing between 0 and 1 (with f(1) > 0).
Hereafter, these functions are called cost profile. It is easy to observe that if f(p)
is a cost-profile function, then f(p)i is also a cost-profile function for every i > 0.
Examples of these functions are:

f(p) = 1
p f(p) = 1√

p f(p) = 1 + log
(

1
p

)
(1)

Similarly to what proposed in [4], the cost of an alignment move depends on the
move type and the activity involved in the move but, differently from [4], it also
depends on the position in which the move is inserted:

Definition 5 (Cost of an alignment move). Let N = (P, T, F,A, `,mi,mf)
be an Petri net. Let γ ∈ Σ∗N be a sequence of legal moves for N and f ∈ F
a cost profile. The cost of appending a legal move (mL,mM) ∈ ΣN to γ with
state-representation function abst is:

κabst((mL,mM), γ) =
0 mL = mM

0 mL =� and mM ∈ InvN
f
(
Pabst(mM occurs after γ |P)

)
mL =� and mM 6∈ InvN

f
(
Pabst(mL never eventually occurs after γ |P)

)
mM =�

(2)

7

Readers can observe that the cost of a move on log (mL,�) is not simply the
probability of not executing activity mL immediately after γ |P ; rather, it is
the probability of never having activity mM at the any moment in the future
for that execution. This is motivated by the fact that a move on log (mL,�)
indicates that mL is not expected to ever occur in the future. Conversely, if it
was expected, a number of moves in model would be introduced until the process
model, modeled as a Petri net, reaches a marking that allows mL to occur (and,
thus, a move in both can be appended). Different cost profiles account for the
probabilities computed from historical logging data differently. In Section 4, we
evaluate the cost profiles in Eq. 1 with different combinations of event logs and
process models. The purpose is to verify whether a cost profile universally works
better than the others. The following two definitions describe how to compute
the probabilities required by Def. 5. For reliability, we only consider the subset
of traces Lfit of the original event log L that comply with the process model.

Definition 6 (Probability that an activity occurs). Let L be an event log
and Lfit ⊆ L be the subset of traces that comply with a given process model
represented by a Petri net N = (P, T, F,A, `,mi,mf). The probability that an
activity a ∈ A occurs after executing σ with state-representation function abst is
the ratio between number of traces in Lfit in which a is executed after reaching
state abst(σ) and the total number of traces in Lfit that reach state abst(σ):

Pabst(a occurs after σ) =
|{σ′∈Lfit : ∃σ′′∈prefix(σ′). abst(σ′′)=abst(σ)∧σ′′⊕〈a〉∈prefix(σ′)}|

|{σ′∈Lfit : ∃σ′′∈prefix(σ′). abst(σ′′)=abst(σ)}|
(3)

Definition 7 (Probability that an activity never eventually occurs).
Let L be an event log and Lfit ⊆ L be the subset of traces that comply with
a given process model represented by a Petri net N = (P, T, F,A, `,mi,mf).
The probability that an activity a ∈ A will never eventually occur in a process
execution after executing σ ∈ A∗ with state-representation function abst is the
ratio between the number of traces in Lfit in which a is never eventually executed
after reaching state abst(σ) and the total number of trace in Lfit that reach state
abst(σ):

Pabst(a never eventually occurs after σ) =

|{σ′∈Lfit : ∃σ′′∈prefix(σ′). abst(σ′′)=abst(σ)∧∀σ′′′ σ′′⊕σ′′′⊕〈a′〉∈prefix(σ′)∧a′ 6=a}|
|{σ′∈Lfit : ∃σ′′∈prefix(σ′). abst(σ′′)=abst(σ)}|

(4)

The cost of an alignment is the sum of the cost of all moves in the alignment,
which are computed as described in Definition 5:

Definition 8 (Cost of an alignment). The cost of alignment γ ∈ Σ∗N with
state-representation function abst is computed as follows:

Kabst(γ ⊕ (mL,mM)) =

{
κabst((mL,mM), 〈〉) γ = 〈〉
κabst((mL,mM), γ) +Kabst(γ) otherwise

(5)

Hereafter, the term most-probable alignment is used to denote any of the
optimal alignments (i.e., with the lowest cost) according to the cost function
given in Definition 8.

8

3.2 The use of the A-star algorithm to construct alignments

The A-star algorithm [10] aims to find a path in a graph V from a given source
node v0 to any node v ∈ V in a target set. Every node v of graph V is associated
with a cost determined by an evaluation function f(v) = g(v) + h(v), where

– g : V → R+
0 is a function that returns the smallest path cost from v0 to v;

– h : V → R+
0 is an heuristic function that estimates the path cost from v to

its preferred target node.

Function h is said to be admissible if it returns a value that underestimates the
distance of a path from a node v′ to its preferred target node v′′, i.e. g(v′) +
h(v′) ≤ g(v′′). If h is admissible, A-star finds a path that is guaranteed to have
the overall lowest cost.

The A-star algorithm keeps a priority queue of nodes to be visited: higher
priority is given to nodes with lower costs. The algorithm works iteratively: at
each step, the node v with lowest cost is taken from the priority queue. If v
belongs to the target set, the algorithm ends returning node v. Otherwise, v is
expanded: every successors v′ is added to priority queue with a cost f(v′).

We employ A-star to find any of the optimal alignments between a log trace
σL ∈ L and a Petri net N . In order to be able to apply A-star, an opportune
search space needs to be defined. Every node γ of the search space V is associated
to a different alignment that is a prefix of some complete alignment of σL and N .
Since a different alignment is also associated to every search-space node and vice
versa, we use the alignment to refer to the associated state. The source node is
an empty alignment γ0 = 〈〉 and the set of target nodes includes every complete
alignment of σL and N .

Let us denote the length of a sequence σ with ‖σ‖. Given a node/alignment
γ ∈ V , the search-space successors of γ include all alignments γ′ ∈ V obtained
from γ by concatenating exactly one move. Given an alignment γ ∈ V , the cost
of path from the initial node to node γ ∈ V is:

g(γ) = ‖γ |L ‖+K(γ).

where K(γ) is the cost of alignment γ according to Definition 8. It is easy
to check that, given two complete alignments γ′C and γ′′C , K(γ′C) < K(γ′′C) iff
g(γ′C) < g(γ′′C) and K(γ′C) = K(γ′′C) iff g(γ′C) = g(γ′′C). Therefore, an optimal
solution returned by A-star coincides with an optimal alignment. To define a
more efficient and admissible heuristics, we consider term ‖σL‖ in h; this term
does not affect optimality. Given an alignment γ ∈ V , we employ the heuristics:

h(γ) = ‖σL‖ − ‖γ |L ‖.

For alignment γ, the number of steps to add in order to reach a complete align-
ment is lower bounded by the number of execution steps of trace σL that have
not been included yet in the alignment, i.e. ‖σL‖ − ‖γ |L ‖. Since the additional
cost to traverse a single node is at least 1, the cost to reach a target node is at
least h(γ), corresponding to the case where the part of the log trace that still
needs to be included in the alignment perfectly fits.

9

γ′ =
c s n

c s n︸ ︷︷ ︸
γ

⊕


(l,�) κ

(
(l,�), γ

)
= 1.49

(�, p) κ
(
(�, p), γ

)
= 1.04

(�, a) κ
(
(�, a), γ

)
= 2.04

(�, d) κ
(
(�, d), γ

)
=∞

. . .

Fig. 3: Construction of the alignment of log trace σ2 = 〈c, s, n, l, o〉 and the net in
Fig. 1. Cost of moves are computed with sequence state-representation function,
cost profile f(p) = 1 + log (1/p), and Lfit in Table 1.

Example 3. Consider a log trace σ2 = 〈c, s, n, l, o〉 and the net N in Fig. 1. An
analyst wants to determine the most probable explanations for nonconformity
by constructing the most probable alignment of σ2 and N , based on historical
logging data. In particular, Lfit consists of the traces in Table 1 (the first column
shows the traces, and the second the number of occurrences of a trace in the
history). Assume that the algorithm has constructed an optimal alignment γ of
trace 〈c, s, n〉 ∈ prefix(σ2) and N (left part of Fig. 3). The next event in the
log trace (i.e., l) cannot be replayed in the net. Therefore, the algorithm should
determine which move is the most likely to have occurred. Different moves are
possible; for instance, a move on log for l, a move on model for p, a move on
model for t, etc. The algorithm computes the cost for these moves using Eq. 5
(right part of Fig. 3). As move on model (�, p) is the move with the least cost
(and no other alignments have lower cost), alignment γ′ = γ⊕ (�, p) is selected
for the next iteration. It is worth noting that activity d never occurs after 〈c, s, n〉
in Lfit ; consequently, the cost of move (�, d) is equal to ∞.

4 Implementation and Experiments

We have implemented our approach for history-based construction of alignments
as a plugin of the open-source ProM framework (http://www.promtools.org).
The plug-in takes as inputs a process model and two event logs. It computes
the most probable alignments for each trace in the first event log based on the
frequency of the traces in the second event log (historical logging data).

To assess the practical feasibility and accuracy of the approach, we performed
a number of experiments using both synthetic and real-life logs. In the experi-
ments with synthetic logs, we assumed that the execution of an activity depends
on the activities that were performed in the past. In the experiments with real-
life logs, we tested if this assumption holds in real applications. Accordingly, the
real-life logs were used as historical logging data. To evaluate the approach, we
artificially added noise to the traces used for the experiments. This was necessary
to assess the ability of the approach to reconstruct the original traces.

4.1 Synthetic Data

For the experiments with synthetic data, we used the process for handling credit
requests in [14]. Based on this model, we generated 10000 traces consisting of

10

Table 2: Results of experiments on synthetic data. CA indicates the percentage of
correct alignments, and LD indicates the overall Levenshtein distance between
the original traces and the projection of the alignments over the process. For
comparison with existing approaches, the standard cost function as defined in [4]
was used. In bold the best result is highlighted for each amount of noise.

1/p 1/
√
p 1 + log(1/p) Existing

Seq Multi-set Set Seq Multi-set Set Seq Multi-set Set approach
Noise CA LD CA LD CA LD CA LD CA LD CA LD CA LD CA LD CA LD CA LD
10% 93 259 93 258 87 514 95 164 95 164 88 430 95 153 95 154 88 409 92 233
20% 85 569 85 561 78 968 87 426 87 431 79 852 87 410 87 415 79 823 83 534
30% 74 1084 74 1077 65 1653 76 950 75 963 66 1509 76 944 75 958 67 1474 71 1110
40% 63 1658 62 1659 55 2285 64 1519 64 1537 56 2148 64 1512 64 1535 56 2118 60 1685

69504 events using the CPN Tools (http://cpntools.org). To assess the accu-
racy of the approach, we manipulated 20% of these traces by introducing differ-
ent percentages of noise. In particular, given a trace, we added and removed a
number of activities to/from the trace equal to the same percentage of the trace
length. The other traces were used as historical logging data. We computed the
most probable alignments of the manipulated traces and process model, and
evaluated the ability of the approach to reconstruct the original traces. To this
end, we measured the percentage of correct alignments (i.e., the cases where a
projection of an alignment over the process coincides with the original trace)
and compute the overall Levenshtein distance [12] between the original traces
and the projection of the computed alignments over the process. This string
metric measures the distance between two sequences, i.e. the minimal number
of changes required to transform one sequence into the other. In our setting, it
provides an indication of how much the projection of the computed alignments
over the process is close to the original traces.

We tested our approach with different amounts of noise (i.e., 10%, 20%, 30%
and 40% of the trace length), with different cost profiles (i.e., 1/p, 1/√p, and 1 +
log(1/p)), and with different state-representation functions (i.e., sequence, multi-
set, and set). Moreover, we compared our approach with existing alignment-
based conformance checking techniques. In particular, we used the standard
cost function introduced in [4]. We repeated each experiment five times. Table 2
shows the results where every entry reports the average over the five runs.

The results show that cost profiles 1/√p and 1 + log(1/p) in combination with
sequence and multi-set abstractions are able to better identify what really hap-
pened, i.e. they align the manipulated traces with the corresponding original
traces in more cases (CA). In all cases, cost profile 1 + log(1/p) with sequence
state-representation function provides more accurate diagnostics (LD): even if
log traces are not aligned to the original traces, the projection over the process
of alignments constructed using this cost profile and abstraction are closer to the
original traces. Compared to the cost function used in [4], our approach com-
puted the correct alignment for 4.4% more traces when cost profile 1 + log(1/p)
and sequence state-representation function are used. In particular, our approach
correctly reconstructed the original trace for 18.4% of the traces that were not

11

Table 3: Results of experiments on real-life data. Notation analogous to Table 2.
1/p 1/

√
p 1 + log(1/p) Existing

Seq Multi-set Set Seq Multi-set Set Seq Multi-set Set approach
Noise CA LD CA LD CA LD CA LD CA LD CA LD CA LD CA LD CA LD CA LD
10% 99 397 99 397 99 415 99 384 99 389 99 408 99 366 99 371 99 389 98 1274
20% 99 585 99 585 99 602 99 570 99 575 99 592 99 554 99 559 99 576 97 1448
30% 89 3349 89 3349 89 3371 89 3300 89 3341 89 3362 89 3281 89 3322 89 3344 87 4284
40% 76 9160 76 9160 75 9238 76 9091 76 9152 75 9230 76 9103 75 9165 75 9243 74 9861

correctly reconstructed using the cost function used in [4]. Moreover, an analysis
of LD shows that, on average, the traces reconstructed using our approach have
0.37 deviations, while the traces reconstructed using the cost function used in [4]
have 0.45 deviation. This corresponds to an improvement of LD of about 15.2%.

4.2 Real-life Logs

To evaluate the applicability of our approach to real-life scenarios, we used an
event log obtained from a fine management system of the Italian police [14]. The
process model in form of Petri net is presented in Fig. 1. We extracted a log
consisting of 142408 traces and 527549 events, where all traces are conforming
with the net. To these traces, we applied the same methodology used for the
experiments reported in Section 4.1. We repeated the experiments five times.
Table 3 shows the results where every entry reports the average over five runs.

The results confirm that cost profiles 1/√p and 1+log(1/p) in combination with
sequence and multi-set state-representation functions provide the more accurate
diagnostics (both CA and LD). Moreover, the results show that our approach
(regardless of the used cost profile and state-representation function) performs
better than the cost function in [4] on real-life logs. In particular, using sequence
state-representation function and cost profile 1 + log(1/p), our approaches com-
puted the correct alignment for 1.8% more traces than what the cost function in
[4] did. In particular, our approach correctly reconstructed the original trace for
19.3% of the traces that were not correctly reconstructed using the cost function
used in [4]. Moreover, our approach improves LD by 21.1% compared to the
cost function used in [4]. Such an improvement shows that when the original
trace is not reconstructed correctly, our approach returns an explanation that is
significantly closer to the actual explanation.

5 Discussion

The A-star algorithm requires a cost function to penalize nonconformity. In our
experiments, we have considered a number of cost profiles to compute the cost
of moves on log/model based on the probability of a given activity to occur in
historical logging data. The selection of the cost profile has a significant impact
on the results as they penalize deviations differently. For instance, cost profile
1/p penalizes less probable moves much more than 1 + log(1/p). To illustrate

12

a1 //�������� // a2 //�������� // · · · //�������� // a50

AAA�������� // x //��������99% =={{{

1% **UUUUUUUUUU �������� // y //��������
b

22eeeeeeeeeeeeeeee

(a) Process model

γ1 =
x � � � � y

x a1 a2 ... a50 y

γ2 =
x � y

x b y

(b) Alignments

Fig. 4: Process model including two paths formed by a (sub)sequence of 50 activ-
ities and 1 activity respectively. The first path is executed in 99% of the cases;
the second in 1% of the cases. γ1 and γ2 are two possible alignments of trace
σ = 〈x, y〉 and the process model.

this, consider a trace σ = 〈x, y〉 and the process model in Fig. 4a. Two possible
alignments, namely γ1 and γ2, are conceivable (Fig. 4b). γ1 contains a large
number of deviations compared to γ2 (50 moves on log vs. 1 move on log). The
use of cost profile 1/p yields γ1 as the most probable alignment, while the use of
cost profile 1 + log(1/p) yields γ2 as the most probable alignment. Tables 2 and 3
show that cost profile 1 + log(1/p) usually provides more accurate results. Cost
profile 1/p penalizes less probable moves excessively, and thus tends to construct
alignments with more frequent traces in the historical logging data even if those
alignments contain a significantly larger number of deviations. Our experiments
suggest that the construction of the most probable alignments requires a trade-
off between the frequency of the traces in historical logging data and the number
of deviations in alignments, which is better captured by cost profile 1 + log(1/p).

Different state-representation functions can be used to characterize the state
of a process execution. In this work, we have considered three state-representation
functions: sequence, multi-set, and set. The experiments show that in general the
sequence abstraction produces more accurate results compared to the other ab-
stractions. The set abstraction provides the least accurate results, especially
when applied to the process for handling credit requests (Table 2). The main
reason is that this abstraction is not able to accurately characterize the state,
especially in presence of loops: after each loop iteration the process execution
yields the same state. Therefore, the cost function constructed using the set ab-
straction is not able to account for the fact that the probability of executing
certain activities can increase after every loop iteration, thus leading to align-
ments in which loops are not captured properly.

To conclude, the experiments show that our technique tends to build align-
ments that give better explanations of deviations. It is easy to see that, when
nonconformity is injected in fitting traces and alignments are subsequently built,
the resulting alignments yield perfect explanations if the respective process pro-
jections coincide with the respective fitting traces before the injections of non-
conformity. Tables 2 and 3 have shown that, basing the construction of the cost
function on the analysis of historical logging data our technique tends to build
alignments whose process projection is closer to the original fitting traces and,
hence, the explanations of deviations are closer to the correct ones.

13

6 Related Work and Conclusions

In process mining, a number of approaches have been proposed to check confor-
mance of process models and the actual behavior recorded in event logs. Some
approaches [7,8,13,15,16] check conformance by verifying whether traces satisfies
rules encoding properties expected from the process. Petkovic̀ et al. [17] verify
whether a log trace is a valid trace of the transition system generated by the pro-
cess model. Token-based approaches [6,18] use the number of missing and added
tokens obtained by replaying traces over the process model to measure the con-
formance between the log and the process. However, these approaches only give
a boolean answers diagnosing whether traces conform to a process model or not.
When they are able to provide diagnostic information, such information is often
imprecise. For instance, token-based approaches may allow behavior that is not
allowed by the model due to the used heuristics and thus may provide incorrect
diagnostic information.

Recently, the construction of alignments has been proposed as a robust ap-
proach for checking the conformance of event logs with a given process model [4].
Alignments have proven to be very powerful artifacts to perform conformance
checking. By constructing alignments, analysts can be provided with richer and
more accurate diagnostic information. In fact, alignments are also used as the
main enablers for a number of techniques for process analytics, auditing, and
process improvement, such as for performance analysis [2], privacy compliance
[5] and process-model repairing [11].

To our knowledge, the main problem of existing techniques for constructing
optimal alignments is related to the fact that process analysts need to provide
a function which associates a cost to every possible deviation. These cost func-
tions are only based on human judgment and, hence, prone to imperfections.
If these techniques are fed with imprecise cost functions, they create imperfect
alignments, which ultimately leads to unlikely or, even, incorrect diagnostics.

In this paper, we have proposed a different approach where the cost function
is automatically computed based on real facts: historical logging data recorded in
event logs. In particular, the cost function is computed based on the probability
of activities to be executed or not in a certain state (representing which activities
have been executed and their order). Experiments have shown that, indeed, our
approach can provide more probable explanations of nonconformity of process
executions, if compared with existing techniques.

We acknowledge that the evaluation is far from being completed. We aim
to perform more extensive experiments to verify whether certain cost-profile
functions provide more probable alignments than others or, at least, to give
some guidelines to determine in which settings a given cost-profile function is
preferable. We also aim to develop a technique that, given a model and log, allow
for (semi-)automatic tuning of the cost-profile function and state abstraction.

In this paper, we only considered the control-flow, i.e. the name of the activ-
ities and their ordering, to construct the cost function and, hence, to compute
the most probable alignment. However, the choice in a process execution is of-
ten driven by other aspects. For instance, when instances are running late, the

14

execution of certain fast activities are more probable; or, if a certain process at-
tribute takes on a given value, certain activities are more likely to be executed.
We expect that our approach can be significantly improved if the other business
process perspectives (i.e., data, time and resources) are taken into account.

References

1. van der Aalst, W.M.P.: Process Mining - Discovery, Conformance and Enhance-
ment of Business Processes. Springer (2011)

2. van der Aalst, W.M.P., Adriansyah, A., van Dongen, B.F.: Replaying history on
process models for conformance checking and performance analysis. Data Min.
Knowl. Discov. 2(2), 182–192 (2012)

3. van der Aalst, W.M.P., Schonenberg, M.H., Song, M.: Time prediction based on
process mining. Information Systems 36(2), 450–475 (2011)

4. Adriansyah, A., van Dongen, B.F., van der Aalst, W.M.P.: Memory-efficient align-
ment of observed and modeled behavior. BPM Center Report 03-03, BPMcen-
ter.org (2013)

5. Adriansyah, A., van Dongen, B.F., Zannone, N.: Privacy analysis of user behavior
using alignments. it–Information Technology 55(6), 255–260 (2013)

6. Banescu, S., Petkovic, M., Zannone, N.: Measuring privacy compliance using fitness
metrics. In: Business Process Management. pp. 114–119. LNCS 7481, Springer
(2012)

7. Borrego, D., Barba, I.: Conformance checking and diagnosis for declarative busi-
ness process models in data-aware scenarios. Expert Syst. Appl. 41(11), 5340–5352
(2014)

8. Caron, F., Vanthienen, J., Baesens, B.: Comprehensive rule-based compliance
checking and risk management with process mining. Decision Support Systems
54(3), 1357–1369 (2013)

9. Cook, J.E., Wolf, A.L.: Software process validation: quantitatively measuring the
correspondence of a process to a model. TOSEM 8(2), 147–176 (1999)

10. Dechter, R., Pearl, J.: Generalized best-first search strategies and the optimality
of A*. Journal of the ACM 32, 505–536 (1985)

11. Fahland, D., van der Aalst, W.M.P.: Model repair - aligning process models to
reality. Information Systems (2014)

12. Levenshtein, V.: Binary codes capable of correcting deletions, insertions, and re-
versals. Soviet Physics Doklady 10(8), 707–710 (1966)

13. Ly, L.T., Rinderle-Ma, S., Göser, K., Dadam, P.: On enabling integrated process
compliance with semantic constraints in process management systems - require-
ments, challenges, solutions. Information Systems Frontiers 14(2), 195–219 (2012)

14. Mannhardt, F., de Leoni, M., van der Aalst, W.M.P.: Balanced multi-perspective
checking of process conformance. BPM Center Report 14-08, BPMcenter.org (2014)

15. de Medeiros, A.K.A., van der Aalst. Wil M. P., Pedrinaci, C.: Semantic Process
Mining Tools: Core Building Blocks. In: Proc. ECIS. pp. 1953–1964. AIS (2008)

16. Montali, M.: Specification and Verification of Declarative Open Interaction Models
- A Logic-Based Approach. LNBIP 56, Springer (2010)

17. Petković, M., Prandi, D., Zannone, N.: Purpose control: Did you process the data
for the intended purpose? In: Secure Data Management. pp. 145–168. LNCS 6933,
Springer (2011)

18. Rozinat, A., van der Aalst, W.M.P.: Conformance checking of processes based on
monitoring real behavior. Information Systems 33(1), 64–95 (2008)

15

Finding Suitable Activity Clusters for
Decomposed Process Discovery

B.F.A. Hompes, H.M.W. Verbeek, and W.M.P. van der Aalst

Department of Mathematics and Computer Science
Eindhoven University of Technology, Eindhoven, The Netherlands

b.f.a.hompes@student.tue.nl

{h.m.w.verbeek,w.m.p.v.d.aalst}@tue.nl

Abstract. Event data can be found in any information system and pro-
vide the starting point for a range of process mining techniques. The
widespread availability of large amounts of event data also creates new
challenges. Existing process mining techniques are often unable to handle
“big event data” adequately. Decomposed process mining aims to solve
this problem by decomposing the process mining problem into many
smaller problems which can be solved in less time, using less resources,
or even in parallel. Many decomposed process mining techniques have
been proposed in literature. Analysis shows that even though the de-
composition step takes a relatively small amount of time, it is of key
importance in finding a high-quality process model and for the compu-
tation time required to discover the individual parts. Currently there is
no way to assess the quality of a decomposition beforehand. We define
three quality notions that can be used to assess a decomposition, before
using it to discover a model or check conformance with. We then propose
a decomposition approach that uses these notions and is able to find a
high-quality decomposition in little time.

Keywords: decomposed process mining, decomposed process discovery,
distributed computing, event log

1 Introduction

Process mining aims to discover, monitor and improve real processes by extract-
ing knowledge from event logs readily available in today’s information systems
[1]. In recent years, (business) processes have seen an explosive rise in support-
ing infrastructure, information systems and recorded information, as illustrated
by the term Big Data. As a result, event logs generated by these information
systems grow bigger and bigger as more event (meta-)data is being recorded and
processes grow in complexity. This poses both opportunities and challenges for
the process mining field, as more knowledge can be extracted from the recorded
data, increasing the practical relevance and potential economic value of process
mining. Traditional process mining approaches however have difficulties coping
with this sheer amount of data (i.e. the number of events), as most interesting

16

algorithms are linear in the size of the event log and exponential in the number
of different activities [3]. In order to provide a solution to this problem, tech-
niques for decomposed process mining [3–5] have been proposed. Decomposed
process mining aims to decompose the process mining problem at hand into
smaller problems that can be handled by existing process discovery and confor-
mance checking techniques. The results for these individual sub-problems can
then be combined into solutions for the original problems. Also, these smaller
problems can be solved concurrently with the use of parallel computing. Even
sequentially solving many smaller problems can be faster than solving one big
problem, due to the exponential nature of many process mining algorithms. Sev-
eral decomposed process mining techniques have been developed in recent years
[2–5, 7, 8, 10, 12, 13]. Though existing approaches have their merits, they lack in
generality. In [5], a generic approach to decomposed process mining is proposed.
The proposed approach provides a framework which can be combined with differ-
ent existing process discovery and conformance checking techniques. Moreover,
different decompositions can be used while still providing formal guarantees,
e.g. the fraction of perfectly fitting traces is not influenced by the decomposi-
tion. When decomposing an event log for (decomposed) process mining, several
problems arise. In terms of decomposed process discovery, these problems lie in
the step where the overall event log is decomposed into sublogs, where submod-
els are discovered from these sublogs, and/or where submodels are merged to
form the final model. Even though creating a decomposition is computationally
undemanding, it is of key importance for the remainder of the decomposed pro-
cess discovery process in terms of the overall required processing time and the
quality of the resulting process model.

The problem is that there is currently no clear way of determining the quality
of a given decomposition of the events in an event log, before using that decompo-
sition to either discover a process model or check conformance with. The current
decomposition approaches do not use any quality notions to create a decompo-
sition. Thus, potential improvements lie in finding such quality notions and a
decomposition approach that uses those notions to create a decomposition with.

The remainder of this paper is organized as follows. In Section 2 related work
is discussed briefly. Section 3 introduces necessary preliminary definitions for
decomposed process mining and the generic decomposition approach. Section 4
introduces decomposition quality notions to grade a decomposition upon, and
two approaches that create a high quality decomposition according to those
notions. Section 5 shows a (small) use case. The paper is concluded with views
on future work in Section 6.

2 Related Work

Little work has been done on the decomposition and distribution of process
mining problems [3–5]. In [14] MapReduce is used to scale event correlation
as a preprocessing step for process mining. In [6] an approach is described to
distribute genetic process mining over multiple computers. In this approach can-

17

didate models are distributed and in a similar fashion the log can be distributed
as well. However, individual models are not partitioned over multiple nodes.
More related are the divide-and-conquer techniques presented in [9], where it is
shown that region-based synthesis can be done at the level of synchronized State
Machine Components (SMCs). Also a heuristic is given to partition the causal
dependency graph into overlapping sets of events that are used to construct sets
of SMCs. In [4] a different (more local) partitioning of the problem is given which,
unlike [9], decouples the decomposition approach from the actual conformance
checking and process discovery approaches. The approach presented in this pa-
per is an extension of the approach presented in [4]. Where [4] splits the process
mining problem at hand into subproblems using a maximal decomposition, our
approach first aims to recombine the many created activity clusters into better
and fewer clusters, and only then splits the process mining problem into subprob-
lems. As a result, fewer subproblems remain to be solved. The techniques used
to recombine clusters are inspired by existing software quality metrics and the
business process metrics listed in [15]. More information on the use of software
engineering metrics in a process mining context is described there as well.

3 Preliminaries

This section introduces the notations needed to define a better decomposition
approach. A basic understanding of process mining is assumed [1].

3.1 Multisets, Functions, and Sequences

Definition 1 (Multisets).
Multisets are defined as sets where elements may appear multiple times. B(A)
is the set of all multisets over some set A. For some multiset b ∈ B(A), and
element a ∈ A, b(a) denotes the number of times a appears in b.

For example, take A = {a, b, c, d}: b1 = [] denotes the empty multiset, b2 = [a, b]
denotes the multiset over A where b2(c) = b2(d) = 0 and b2(a) = b2(b) = 1, b3 =
[a, b, c, d] denotes the multiset over A where b3(a) = b3(b) = b3(c) = b3(d) = 1,
b4 = [a, b, b, d, a, c] denotes the multiset over A where b4(a) = b4(b) = 2 and
b4(c) = b4(d) = 1, and b5 = [a2, b2, c, d] = b4. The standard set operators can be
extended to multisets, e.g. a ∈ b2, b5 \ b2 = b3, b2] b3 = b4 = b5, |b5| = 6

Definition 2 (Sequences).
A sequence is defined as an ordering of elements of some set. Sequences are used
to represent paths in a graph and traces in an event log. S(A) is the set of all
sequences over some set A. s = 〈a1, a2, . . . , an〉 ∈ S(A) denotes a sequence s
over A of length n. Furthermore: s1 = 〈 〉 is the empty sequence and s1 · s2 is
the concatenation of two sequences.

For example, take A = {a, b, c, d}: s1 = 〈a, b, b〉, s2 = 〈b, b, c, d〉, s1 · s2 =
〈a, b, b, b, b, c, d〉

18

Definition 3 (Function Projection).
Let f ∈ X 6→ Y be a (partial) function and Q ⊆ X. f�Q denotes the projection
of f on Q: dom(f�Q) = dom(f) ∩Q and f�Q(x) = f(x) for x ∈ dom(f�Q).

The projection can be used for multisets. For example, b5�{a,b} = [a2, b2].

Definition 4 (Sequence Projection).
Let A be a set and Q ⊆ A a subset. �Q ∈ S(A)→ S(Q) is a projection function
and is defined recursively: (1) 〈 〉�Q = 〈 〉 and (2) for s ∈ S(A) and a ∈ A:

(〈a〉 · s)�Q =

{
s�Q if a /∈ Q
〈a〉 · s�Q if a ∈ Q

So 〈a, a, b, b, c, d, d〉�{a,b} = 〈a, a, b, b〉.

3.2 Event Logs

Event logs are the starting point for process mining. They contain information
recorded by the information systems and resources supporting a process. Typ-
ically, the executed activities of multiple cases of a process are recorded. Note
that only example behavior is recorded, i.e. event logs only contain information
that has been seen. An event log often contains only a fraction of the possible be-
havior [1]. A trace describes one specific instance (i.e. one “run”) of the process
at hand, in terms of the executed activities. An event log is a multiset of traces,
since there can be multiple cases having the same trace. For the remainder of
this paper, we let UA be some universe of activities.

Definition 5 (Trace).
Let A ⊆ UA be a set of activities. A trace s ∈ S(A) is a sequence of activities.

Definition 6 (Event log).
Let A ⊆ UA be a set of activities. Let L ∈ B(S(A)) be a multiset of traces over
A. L is an event log over A.

An example event log is L1 = [〈a, b, c, d〉5, 〈a, b, b, c, d〉2, 〈a, c, d〉3]. There are three
unique traces in L1, and it contains information about a total of 10 cases. There
are 4·5+5·2+3·3 = 39 events in total. The projection can be used for event logs
as well. That is, for some log L ∈ B(S(A)) and set Q ⊆ A : L�Q = [s�Q|s ∈ L].
For example L1�{a,b,c} = [〈a, b, c〉5, 〈a, b, b, c〉2, 〈a, c〉3]. We will refer to these
projected event logs as sublogs.

3.3 Activity Matrices, Graphs, and Clusters

In [5] different steps for a generic decomposed process mining approach have been
outlined. In [16], an implementation of the generic approach has been created
which decomposes the overal event log based on a causal graph of activities. This
section describes the necessary definitions for this decomposition method.

19

Definition 7 (Causal Activity Matrix).
Let A ⊆ UA be a set of activities. M(A) = (A × A) → [−1.0, 1.0] denotes the
set of causal activity matrices over A. For a, a′ ∈ A and M ∈ M(A), M(a, a′)
denotes the “directly follows strength” from a to a′.

A M(a, a′) value close to 1.0 signifies that we are quite confident there exists
a directly follows relation between two activities while a value close to −1.0
signifies that we are quite sure there is no relation. A value close to 0.0 indicates
uncertainty, i.e., there may be a relation, but there is no strong evidence for it.

Definition 8 (Causal Activity Graph).
Let A ⊆ UA be a set of activities. G(A) denotes the set of causal activity graphs
over A. A causal activity graph G ∈ G(A) is a 2-tuple G = (V,E) where V ⊆ A
is the set of nodes and E ⊆ (V × V) is the set of edges. G = (V,E) ∈ G(A) is
the causal activity graph based on M ∈ M(A) and a specific causality threshold
τ ∈ [−1.0, 1.0] iff E = {(a, a′) ∈ A×A |M(a, a′) > τ} and V =

⋃
(a,a′)∈E {a, a′}.

That is, for every pair of activities (a, a′) ∈ A, there’s an edge from a to a′ in G
iff the value for a to a′ in the causal activity matrix M exceeds some threshold
τ . Note that V ⊆ A since some activities in A might not be represented in G.

Definition 9 (Activity Cluster).
Let A ⊆ UA be a set of activities. C(A) denotes the set of activity clusters over
A. An activity cluster C ∈ C(A) is a subset of A, that is, C ⊆ A.

Definition 10 (Activity Clustering).

Let A ⊆ UA be a set of activities. Ĉ(A) denotes the set of activity clusterings

over A. An activity clustering Ĉ ∈ Ĉ(A) is a set of activity clusters, that is,

Ĉ ⊆ P (A). A k-clustering Ĉ ∈ Ĉ(A) is a clustering with size k, i.e. |Ĉ| = k.

Let Ĉ ∈ Ĉ(A) be a clustering over A, the number of activities in Ĉ is denoted by

||Ĉ|| = |
⋃

C∈Ĉ
C|, i.e. ||Ĉ|| signifies the number of unique activities in Ĉ.

3.4 Process Models and Process Discovery

Process discovery aims at discovering a model from an event log while confor-
mance checking aims at diagnosing the differences between observed and modeled
behavior (resp. the event log and the model). Literature suggests many different
notations for models. We abstract from any specific model notation, but will
define the set of algorithms that discover a model from an event log. Various
discovery algorithms have been proposed in literature. These discovery algo-
rithms are often called mining algorithms, or miners in short. For an overview
of different algorithms we refer to [1].

Definition 11 (Process Model).
Let A ⊆ UA be a set of activities. N (A) denotes the set of process models over
A, irrespective of the specific notation (Petri nets, transition systems, BPMN,
UML ASDs, etc.) used.

20

Definition 12 (Discovery Algorithm).
Let A ⊆ UA be a set of activities. D(A) = B(S(A)) → N (A) denotes the set
of discovery algorithms over A. A discovery algorithm D ∈ D(A) discovers a
process model over A from an event log over A.

3.5 Decomposed Process Discovery

As discussed, in [5], a generic approach to decomposed process mining is pro-
posed. In terms of decomposed process discovery, this approach can be explained
as follows: Let A ⊆ UA be a set of activities, and let L ∈ B(S(A))) be an event
log over A. In order to decompose the activities in L, first a causal activity
matrix M ∈ M(A) is discovered. Any causal activity matrix discovery algo-
rithm DCA ∈ B(S(A)))→M(A) can be used. From M a causal activity graph
G ∈ G(A) is filtered (using a specific causality threshold). By choosing the value
of the causality threshold carefully, we can filter out uncommon causal relations
between activities or relations of which we are unsure, for example those rela-
tions introduced by noise in the event log. Once the causal activity graph G
has been constructed, an activity clustering Ĉ ∈ Ĉ(A) is created. Any activity

clustering algorithm AC ∈ G(A) → Ĉ(A) can be used to create the clusters.
For example, the maximal decomposition can be used where the causal activity
graph is cut across its vertices and each edge ends up in precisely one submodel.
This leads to the smallest possible submodels [5]. For every cluster in the clus-
tering, L is filtered to a corresponding sublog by projecting the cluster to L, i.e.,
for all C ∈ Ĉ a sublog L�C is created. A process model is discovered for each
sublog L�C . These are the submodels. Any discovery algorithm D ∈ D(A) can
be used to discover the submodels. Finally, the submodels are merged into an
overal model. Any merging algorithm in B(N (A))→ N (A) can be used for this
step. Currently, submodels are merged based on activity labels. Note that we
have |Ĉ| clusters, sublogs and submodels, and ||Ĉ|| activities in the final, merged
model.

4 A Better Decomposition

It is apparent that the manner in which activities are clustered has a substantial
effect on required processing time, and it is possible for similarly sized clusterings
(in the average cluster size) to lead to very different total processing times. As
a result of the vertex-cut (maximal) decomposition approach [5], most activities
will be in two (or more) activity clusters, leading to double (or more) work, as the
clusters have a lot of overlap and causal relations between them, which might not
be desirable. From the analysis results in [11] we can see that this introduces a
lot of unwanted overhead, and generally reduces model quality. Also, sequences
or sets of activities with high causal relations are generally easily (and thus
quickly) discovered by process discovery algorithms, yet the approach will often
split up these activities over different clusters. Model quality can potentially
suffer from a decomposition that is too fine-grained. It might be that the sublogs

21

created by the approach contain too little information for the process discovery
algorithm to discover a good, high quality submodel from, or that a process is
split up where it shouldn’t be. Merging these low-quality submodels introduces
additional problems.

Hence, a good decomposition should (1) maximize the causal relations be-
tween the activities within each cluster in the activity clustering, (2) minimize
the causal relations and overlap across the clusters and (3) have approximately
equally sized clusters. The challenge lies in finding a good balance between these
three properties.

A clustering where one cluster is a subset of another cluster is not valid as
it would lead to double work, and would thus result in an increase in required
processing time without increasing (or even decreasing) model quality. Note
that this definition of a valid clustering allows for disconnected clusters, and
that some activities might not be in any cluster. This is acceptable as processes
might consist of disconnected parts and event logs may contain noise. However,
if activities are left out some special processing might be required.

Definition 13 (Valid Clustering).

Let A ⊆ UA be a set of activities. Let Ĉ ∈ Ĉ(A) be a clustering over A. Ĉ is a

valid clustering iff: Ĉ 6= ∅ ∧ ∀C1,C2∈Ĉ∧C1 6=C2
C1 6⊆ C2. ĈV(A) denotes the set of

valid clusterings over A.

4.1 Clustering Properties

We define decomposition quality notions in terms of clustering properties. The
first clustering property we define is cohesion. The cohesion of an activity cluster-
ing is defined as the average cohesion of each activity cluster in that clustering.
A clustering with good cohesion (cohesion ≈ 1) signifies that causal relations
between activities in the same cluster are optimized, whereas bad cohesion (co-
hesion ≈ 0) signifies that activities with few causal relations are clustered to-
gether.

Definition 14 (Cohesion).
Let A ⊆ UA be a set of activities. Let M ∈M(A) be a causal activity matrix over

A, and let Ĉ ∈ ĈV(A) be a valid clustering over A. The cohesion of clustering Ĉ

in matrix M , denoted Cohesion(Ĉ,M) is defined as follows:

Cohesion(Ĉ,M) =

∑
C∈Ĉ Cohesion(C,M)

|Ĉ|

Cohesion(C,M) =

∑
c1,c2∈C max(M(c1, c2), 0)

|C × C|
The second clustering property is called coupling, and is also represented

by a number between 0 and 1. Good coupling (coupling ≈ 1) signifies that
causal relations between activities across clusters are minimized. Bad coupling
(coupling ≈ 0) signifies that there are a lot of causal relations between activities
in different clusters.

22

Definition 15 (Coupling).
Let A ⊆ UA be a set of activities. Let M ∈M(A) be a causal activity matrix over

A, and let Ĉ ∈ ĈV(A) be a valid clustering over A. The coupling of clustering Ĉ

in matrix M , denoted Coupling(Ĉ,M) is defined as follows:

Coupling(Ĉ,M) =


1 if |Ĉ| ≤ 1

1−

∑
C1,C2∈Ĉ∧C1 6=C2

Coupling(C1,C2,M)

|Ĉ|·(|Ĉ|−1)
if |Ĉ| > 1

Coupling(C1, C2,M) =

∑
c1∈C1,c2∈C2

[
max(M(c1, c2), 0) +max(M(c2, c1), 0)

]
2 · |C1 × C2|

Note that the weights of the causal relations are used in the calculation of
cohesion and coupling. Relations of which we are not completely sure of (or that
are weak) therefore have less effect on these properties than stronger ones.

The balance of an activity clustering is the third property. A clustering with
good balance has clusters of (about) the same size. Decomposing the activities
into clusters with low balance (e.g. a k-clustering with one big cluster holding
almost all of the activities and (k−1) clusters with only a few activities) will not
speed up discovery or conformance checking, rendering the whole decomposition
approach useless. At the same time finding a clustering with perfect balance (all
clusters have the same size) will most likely split up the process / log in places
that “shouldn’t be split up”, as processes generally consist out of different-sized
natural parts. Balance is also represented by a number between 0 and 1, where
a good balance (balance ≈ 1) signifies that all clusters are about the same size
and a bad balance (balance ≈ 0) signifies that the cluster sizes differ quite a lot.
This balance formula utilizes the standard deviation of the sizes of the clusters
in a clustering to include the magnitude of the differences in cluster sizes. A
variation of this formula using squared errors or deviations could also be used
as a clustering balance measure.

Definition 16 (Balance).

Let A ⊆ UA be a set of activities. Let Ĉ ∈ ĈV(A) be a valid clustering over A.

The balance of clustering Ĉ denoted Balance(Ĉ) is defined as follows:

Balance(Ĉ) = 1− 2 · σ(Ĉ)

||Ĉ||

Where σ(Ĉ) signifies the standard deviation of the sizes of the clusters in the

clustering Ĉ.

In order to assess a certain decomposition based on the clustering properties,
we introduce a weighted scoring function, which grades an activity clustering
with a score between 0 (bad clustering) and 1 (good clustering). A weight can
be set for each clustering property, depending on their relative importance. A
clustering with clustering score 1 has perfect cohesion, coupling and balance
scores, on the set weighing of properties.

23

Definition 17 (Clustering Score).
Let A ⊆ UA be a set of activities. Let M ∈ M(A) be a causal activity matrix

over A, and let Ĉ ∈ ĈV(A) be a valid clustering over A. The clustering score

(score) of clustering Ĉ in matrix M , denoted Score(Ĉ,M) is defined as follows:

Score(Ĉ,M) = Cohesion(Ĉ,M) ·
(

CohW
CohW + CouW +BalW

)
+ Coupling(Ĉ,M) ·

(
CouW

CohW + CouW +BalW

)
+Balance(Ĉ) ·

(
BalW

CohW + CouW +BalW

)
where CohW , CouW , and BalW are the weights for Cohesion, Coupling, and
Balance.

4.2 Recomposition of Activity Clusters

Creating a good activity clustering is essentially a graph partitioning problem.
The causal activity graph needs to be partitioned in parts that have (1) good
cohesion, (2) good coupling and (3) good balance. The existing maximal decom-
position approach [5] often leads to a decomposition that is too decomposed,
i.e. too fine-grained. Cohesion and balance of clusterings found by this approach
are usually quite good, since all clusters consist of only a few related activities.
However, coupling is inherently bad, since there’s a lot of overlap in the activity
clusters and there are many causal relations across clusters. This decomposition
approach leads to unnecessary and unwanted overhead and potential decreased
model quality. We thus want to find a possibly non-maximal decomposition
which optimizes the three clustering properties.

Instead of applying or creating a different graph partitioning algorithm, we
recompose the activity clusters obtained by the vertex-cut decomposition. The
idea is that it is possible to create a clustering that has fewer larger clusters,
requiring less processing time to discover the final model, because overhead as
well as cluster overlap are reduced. Additionally, model quality is likely to in-
crease because of the higher number of activities in the clusters and the lower
coupling between clusters.

There are often many ways in which a clustering can be recomposed to the
desired amount of clusters, as shown in Figure 1. We are interested in the highest
quality clustering of the desired size, i.e. the clustering that has the best cohesion,
coupling and balance properties. A clustering that has a high clustering score
will very likely lead to such a decomposition.

In order to find a good decomposition in the form of a high-scoring clustering
quickly, we propose two agglomerative hierarchical recomposition approaches,
which iteratively merge clusters, reducing the size of the clustering by one each
iteration.

24

Fig. 1. 3 possible recompositions from 16 to 4 clusters. Creating a coarser clustering
could potentially decrease processing time and increase model quality.

Proximity-based approach We propose an hierarchical recomposition ap-
proach based on proximity between activity clusters, where cluster coupling is
used as the proximity measure. The starting point is the clustering as created
by the vertex-cut approach. We repeatedly merge the clusters closest to one an-
other (i.e. the pair of clusters with the highest coupling) until we end up with
the desired amount of clusters (k). After the k-clustering is found, it is made
valid by removing any clusters that are a subcluster of another cluster, if such
clusters exist. It is therefore possible that the algorithm returns a clustering with
size smaller than k. By merging clusters we are likely to lower the overal cohe-
sion of the clustering. This drawback is minimized, as coupling is used as the
distance measure. Coupling is also minimized. The proximity-based hierarchical
recomposition approach however is less favored towards the balance property, as
it is possible that -because of high coupling between clusters- two of the larger
clusters are merged. In most processes however, coupling between two “origi-
nal” clusters will be higher than coupling between “merged” clusters. If not,
the two clusters correspond to parts of the process which are more difficult to
split up (e.g. a loop, a subprocess with many interactions and/or possible paths
between activities, etc.). Model quality is therefore also likely to increase by
merging these clusters, as process discovery algorithms don’t have to deal with
missing activities, or incorrect causal relations introduced in the corresponding
sublogs. A possible downside is that as the clustering might be less balanced,
processing time can be slightly higher in comparison with a perfectly-balanced
decomposition.

25

Score-based approach We propose a second hierarchical recomposition algo-
rithm that uses the scoring function in a look-ahead fashion. In essence, this
algorithm, like the proximity-based variant, iteratively merges two clusters into
one. For each combination of clusters, the score of the clustering that results
from merging those clusters is calculated. The clustering with the highest score
is used for the next step. The algorithm is finished when a k-clustering is reached.
Like in the proximity-based approach, after the k-clustering is found, it is made
valid by removing any clusters that are a subcluster of another cluster, if such
clusters exist. The advantage of this approach is that specific (combinations of)
clustering properties can be given priority, by setting their scoring weight(s) ac-
cordingly. For example, it is possible to distribute the activities over the clusters
near perfectly, by choosing a high relative weight for balance. This would likely
lead to a lower overall processing time. However, it might lead to natural parts
of the process being split over multiple clusters, which could negatively affect
model quality. A downside of this algorithm is that, as the algorithm only looks
ahead one step, it is possible that a choice is made that ultimately leads to a
lower clustering score, as that choice cannot be undone in following steps.

4.3 Implementation

All concepts and algorithms introduced in this paper are implemented in the
process mining toolkit ProM 1, developed at the Eindhoven University of Tech-
nology. All work can be found in the BartHompes package2. For more elaborate
explanations, pseudo-code of the algorithms, and analysis results we refer to [11].

5 Use Case

The proposed recomposition techniques are tested using event logs of different
sizes and properties. Results for an event log consisting of 33 unique activities,
and 1000 traces are shown in this section. For this test the ILP Miner process
discovery algorithm was used [17]. Discovering a model directly for this log will
lead to a high quality model, but takes ∼25 minutes on a modern quad-core sys-
tem [11]. The vertex-cut decomposed process mining approach is able to discover
a model in roughly 90 seconds, however the resulting model suffers from discon-
nected activities (i.e. a partitioned model). The goal is thus to find a balance
between processing times and model quality.

We are interested in the clustering scores of each algorithm when recompos-
ing the clustering created by the vertex-cut approach to a certain smaller size.
Exhaustively finding the best possible clustering proved to be too time- and
resource-consuming, therefore, besides the two hierarchical approaches listed
here, a random recomposition approach was used which recomposes clusters
randomly one million times, as to give an idea of what the best possible cluster-
ing might be. The highest found clustering score is shown on the graph. Equal

1 See http://www.processmining.org
2 See https://svn.win.tue.nl/repos/prom/Packages/BartHompes/

26

http://www.processmining.org
https://svn.win.tue.nl/repos/prom/Packages/BartHompes/

weights were used for the three clustering properties in order to compute the
clustering scores. As can be seen in Figure 2, the vertex-cut approach creates
22 clusters. We can see that all algorithms perform very similarly in terms of
clustering score. Only for very small clustering sizes the proximity-based ap-
proach performs worse than the other approaches, due to its tendency to create
unbalanced clusters.

0,5

0,55

0,6

0,65

0,7

0,75

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

C
lu

st
e

ri
n

g
sc

o
re

clusters

Clustering scores

Agglomerative Hierarchical w/ Proximity Agglomerative Hierarchical w/ Scoring Random (max)

Fig. 2. Clustering score per recomposition algorithm.

Besides clustering scores, we are even more interested in how each decom-
position method performs in terms of required processing time and quality of
the resulting process model. In Figure 3 we can see that decomposing the event
log drastically reduces processing times. For an event log this size, the decom-
position steps relatively takes up negligible time (see base of bars in figure), as
most time is spent discovering the submodels (light blue bars). Processing times
are reduced exponentially (as expected), until a certain optimum decomposition
(in terms of speed) is reached, after which overhead starts to increase time lin-
early again. We have included two process models (Petri Nets) discovered from
the event log. Figure 4 shows the model discovered when using the vertex-cut
decomposition. Figure 5 shows the model discovered when using the clustering
recomposed to 11 clusters with the Proximity-based agglomerative hierarchical
approach. We can see that in Figure 4, activity “10” is disconnected (marked
blue). In Figure 5, this activity is connected, and a structure (loop) is discov-
ered. We can also see that activity “12” now is connected to more activities. This
shows that the vertex-cut decomposition sometimes splits up related activities,
which leads to a lower quality model. By recomposing the clusters we rediscover
these relations, leading to a higher quality model. Processing times for these two
models are comparable, as can be seen in Figure 3.

27

0

1

2

3

4

0

100

200

300

400

500

600

700

800

900

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Pa
rti

tio
ns

 in
 m

od
el

Ti
m

e
in

 se
co

nd
s

Recomposition method - # clusters

Time per step & Partitions in model - ILP Miner Discovery Algorithm

Matrix Graph Clustering Sublogs Submodels Merge Partitions in model

Agglomerative Hierarchical w/ Proximity Max. Decomp.Agglomerative Hierarchical w/ Scoring

Fig. 3. Time per step & partitions in model using the Agglomerative Hierarchical
recomposition approaches and the ILP Miner process discovery algorithm.

Fig. 4. Process model discovered using the vertex-cut decomposition. Some activities
are disconnected in the final model.

Fig. 5. Process model discovered using the vertex-cut clustering recomposed to 11 clus-
ters. Previously disconnected activities are connected again, improving model quality.

6 Conclusions and Future Work

In decomposed process discovery, large event logs are decomposed by somehow
clustering their events (activities), and there are many ways these activity clus-
terings can be made. Hence, good quality notions are necessary to be able to
assess the quality of a decomposition before starting the time-consuming actual
discovery algorithm. Being able to find a high-quality decomposition plays a key
role in the success of decomposed process mining, even though the decomposition
step takes relatively very little time.

28

By using a better decomposition, less problems arise when discovering sub-
models for sublogs and when merging submodels into the overal process model.
We introduced three quality notions in the form of clustering properties: cohe-
sion, coupling and balance. It was shown that finding a non-maximal decom-
position can potentially lead to a decrease in required processing time while
maintaining or even improving model quality, compared to the existing vertex-
cut maximal decomposition approach. We have proposed two variants of an
agglomerative hierarchical recomposition technique, which are able to create a
high-quality decomposition for any given size, in very little time.

Even though the scope was limited to decomposed process discovery, the
introduced quality notions and decomposition approaches can be applied to
decomposed conformance checking as well. However, more work is needed to
incorporate them in a conformance checking environment.

Besides finding a better decomposition, we believe improvements can be
gained in finding a better, more elaborate algorithm to merge submodels into the
overal process model. By simply merging submodels based on activity labels it is
likely that implicit paths are introduced. Model quality in terms of fitness, sim-
plicity, generality or precision could suffer. An additional post-processing step
(potentially using causal relations) could also solve this issue.

Even though most interesting process discovery algorithms are exponential
in the number of different activities, adding an infrequent or almost unrelated
activity to a cluster might not increase computation time for that cluster as much
as adding a frequent or highly related one. Therefore, besides weighing causal
relations between activities in the causal activity matrix, activities themselves
might be weighted as well. Frequency and connectedness are some of the many
possible properties that can be used as weights. It might be possible that one
part of a process can be discovered easily by a simple algorithm whereas another,
more complex part of the process needs a more involved discovery algorithm to
be modeled correctly. Further improvements in terms of processing time can be
gained by somehow detecting the complexity of a single submodel in a sublog,
and choosing an adequate discovery algorithm.

Finally, as discussed, the proposed recomposition algorithms expect the de-
sired amount of clusters to be given. Even though the algorithms were shown to
provide good results for any chosen number, the approach would benefit from
some method that determines a fitting clustering size for a given event log. This
would also mean one less potentially uncertain step for the end-user.

References

[1] van der Aalst, W.M.P.: Process Mining: Discovery, Conformance and En-
hancement of Business Processes. Springer, Berlin (2011) 1, 3, 4, 5

[2] van der Aalst, W.M.P.: Decomposing process mining problems using pas-
sages. In: Application and Theory of Petri Nets, pp. 72–91. Springer (2012)
2

29

[3] van der Aalst, W.M.P.: Distributed Process Discovery and Conformance
Checking. In: de Lara, J., Zisman, A. (eds.) FASE. Lecture Notes in Com-
puter Science, vol. 7212, pp. 1–25. Springer (2012) 2

[4] van der Aalst, W.M.P.: A general divide and conquer approach for process
mining. In: Computer Science and Information Systems (FedCSIS), 2013
Federated Conference on. pp. 1–10. IEEE (2013) 3

[5] van der Aalst, W.M.P.: Decomposing Petri nets for process mining: A
generic approach. Distributed and Parallel Databases 31(4), 471–507 (2013)
2, 4, 6, 9

[6] Bratosin, C.C., Sidorova, N., van der Aalst, W.M.P.: Distributed genetic
process mining. In: Evolutionary Computation (CEC), 2010 IEEE Congress
on. pp. 1–8. IEEE (2010) 2

[7] Carmona, J.: Projection approaches to process mining using region-based
techniques. Data Min. Knowl. Discov. 24(1), 218–246 (2012), http://dblp.
uni-trier.de/db/journals/datamine/datamine24.html 2

[8] Carmona, J., Cortadella, J., Kishinevsky, M.: A Region-Based Algorithm for
Discovering Petri Nets from Event Logs. In: Business Process Management
(BPM2008). pp. 358–373 (2008) 2

[9] Carmona, J., Cortadella, J., Kishinevsky, M.: Divide-and-conquer strategies
for process mining. In: Business Process Management, pp. 327–343. Springer
(2009) 3

[10] Goedertier, S., Martens, D., Vanthienen, J., Baesens, B.: Robust Process
Discovery with Artificial Negative Events. Journal of Machine Learning
Research 10, 1305–1340 (2009) 2

[11] Hompes, B.F.A.: On Decomposed Process Mining: How to Solve a Jigsaw
Puzzle with Friends. Master’s thesis, Eindhoven University of Technology,
Eindhoven, The Netherlands (2014), http://repository.tue.nl/776743
6, 11

[12] Muñoz-Gama, J., Carmona, J., van der Aalst, W.M.P.: Conformance Check-
ing in the Large: Partitioning and Topology. In: Daniel, F., Wang, J., Weber,
B. (eds.) BPM. Lecture Notes in Computer Science, vol. 8094, pp. 130–145.
Springer (2013) 2

[13] Muñoz-Gama, J., Carmona, J., van der Aalst, W.M.P.: Hierarchical Confor-
mance Checking of Process Models Based on Event Logs. In: Colom, J.M.,
Desel, J. (eds.) Petri Nets. Lecture Notes in Computer Science, vol. 7927,
pp. 291–310. Springer (2013) 2

[14] Reguieg, H., Toumani, F., Motahari-Nezhad, H.R., Benatallah, B.: Using
mapreduce to scale events correlation discovery for business processes min-
ing. In: Business Process Management, pp. 279–284. Springer (2012) 2

[15] Vanderfeesten, I.T.P.: Product-based design and support of workflow pro-
cesses (2009) 3

[16] Verbeek, H.M.W., van der Aalst, W.M.P.: Decomposed Process Mining:
The ILP Case. In: BPI 2014 Workshop (2014), accepted for publication 4

[17] van der Werf, J.M.E.M., van Dongen, B.F., Hurkens, C.A.J., Serebrenik,
A.: Process discovery using integer linear programming. In: Applications
and Theory of Petri Nets, pp. 368–387. Springer (2008) 11

30

http://dblp.uni-trier.de/db/journals/datamine/datamine24.html
http://dblp.uni-trier.de/db/journals/datamine/datamine24.html
http://repository.tue.nl/776743

Discovery of Frequent Episodes in Event Logs

Maikel Leemans and Wil M.P. van der Aalst

Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven,
The Netherlands. m.leemans@tue.nl,w.m.p.v.d.aalst@tue.nl

Abstract. Lion’s share of process mining research focuses on the discov-
ery of end-to-end process models describing the characteristic behavior of
observed cases. The notion of a process instance (i.e., the case) plays an
important role in process mining. Pattern mining techniques (such as frequent
itemset mining, association rule learning, sequence mining, and traditional
episode mining) do not consider process instances. An episode is a collection
of partially ordered events. In this paper, we present a new technique (and
corresponding implementation) that discovers frequently occurring episodes
in event logs thereby exploiting the fact that events are associated with cases.
Hence, the work can be positioned in-between process mining and pattern
mining. Episode discovery has its applications in, amongst others, discovering
local patterns in complex processes and conformance checking based on
partial orders. We also discover episode rules to predict behavior and discover
correlated behaviors in processes. We have developed a ProM plug-in that
exploits efficient algorithms for the discovery of frequent episodes and episode
rules. Experimental results based on real-life event logs demonstrate the
feasibility and usefulness of the approach.

1 Introduction

Process mining provides a powerful way to analyze operational processes based on
event data. Unlike classical purely model-based approaches (e.g., simulation and
verification), process mining is driven by “raw” observed behavior instead of assump-
tions or aggregate data. Unlike classical data-driven approaches, process mining is
truly process-oriented and relates events to high-level end-to-end process models [1].

In this paper, we use ideas inspired by episode mining [2] and apply these to the dis-
covery of partially ordered sets of activities in event logs.Event logs serve as the starting
point for process mining. An event log can be viewed as a multiset of traces [1]. Each
trace describes the life-cycle of a particular case (i.e., a process instance) in terms of the
activities executed. Often event logs store additional information about events, e.g.,
the resource (i.e., person or device) executing or initiating the activity, the timestamp
of the event, or data elements (e.g., cost or involved products) recorded with the event.

Each trace in the event log describes the life-cycle of a case from start to completion.
Hence, process discovery techniques aim to transform these event logs into end-to-end
process models. Often the overall end-to-end process model is rather complicated be-
cause of the variability of real life processes. This results in “Spaghetti-like” diagrams.
Therefore, it is interesting to also search for more local patterns in the event log – using
episode discovery – while still exploiting the notion of process instances. Another useful
application of episode discovery is conformance checking based on partial orders [3].

31

Since the seminal papers related to the Apriori algorithm [4, 5, 6], many pattern
mining techniques have been proposed. These techniques do not consider the ordering
of events [4] or assume an unbounded stream of events [5, 6] without considering
process instances. Mannila et al. [2] proposed an extension of sequence mining [5, 6]
allowing for partially ordered events. An episode is a partially ordered set of activities
and it is frequent if it is “embedded” in many sliding time windows. Unlike in [2], our
episode discovery technique does not use an arbitrary sliding window. Instead, we
exploit the notion of process instances. Although the idea is fairly straightforward,
as far as we know, this notion of frequent episodes was never applied to event logs.

Numerous applications of process mining to real-life event logs illustrate that
concurrency is a key notion in process discovery [1, 7, 8]. One should avoid showing
all observed interleavings in a process model. First of all, the model gets too complex
(think of the classical “state-explosion problem”). Second, the resulting model will
be overfitting (typically one sees only a fraction of the possible interleavings). This
makes the idea of episode mining particularly attractive.

The remainder of this paper is organized as follows. Section 2 positions the work in
existing literature. The novel notion of episodes and the corresponding rules are defined
in Section 3. Section 4 describes the algorithms and corresponding implementation in
the process mining framework ProM. The approach and implementation are evaluated
in Section 5 using several publicly available event logs. Section 6 concludes the paper.

2 Related Work

The notion of frequent episode mining was first defined by Mannila et al. [2]. In their
paper, they applied the notion of frequent episodes to (large) event sequences. The
basic pruning technique employed in [2] is based on the frequency of episodes in an
event sequence. Mannila et al. considered the mining of serial and parallel episodes
separately, each discovered by a distinct algorithm. Laxman and Sastry improved on
the episode discovery algorithm of Mannila by employing new frequency calculation
and pruning techniques [9]. Experiments suggest that the improvement of Laxman
and Sastry yields a 7 times speedup factor on both real and synthetic datasets.

Related to the discovery of episodes or partial orders is the discovery of end-to-end
process models able to capture concurrency explicitly. The α algorithm [10] was
the first process discovery algorithm adequately handling concurrency. Many other
discovery techniques followed, e.g., heuristic mining [11] able to deal with noise and
low-frequent behavior. The HeuristicsMiner is based on the notion of causal nets
(C-nets). Several variants of the α algorithm have been proposed [12, 13]. Moreover,
completely different approaches have been proposed, e.g., the different types of
genetic process mining [14, 15], techniques based on state-based regions [16, 17], and
techniques based on language-based regions [18, 19]. Another, more recent, approach
is inductive process mining where the event log is split recursively [20]. The latter
technique always produces a block-structured and sound process model. All the
discovery techniques mentioned are able to uncover concurrency based on example
behavior in the log. Additional feature comparisons are summarised in Table 1.

The episode mining technique presented in this paper is based on the discovery
of frequent item sets. A well-known algorithm for mining frequent item sets and
association rules is the Apriori algorithm by Agrawal and Srikant [4]. One of the

32

pitfalls in association rule mining is the huge number of solutions. One way of dealing
with this problem is the notion of representative association rules, as described by
Kryszkiewicz [21]. This notion uses user specified constraints to reduce the number
of ‘similar’ results. Both sequence mining [5, 6] and episode mining [2] can be viewed
as extensions of frequent item set mining.

Exploits
proces

s insta
nces

Mines
en

d-to
-en

d model

Soundness
guarantee

d

Sequen
ce

Choice

Concu
rre

ncy

Sile
nt (ta

u) tra
nsit

ions

Duplic
ate

Acti
vitie

s

Agrawal, Sequence mining [4] - - n.a. + - - - -
Manilla, Episode mining [2] - - n.a. + - + - -
Leemans M., Episode discovery + - n.a. + - + - +
Van der Aalst, α-algorithm [10] + + - + + + - -
Weijters, Heuristics mining [11] + + - + + + - -
De Medeiros, Genetic mining [14, 15] + + - + + + + +
Solé, State Regions [16, 17] + + - + + + - -
Bergenthum, Language Regions [18, 19] + + - + + + - -
Leemans S.J.J., Inductive [20] + + + + + + + -

Table 1. Feature comparison of discussed discovery algorithms

3 Event Logs, Episodes, and Episode Rules

This section defines basic notions such as event logs, episodes and rules. Note that
our notion of episodes is different from the notion in [2] which does not consider
process instances.

3.1 Event Logs

Activities and Traces Let A be the alphabet of activities. A trace is a list (sequence)
T = 〈A1, . . . , An〉 of activities Ai ∈ A occurring at time index i relative to the other
activities in T .

Event log An event log L = [T1, . . . , Tm] is a multiset of traces Ti. Note that the
same trace may appear multiple times in an event log. Each trace corresponds to
an execution of a process, i.e., a case or process instance. In this simple definition
of an event log, an event refers to just an activity. Often event logs store additional
information about events, such as timestamps.

3.2 Episodes

Episode An episode is a partial ordered collection of events. Episodes are depicted using
the transitive reduction of directed acyclic graphs, where the nodes represent events,
and the edges imply the partial order on events. Note that the presence of an edge
implies serial behavior. Figure 1 shows the transitive reduction of an example episode.

33

Formally, an episodeα = (V,≤, g) is a triple, whereV is a set of events (nodes),≤ is
a partial order on V , and g : V 7→ A is a left-total function from events to activities,
thereby labelling the nodes/events [2]. For two vertices u, v ∈ V we have u < v iff u ≤
v and u 6= v. In addition, we defineG to be the multiset of activities/labels used:G =
[g(v) | v ∈ V]. Note that if |V | ≤ 1, then we got an singleton or empty episode. For the
rest of this paper, we ignore empty episodes. We call an episode parallel when ≤ = ∅.

A

(A1)

B

(B)

C

(C)

A

(A2)

D

(D)

Fig. 1. Shown is the transitive reduction of the partial order for an example episode. The
circles represent nodes (events), with the activity labelling imposed by g inside the circles,
and an event ID beneath the nodes in parenthesis. In this example, events A1 and B can
happen in parallel (as can A2 and D), but event C can only happen after both A1 and B
have occurred.

Subepisode and Equality An episode β = (V ′,≤′, g′) is a subepisode of α = (V,≤, g),
denoted β � α, iff there is an injective mapping f : V ′ 7→ V such that:

(∀v ∈ V ′ : g′(v) = g(f(v))) ∧ (∀v, w ∈ V ′ ∧ v ≤′ w : f(v) ≤ f(w))

An episode β equals episode α, denoted β = α iff β � α ∧ α � β. An episode
β is a strict subepisode of α, denoted β ≺ α, iff β � α ∧ β 6= α.

Episode construction Two episodesα = (V,≤, g) and β = (V ′,≤′, g′) can be ‘merged’
to construct a new episode γ = (V ∗,≤∗, g∗). α⊕ β is the smallest γ (i.e., smallest
sets V ∗ and ≤∗) such that α � γ and β � γ. As shown below, such an episode γ
always exists.

The smallest sets criteria implies that every event v ∈ V ∗ and ordered pair
v, w ∈ V ∗ ∧ v ≤∗ w must have a witness in α and/or β. Formally, γ = α ⊕ β iff
there exists injective mappings f : V 7→ V ∗ and f ′ : V ′ 7→ V ∗ such that:

G∗ = G ∪G′ activity witness

≤∗= { (f(v), f(w)) | (v, w) ∈ ≤} ∪ { (f ′(v), f ′(w)) | (v, w) ∈ ≤′ } order witness

Occurrence An episode α = (V,≤, g) occurs in an event trace T = 〈A1, . . . , An〉,
denoted α v T , iff there exists an injective mapping h : V 7→ {1, . . , n} such that:

(∀v ∈ V : g(v) = Ah(v)) ∧ (∀v, w ∈ V ∧ v ≤ w : h(v) ≤ h(w))

In Figure 2 an example of an “event to trace map” h for occurrence checking is given.

34

Event indices:

Episode:

Trace:

A(A1)

B

(B)

C

(C)

A (A2)

D

(D)

A

1

B

2

A

3

C

4

A

5

D

6

Mapping 1

A(A1)

B

(B)

C

(C)

A (A2)

D

(D)

A

1

B

2

A

3

C

4

A

5

D

6

Mapping 2

Fig. 2. Shown are two possible mappings h (the dotted arrows) for checking occurrence of
the example episode in a trace. The shown graphs are the transitive reduction of the partial
order of the example episode. Note that with the left mapping (Mapping 1) also an episode
with the partial order A1 < B occurs in the given trace, in the right mapping (Mapping 2)
the same holds for an episode with the partial order B < A1.

Frequency The frequency freq(α) of an episode α in an event log L = [T1, . . . , Tm]
is defined as:

freq(α) =
| [Ti | Ti ∈ L ∧ α v Ti] |

|L|
Given a frequency threshold minFreq , an episode α is frequent iff freq(α) ≥

minFreq . During the actual episode discovery, we use the fact given in Lemma 1.

Lemma 1 (Frequency and subepisodes). If an episode α is frequent in an
event log L, then all subepisodes β with β � α are also frequent in L. Formally, we
have for a given α:

(∀β � α : freq(β) ≥ freq(α))

Activity Frequency The activity frequency ActFreq(A) of an activity A ∈ A in an
event log L = [T1, . . . , Tm] is defined as:

ActFreq(A) =
| [Ti | Ti ∈ L ∧A ∈ Ti] |

|L|

Given a frequency threshold minActFreq , an activity A is frequent iff ActFreq(A) ≥
minActFreq .

Trace Distance Given episode α = (V,≤, g) occurring in an event trace T =
〈A1, . . . , An〉, as indicated by the event to trace map h : V 7→ {1, . . , n}. Then the
trace distance traceDist(α, T) is defined as:

traceDist(α, T) = max {h(v) | v ∈ V } −min {h(v) | v ∈ V }

In Figure 2, the left mapping yields traceDist(α, T) = 6 − 1 = 5, and the right
mapping yields traceDist(α, T) = 6− 2 = 4.

35

Given a trace distance interval [minTraceDist ,maxTraceDist], an episode α is
accepted in trace T with respect to the trace distance interval iff minTraceDist ≤
traceDist(α, T) ≤ maxTraceDist .

Informally, the conceptual idea behind a trace distance interval is that we are
interested in a partial order on events occurring relatively close in time.

3.3 Episode Rules

Episode rule An episode rule is an association rule β ⇒ α with β ≺ α stating that
after seeing β, then likely the larger episode α will occur as well.

The confidence of the episode rule β ⇒ α is given by:

conf (β ⇒ α) =
freq(α)

freq(β)

Given a confidence threshold minConf , an episode rule β ⇒ α is valid iff
conf (β ⇒ α) ≥ minConf . During the actual episode rule discovery, we use Lemma 2.

Lemma 2 (Confidence and subepisodes). If an episode rule β ⇒ α is valid
in an event log L, then for all episodes β′ with β ≺ β′ ≺ α the event rule β′ ⇒ α is
also valid in L. Formally:

(∀β ≺ β′ ≺ α : conf (β ⇒ α) ≤ conf (β′ ⇒ α))

Episode rule magnitude Let the graph size size(α) of an episode α be denoted as the
sum of the nodes and edges in the transitive reduction of the episode. The magnitude
of an episode rule is defined as:

mag(β ⇒ α) =
size(β)

size(α)

Intuitively, the magnitude of an episode rule β ⇒ α represents how much episode
α ‘adds to’ or ‘magnifies’ episode β. The magnitude of an Episode rule allows smart
filtering on generated rules. Typically, an extremely low (approaching zero) or high
(approaching one) magnitude indicates a trivial episode rule.

4 Realization

The definitions and insights provided in the previous section have been used to
implement a episode (rule) discovery plug-in in ProM. To be able to analyze real-life
event logs, we need efficient algorithms. These are described next.

Notation: in the listed algorithms, we will reference to the elements of an episode
α = (V,≤, g) as α.V , α.≤ and α.g.

36

4.1 Frequent Episode Discovery

Discovering frequent episodes is done in two phases. The first phase discovers parallel
episodes (i.e., nodes only), the second phase discovers partial orders (i.e., adding the
edges). The main routine for discovering frequent episodes is given in Algorithm 1.

Algorithm 1: Episodes discovery
Input: An event log L, an activity alphabet A, a frequency threshold minFreq.
Output: A set of frequent episodes Γ
Description: Two-phase episode discovery. Each phase alternates by generating
new candidate episodes (Cl), and recognizing frequent candidates in the event
log (Fl).
Proof of termination: Note that candidate episode generation with Fl = ∅ will
yield Cl = ∅. Since each iteration the generated episodes become strictly larger
(in terms of V and ≤), eventually the generated episodes cannot occur in any
trace. Therefore, always eventually Fl = ∅, and thus we will always terminate.
EpisodeDiscovery(L,A,minFreq)
(1) Γ = ∅
(2) // Phase 1: discover parallel episodes
(3) l = 1 // Tracks the number of nodes
(4) Cl = { (V,≤ = ∅, g = {v 7→ a}) | |V | = 1 ∧ v ∈ V ∧ a ∈ A}
(5) while Cl 6= ∅
(6) Fl = RecognizeFrequentEpisodes(L,Cl,minFreq)
(7) Γ = Γ ∪ Fl

(8) Cl = GenerateCandidateParallel(l, Fl)
(9) l = l + 1
(10) // Phase 2: discover partial orders
(11) l = 1 // Tracks the number of edges
(12) Cl = { (V = γ.V,≤ = {(v, w)}, g = γ.g) | γ ∈ Γ ∧ v, w ∈ γ.V ∧ v 6= w }
(13) while Cl 6= ∅
(14) Fl = RecognizeFrequentEpisodes(L,Cl,minFreq)
(15) Γ = Γ ∪ Fl

(16) Cl = GenerateCandidateOrder(l, Fl)
(17) l = l + 1
(18) return Γ

4.2 Episode Candidate Generation

The generation of candidate episodes for each phase is an adaptation of the well-known
Apriori algorithm over an event log. Given a set of frequent episodes Fl, we can con-
struct a candidate episode γ by combining two partially overlapping episodes α and β
from Fl. Note that this implements the episode construction operation γ = α⊕ β.

For phase 1, we have Fl contains frequent episodes with l nodes and no edges.
A candidate episode γ will have l + 1 nodes, resulting from episodes α and β that
overlap on the first l − 1 nodes. This generation is implemented by Algorithm 2.

For phase 2, we have Fl contains frequent episodes with l edges. A candidate
episode γ will have l + 1 edges, resulting from episodes α and β that overlap on the
first l − 1 edges and have the same set of nodes. This generation is implemented
by Algorithm 3. Note that, formally, the partial order ≤ is the transitive closure of
the set of edges being constructed, and that the edges are really only the transitive
reduction of this partial order.

37

Algorithm 2: Candidate episode generation – Parallel
Input: A set of frequent episodes Fl with l nodes.
Output: A set of candidate episodes Cl+1 with l + 1 nodes.
Description: Generates candidate episodes γ by merging overlapping episodes α and β (i.e.,
γ = α⊕ β). For parallel episodes, overlapping means: sharing l− 1 nodes.
GenerateCandidateParallel(l, Fl)
(1) Cl+1 = ∅
(2) for i = 0 to |Fl| − 1
(3) for j = i to |Fl| − 1
(4) α = Fl[i]
(5) β = Fl[j]
(6) if ∀0 ≤ i ≤ l− 2 : α.g(α.V [i]) = β.g(β.V [i])
(7) γ = (V = (α.V [0 . . l− 1] ∪ β.V [l− 1]),≤ = ∅, g = α.g ∪ β.g)
(8) Cl+1 = Cl+1 ∪ {γ}
(9) else
(10) break
(11) return Cl+1

Algorithm 3: Candidate episode generation – Partial order
Input: A set of frequent episodes Fl with l edges.
Output: A set of candidate episodes Cl+1 with l + 1 edges.
Description: Generates candidate episodes γ by merging overlapping episodes α and β (i.e.,
γ = α⊕ β). For partial order episodes, overlapping means: sharing all nodes and l− 1 edges.
GenerateCandidateOrder(l, Fl)
(1) Cl+1 = ∅
(2) for i = 0 to |Fl| − 1
(3) for j = i+ 1 to |Fl| − 1
(4) α = Fl[i]
(5) β = Fl[j]
(6) if α.V = β.V ∧ α.g = β.g ∧ α.≤[0 . . l− 2] = β.≤[0 . . l− 2]
(7) γ = (V = α.V,≤ = (α.E[0 . . l− 1] ∪ β.E[l− 1]), g = α.g)
(8) Cl+1 = Cl+1 ∪ {γ}
(9) else
(10) break
(11) return Cl+1

4.3 Frequent Episode Recognition

In order to check if a candidate episode α is frequent, we check if freq(α) ≥ minFreq .
The computation of freq(α) boils down to counting the number of traces T with
α v T . Algorithm 4 recognizes all frequent episodes from a set of candidate episodes
using the above described approach. Note that for both parallel and partial order
episodes we can use the same recognition algorithm.

Algorithm 4: Recognize frequent episodes
Input: An event log L, a set of candidate episodes Cl, a frequency threshold minFreq.
Output: A set of frequent episodes Fl

Description: Recognizes frequent episodes, by filtering out candidate episodes that do not occur
frequently in the log. Note: If Fl = ∅, then Cl = ∅.
RecognizeFrequentEpisodes(L,Cl,minFreq)
(1) support = [0, . . . , 0] with |support| = |Cl|
(2) foreach T ∈ L
(3) for i = 0 to |Cl| − 1
(4) if Occurs(Cl[i], T) then support[i] = support[i] + 1
(5) Fl = ∅
(6) for i = 0 to |Cl| − 1

(7) if
support[i]

|L| ≥ minFreq then Fl = Fl ∪ {Cl[i]}
(8) return Fl

38

Checking whether an episode α occurs in a trace T = 〈A1, . . . , An〉 is done via
checking the existence of the mapping h : α.V 7→ {1, . . , n}. This results in checking
the two propositions shown below. Algorithm 5 implements these checks.

– Checking whether each node v ∈ α.V has a unique witness in trace T .

– Checking whether the (injective) mapping h respects the partial order indicated
by α.≤.

For the discovery of an injective mapping h for a specific episode α and trace T
we use the following recipe. First, we declare the class of models H : A 7→ P(N)
such that for each activity a ∈ A we get the set of indices i at which a = Ai ∈ T .
Next, we try all possible models derivable from H. A model h : α.V 7→ {1, . . , n}
is derived from H by choosing an index i ∈ H(f(v)) for each node v ∈ α.V . With
such a model h, we can perform the actual partial order check against α.≤.

Algorithm 5: This algorithm implements occurrence checking via recursive
discovery of the injective mapping h as per the occurrence definition.
Input: An episode α, a trace T .
Output: True iff α v T
Description: Implements occurrence checking based on finding an occurrence proof in the form of
a mapping h : α.V 7→ {1, . . , n}.
Occurs(α = (V,≤, g), T)
(1) return checkModel(α, { a 7→ { i | a = Ai ∈ T } | a ∈ A} , ∅)

Input: An episode α, a class of mappings H : A 7→ P(N), and an intermediate mapping
h : α.V 7→ {1, . . , n}.
Output: True iff there is a mapping h, as per the occurrence definition, derivable from H
Description: Recursive implementation for finding h based on the following induction principle: Base
case (if -part): Every v ∈ V is mapped (v ∈ dom h). Step case (else-part): (IH) n vertices are mapped,
step by adding a mapping for a vertex v /∈ dom h. (I.e., induction to the number of mapped vertices.)
checkModel(α = (V,≤, g), H, h)
(1) if ∀v ∈ V : v ∈ dom h
(2) return (∀(v, w) ∈ ≤ : h(v) ≤ h(w))
(3) else
(4) pick v ∈ V with v /∈ dom h
(5) return (∃i ∈ H(g(v)) :

checkModel(α,H[g(v) 7→ H(g(v)) \ {i}], h[v 7→ i]))

4.4 Pruning

Using the pruning techniques described below, we reduce the number of generated
episodes (and thereby computation time and memory requirements) and filter out un-
interesting results. These techniques eliminate less interesting episodes by ignoring in-
frequent activities and skipping partial orders on activities with low temporal locality.

Activity Pruning Based on the frequency of an activity, uninteresting episodes
can be pruned in an early stage. This is achieved by replacing the activity alphabet
A by A∗ ⊆ A, with
(∀A ∈ A∗ : ActFreq(A) ≥ minActFreq), on line 4 in Algorithm 1. This pruning
technique allows the episode discovery algorithm to be more resistant to logs with
many infrequent activities, which are indicative of exceptions or noise.

39

Trace Distance Pruning The pruning of episodes based on a trace distance
interval can be achieved by adding the trace distance interval check to line 2 of
Algorithm 5. Note that if there are two or more interpretations for h, with one passing
and one rejected by the interval check, then we will find the correct interpretation
thanks to the ∃ on line 5.

4.5 Episode Rule Discovery

The discovery of episode rules is done after discovering all the frequent episodes. For
all frequent episodes α, we consider all frequent subepisodes β with β ≺ α for the
episode rule β ⇒ α.

For efficiently finding potential frequent subepisodes β, we use the notion of “dis-
covery tree”, based on episode construction. Each time we recognize a frequent episode
β created from combining frequent episodes γ and ε, we recognize β as a child of γ and
ε. Similarly, γ and ε are the parents of β. See Figure 3 for an example of a discovery tree.

A

C

B

C

A

C

B

A

C

B

A

C

ε

γ

δ

β α

Fig. 3. Part of an example discovery tree. Each block denotes an episode. The dashed
arrows between blocks denote a parent-child relationship. In this example we have, amongst
others: β ≺ α, ε ≺ β, ε ≺ δ and δ ≺ α (not shown as a parent-child relation).

Using the discovery tree we can walk from an episode α along the discovery
parents of α. Each time we find a parent β with β ≺ α, we can consider the parents
and children of β. As result of Lemma 2, we cannot apply pruning in either direction
of the parent-child relation based on the confidence conf (β ⇒ α). This is easy to
see for the child direction. For the parent direction, observe the discovery tree in
Figure 3 and δ ≺ α. If for episode α we would stop before visiting the parents of
β, we would never consider δ (which has δ ≺ α).

4.6 Implementation Considerations

We implemented the episode discovery algorithm as a ProM 6 plug-in (see also
Figure 4), written in Java. Since the Occurs() algorithm (5) is the biggest bottleneck,
this part of the implementation was considerably optimized.

40

5 Evaluation

This section reviews the feasibility of the approach using both synthetic and real-life
event data.

5.1 Methodology

We ran a series of experiments on two type of event logs. The first event log,
bigger-example.xes, is an artificial event log from the Chapter 5 of [1] and available
via http://www.processmining.org/event_logs_and_models_used_in_book.
The second event log, BPI Challenge 2012.xes, is a real life event log available via
doi:10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f. For these exper-
iments we used a laptop with a Core i5-3570K CPU, 8 GB RAM and Java SE Runtime
Environment 1.7.0 07-b11 (32 bit).

5.2 Performance Results

Table 2 some key characteristics for both event logs. We examined the effects of the
parameters minFreq , minActFreq and maxTraceDist on the running time and the
discovered number of episodes. In Figure 4 an indication (screenshots) of the ProM
plugin output is given.

traces Avg. events/trace Min. events/trace Max. events/trace
bigger-example.xes 1391 5 5 17
BPI Challenge 2012.xes 13087 20 3 175

Table 2. Metadata for the used event logs

(a) Event log: bigger-example.xes – minFreq = 0.05, minActFreq = 0.05, maxTraceDist = 3

(b) Event log: BPI Challenge 2012 – minFreq = 0.55, minActFreq = 0.55, maxTraceDist = 5

Fig. 4. Screenshots of the results in the ProM plugin. Shown are the transitive reductions
of the discovered episodes. Note that in the episodes in Figure 4(a), multiple nodes are
allowed to have the same label.

As can be seen in all the experiments in Figure 5, we see that the running time is
strongly related to the discovered number of episodes. Note that if some parameters

41

are poorly chosen, like high maxTraceDist in Figure 5(f), then a relatively large class
of episodes seems to become frequent, thus increasing the running time drastically.

For a reasonably low number of frequent episodes (< 500, more will a human not in-
spect), the algorithm turns out to be quite fast (at most a few seconds for the Challenge
log). We noted a virtual nonexistent contribution of the parallel episode mining phase
to the total running time. This can be explained by a simple combinatorial argument:
there are far more partial orders to be considered than there are parallel episodes.

An analysis of the effects of changing the minFreq parameter (Figure 5(a), 5(b))
shows that a poorly chosen value results in many episodes. In addition, the minFreq
parameter gives us fine-grained control of the number of results. It gradually increases
the total number of episodes for lower values. Note that, especially for the Challenge
event log, low values for minFreq can dramatically increase the running time. This
is due to the large number of candidate episodes being generated.

Secondly, note that for the minActFreq parameter (Figure 5(c), 5(d)), there
seems to be a cutoff point that separates frequent from infrequent activities. Small
changes around this cutoff point may have a dramatic effect on the number of episodes
discovered.

Finally, for the maxTraceDist parameter (Figure 5(e), 5(f)), we see that this
parameter seems to have a sweet-spot where a low – but not too low – number of
episodes are discovered. Chosen a value for maxTraceDist just after this sweet-spot
yields a huge number of episodes.

When comparing the artificial and real life event logs, we see a remarkable pattern.
The artificial event log (bigger-example.xes), shown in Figure 5(a) appears to be
far more fine-grained than the real life event log (BPI Challenge 2012.xes) shown in
Figure 5(b). In the real life event log there appears to be a clear distinction between
frequent and infrequent episodes. In the artificial event log a more exponential pattern
occurs. Most of the increase in frequent episodes, for decreasing minFreq, is again
in the partial order discovery phase.

5.3 Comparison to existing discovery algorithms

As noted in the introduction, often the overall end-to-end process models are rather
complicated. Therefore, the search for local patterns (i.e., episodes) is interesting. A
good example of a complicated process is the BPI Challenge 2012 log. In Figure 6 part
of the “spaghetti-like” process models are shown, as an indication of the complexity.
The episodes discovered over same log, depicted in Figure 4(b) gives us a simple and
clear insight into important local patterns in the BPI Challenge 2012 log. Hence,
in these “spaghetti-like” process models, the episode discovery technique allows us
to quickly understand the main patterns.

6 Conclusion and Future work

In this paper, we considered the problem of discovering frequently occurring episodes
in an event log. An episode is a collection of events that occur in a given partial order.
We presented efficient algorithms for the discovery of frequent episodes and episode
rules occurring in an event log, and presented experimental results.

Our experimental evaluation shows that the running time is strongly related to
the discovered number of episodes. For a reasonably low number of frequent episodes

42

0

200

400

600

800

0

500

1000

1500

2000

1

0
.9

5

0
.9

0
.8

5

0
.8

0
.7

5

0
.7

0
.6

5

0
.6

0
.5

5

0
.5

0
.4

5

0
.4

0
.3

5

0
.3

0
.2

5

0
.2

0
.1

5

0
.1

0
.0

5

ru
n

ti
m

e
 (

m
s)

 [
9

5
%

 c
o

n
f.

 in
te

rv
al

]

e

p
is

o
d

e
s

minFreq

bigger-example.xes -- minFreq

episodes runtime

(a) Parameter: minFreq

Event log: bigger-example.xes

minActFreq = 0.65, maxTraceDist = 4

0

100

200

300

400

500

600

700

0

10

20

30

40

50

1 0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55 0.5 0.45 0.4

ti
m

e
 (

m
s)

 [
9

5
%

 c
o

n
f.

 in
te

rv
al

]

e

p
is

o
d

e
s

minFreq

BPI_Challenge_2012.xes -- minFreq

episodes runtime

(b) Parameter: minFreq

Event log: BPI Challenge 2012

minActFreq = 0.65, maxTraceDist = 4

0

100

200

300

400

0

200

400

600

800

1

0
.9

5

0
.9

0
.8

5

0
.8

0
.7

5

0
.7

0
.6

5

0
.6

0
.5

5

0
.5

0
.4

5

0
.4

0
.3

5

0
.3

0
.2

5

0
.2

0
.1

5

0
.1

0
.0

5

ru
n

ti
m

e
 (

m
s)

 [
9

5
%

 c
o

n
f.

 in
te

rv
al

]

e

p
is

o
d

e
s

minActFreq (activity frequency)

bigger-example.xes -- minActFreq

episodes runtime

(c) Parameter: minActFreq

Event log: bigger-example.xes

minFreq = 0.45, maxTraceDist = 4

0

100

200

300

400

500

600

700

0

10

20

30

40

1

0
.9

5

0
.9

0
.8

5

0
.8

0
.7

5

0
.7

0
.6

5

0
.6

0
.5

5

0
.5

0
.4

5

0
.4

0
.3

5

0
.3

0
.2

5

0
.2

0
.1

5

0
.1

0
.0

5

ru
n

ti
m

e
 (

m
s)

 [
9

5
%

 c
o

n
f.

 in
te

rv
al

]

e

p
is

o
d

e
s

minActFreq (activity frequency)

BPI_Challenge_2012.xes -- minActFreq

episodes runtime

(d) Parameter: minActFreq

Event log: BPI Challenge 2012

minFreq = 0.50, maxTraceDist = 4

0

100

200

300

400

0

200

400

600

800

0 1 2 3 4 5 6 7 8 9

ru
n

ti
m

e
 (

m
s)

 [
9

5
%

 c
o

n
f.

 in
te

rv
al

]

e

p
is

o
d

e
s

maxTraceDist

bigger-example.xes -- maxTraceDist

episodes runtime

(e) Parameter: maxTraceDist

Event log: bigger-example.xes

minFreq = 0.45, minActFreq = 0.65

0

5000

10000

15000

20000

25000

0

200

400

600

800

1000

1200

0 1 2 3 4 5 6 7 8 9

ru
n

ti
m

e
 (

m
s)

 [
9

5
%

 c
o

n
f.

 in
te

rv
al

]

e

p
is

o
d

e
s

maxTraceDist

BPI_Challenge_2012.xes -- maxTraceDist

episodes runtime

(f) Parameter: maxTraceDist

Event log: BPI Challenge 2012

minFreq = 0.50, minActFreq = 0.55

Fig. 5. Effects of the parameter on the performance and number of discovered episodes.

(< 500, more will a human not inspect), the algorithm turns out to be quite fast (at
most a few seconds). The main problem is the correct setting of the episode pruning
parameters minFreq , minActFreq , and maxTraceDist .

During the development of the algorithm for ProM 6, special attention was paid
to optimizing the Occurs() algorithm (Algorithm 5) implementation, which proved
to be the main bottleneck. Future work could be to prune occurrence checking based
on the parents of an episode, leveraging the fact that an episode cannot occur in
a trace if a parent also did occur in that trace.

Another approach to improve the algorithm is to apply the generic divide and
conquer approach for process mining, as defined in [22]. This approach splits the set
of activities into a collection of partly overlapping activity sets. For each activity
set, the log is projected onto the relevant events, and the regular episode discovery
algorithm is applied. In essence, the same trick is applied as used by the minActFreq

43

(a) Event log: BPI Challenge 2012 – Discovery algorithm: α-algorithm [10].

(b) Event log: BPI Challenge 2012 – Discovery algorithm: [11].

Fig. 6. Screenshots of results in other ProM plugin. Shown are parts of the Petri-nets mined
with the α-algorithm and the heuristics miner.

parameter (using an alphabet subset), which is to create a different set of initial
1-node parallel episodes to start discovering with.

The main bottleneck is the frequency computation by checking the occurrence of
each episode in each trace. Typically, we have a small amount of episodes to check, but
many traces to check against. Using the MapReduce programming model developed by
Dean and Ghemawat, we can easily parallelize the episode discovery algorithm and ex-
ecute it on a large cluster of commodity machines [23]. The MapReduce programming
model requires us to define map and reduce functions. The map function, in our case,
accepts a trace and produces [episode, trace] pairs for each episode occurring in the
given trace. The reduce function accepts an episode plus a list of traces in which that
episode occurs, and outputs a singleton list if the episode is frequent, and an empty list
otherwise. This way, the main bottleneck of the algorithm is effectively parallelized.

References

[1] van der Aalst, W.M.P.: Process Mining: Discovery, Conformance and Enhancement
of Business Processes. Springer-Verlag, Berlin (2011)

[2] Mannila, H., Toivonen, H., Verkamo, A.I.: Discovery of Frequent Episodes in Event
Sequences. Data Mining and Knowledge Discovery 1(3) (1997) 259–289

[3] Lu, X., Fahland, D., van der Aalst, W.M.P.: Conformance checking based on partially or-
dered event data. To appear in Business Process Intelligence 2014, workshop SBS (2014)

[4] Agrawal, R., Srikant, R.: Fast Algorithms for Mining Association Rules in Large
Databases. In: Proceedings of the 20th International Conference on Very Large Data
Bases. VLDB ’94, San Francisco, CA, USA, Morgan Kaufmann Publishers Inc. (1994)
487–499

[5] Agrawal, R., Srikant, R.: Mining Sequential Patterns. In: Proceedings of the Eleventh
International Conference on Data Engineering. ICDE ’95, Washington, DC, USA,
IEEE Computer Society (1995) 3–14

[6] Srikant, R., Agrawal, R.: Mining Sequential Patterns: Generalization and Performance
Improvements. In: Proceedings of the 5th International Conference on Extending
Database Technology: Advances in Database Technology. EDBT ’96, London, UK,
UK, Springer-Verlag (1996) 3–17

44

[7] Lu, X., Mans, R.S., Fahland, D., van der Aalst, W.M.P.: Conformance checking in
healthcare based on partially ordered event data. To appear in Emerging Technologies
and Factory Automation 2014, workshop M2H (2014)

[8] Fahland, D., van der Aalst, W.M.P.: Repairing process models to reflect reality. In:
Proceedings of the 10th International Conference on Business Process Management.
BPM’12, Berlin, Heidelberg, Springer-Verlag (2012) 229–245

[9] Laxman, S., Sastry, P.S., Unnikrishnan, K.P.: Fast Algorithms for Frequent Episode
Discovery in Event Sequences. In: Proc. 3rd Workshop on Mining Temporal and
Sequential Data. (2004)

[10] van der Aalst, W.M.P., Weijters, A.J.M.M., Maruster, L.: Workflow Mining:
Discovering Process Models from Event Logs. IEEE Transactions on Knowledge
and Data Engineering 16(9) (2004) 1128–1142

[11] Weijters, A.J.M.M., van der Aalst, W.M.P., de Medeiros, A.K.A.: Process Mining with
the Heuristics Miner-algorithm. BETA Working Paper Series, WP 166, Eindhoven
University of Technology, Eindhoven (2006)

[12] de Medeiros, A.K.A., van der Aalst, W.M.P., Weijters, A.J.M.M.: Workflow mining:
Current status and future directions. In Meersman, R., Tari, Z., Schmidt, C.D., eds.: On
The Move to Meaningful Internet Systems 2003: CoopIS, DOA, and ODBASE. Volume
2888 of Lecture Notes in Computer Science. Springer Berlin Heidelberg (2003) 389–406

[13] Wen, L., van der Aalst, W.M.P., Wang, J., Sun, J.: Mining process models with non-
free-choice constructs. Data Mining and Knowledge Discovery 15(2) (2007) 145–180

[14] de Medeiros, A.K.A., Weijters, A.J.M.M., van der Aalst, W.M.P.: Genetic Process
Mining: An Experimental Evaluation. Data Mining and Knowledge Discovery 14(2)
(2007) 245–304

[15] Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.: On the Role of Fitness,
Precision, Generalization and Simplicity in Process Discovery. In Meersman,
R., Rinderle, S., Dadam, P., Zhou, X., eds.: OTM Federated Conferences, 20th
International Conference on Cooperative Information Systems (CoopIS 2012). Volume
7565 of Lecture Notes in Computer Science., Springer-Verlag, Berlin (2012) 305–322

[16] Solé, M., Carmona, J.: Process Mining from a Basis of State Regions. In: Applications
and Theory of Petri Nets (Petri Nets 2010). Volume 6128 of Lecture Notes in
Computer Science., Springer-Verlag, Berlin (2010) 226–245

[17] van der Aalst, W.M.P., Rubin, V., Verbeek, H.M.W., van Dongen, B.F., Kindler,
E., Günther, C.W.: Process Mining: A Two-Step Approach to Balance Between
Underfitting and Overfitting. Software and Systems Modeling 9(1) (2010) 87–111

[18] Bergenthum, R., Desel, J., Lorenz, R., Mauser, S.: Process Mining Based on Regions of
Languages. In Alonso, G., Dadam, P., Rosemann, M., eds.: International Conference
on Business Process Management (BPM 2007). Volume 4714 of Lecture Notes in
Computer Science., Springer-Verlag, Berlin (2007) 375–383

[19] van der Werf, J.M.E.M., van Dongen, B.F., Hurkens, C.A.J., Serebrenik, A.: Process Dis-
covery using Integer Linear Programming. Fundamenta Informaticae94 (2010) 387–412

[20] Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering Block-structured
Process Models from Incomplete Event Logs. In Ciardo, G., Kindler, E., eds.:
Applications and Theory of Petri Nets 2014. Volume 8489 of Lecture Notes in
Computer Science., Springer-Verlag, Berlin (2014) 91–110

[21] Kryszkiewicz, M.: Fast Discovery of Representative Association Rules. In Polkowski,
L., Skowron, A., eds.: Rough Sets and Current Trends in Computing. Volume 1424
of Lecture Notes in Computer Science. Springer Berlin Heidelberg (1998) 214–222

[22] van der Aalst, W.M.P.: Decomposing Petri Nets for Process Mining: A Generic
Approach. Distributed and Parallel Databases 31(4) (2013) 471–507

[23] Dean, J., Ghemawat, S.: MapReduce: Simplified Data Processing on Large Clusters.
Communications of the ACM 51(1) (2008) 107–113

45

Business Process Measurement in small

enterprises after the installation of an ERP

software.

Stefano Siccardi and Claudia Sebastiani

CQ Creativiquadrati snc,
via Tadino 60, Milano, Italy

http://www.creativiquadrati.it

Abstract. We report the observation of the first six months of operation
after the installation of an ERP software in a group of small Italian enter-
prises (some dealers of various products and one manufacturer). Before
the ERP, no explicit process descriptions existed within the companies:
the operations were manually performed, using office automation soft-
ware or legacy programs that were not process oriented. The new ERP
is equipped with a workflow engine, a number of standard processes that
should be followed by the users, and a tracking system that logs the main
steps of the processes. We use process mining tools to analyze the events
logged by the ERP during the sales, the purchases and the manufacture
cycles. Our aim is to 1) compare the ideal processes suggested by the
ERP with the real paths followed by the users 2) describe the eventual
adaptation of these paths, as the users became acquainted with the ERP
3) highlight critical segments in terms of time spent, iterations, etc. 4)
compare the processes of different companies that are in similar business
areas. The final goal is to get a better understanding of the processes
and a rationalization of the operations. It must be stressed that both
the ERP and the main tools used are open source, so that the process
measurement is affordable even for very small (micro) enterprises.

Keywords: Business process mining, small enterprises, open source soft-
ware, enterprise resource planning

1 Introduction

This report deals with the business process measurement in a sample of small en-
terprises in Italy. All the companies in the sample have recently adopted a new
Enterprise Resource Planning (ERP) system, that is Odoo (previously Open-
ERP), available at www.odoo.com.

The introduction of the ERP was motivated by several reasons, mainly the
necessity of replacing obsolete programs, the aim of integrating the software and
the need to gain better control of operations. One of the main motivations of
the choice of Odoo was its being an open source software.

46

The process control was not a primary goal at this stage: process design and
measurement are usually activities too expensive, both in terms of time of the
internal resources and of investment in consultancy, to be affordable for micro
enterprises. So they were simply not considered by the entrepreneurs in the set
of the realistic goals. On the other hand, processes in small enterprises are by
no means simpler than in bigger ones, and a correct process understanding and
design can be a major factor of success.

Another point that we were interested in was the companies’ adaptation to
the new ERP: although we customized the software in order to fit the users’
business habits, it was unavoidable that they had somehow to change their ways
of operating. So, in the first time of operation, we observed that they tried some
different workflows before finding the one that best fit their needs. The changes
in the processes during the first six months of operation, if any, can describe this
adaptation phase.

As the Odoo system is intrinsically based on workflows, and automatically
records many steps of the business process, it was evident that a very interesting
byproduct of the ERP usage would have been the possibility to represent the
processes as they are actually run. This can offer a number of interesting ideas
to the companies’ management.

Of course, the process representation would not have been possible without a
process mining tool; we chose PROM rel. 6.4 (available at www.processmining.
org), as it has all the capabilities we needed, and conforms to the open source
philosophy of our projects. The basic ideas upon which PROM has been designed
can be found e.g. in [1]; techniques to compute alignment between models and
event logs are included in the software, and have been used in our analysis (see
e.g. [2]).

For the preliminary data preparation we used Xesame ([3]).
The activity of process measurement aims to determine the performance of

business processes, while the process monitoring is the activity to check them
in order to discover some significant aspects (see e.g. [4]). In what follows, we
concentrate on the first, and adopt a six months period of observation. There
are also formal methods to study process adaptation and drift (see e.g. [5], [6]),
however when considering the processes adaptation we limited ourselves to a
qualitative approach.

1.1 The main process

We focused on the process of selling - delivering goods or services - invoicing,
as it is the main one for all the companies of the sample. It is also a process
that can be very complex, as customers can change their mind at several stages
(before and after confirming an order, receiving goods, receiving invoices, etc.).
Moreover it can be stopped and rescheduled several times if the goods to be
delivered are not available, or if they arrive later at the companies’ warehouses.

Three kinds of documents are involved in the process: a Sale Order (SO),
containing the list of products and services that a customer wants to buy, with
prices and payment terms; one or more delivery orders (OUT), generated by the

47

SO, with a list of products that must be taken from the warehouse and sent to
the customer; one or more invoices (INV) that are fiscal documents specifying
amounts to be paid with taxes and that can be created either from the SO or
from the OUT(s).

When only services are sold no OUT is created, therefore the process is
simpler.

We also consider the purchase process, consisting of the activity of ordering
goods to suppliers and receiving them. Two documents are created: the Purchase
Order (PO), with the list of products or services to buy; and one or more lists of
items to receive at the warehouse (IN). Finally, for one company of the sample we
also consider the manufacturing process, that is concerned with the Manufacture
Order (MO), the list of products to produce. We limit ourselves to purchases
and manufactures that are triggered by an SO, that is products are bought or
manufactured just when a customer places an order for them.

The following eventrs have been tracked for the documents described above:
SOcreate: a sales order is created by a user and is in the draft state. This is

the starting point of the whole process.
SOmail : a sale order is sent to the customer
SOconfirm: a sale order is validated and reaches the confirmed status
OUTcreate: a list of goods to deliver is created in draft status
OUTconfirm: a list of goods to deliver has been checked and confirmed by

the user
OUTwaiting : a list of goods to deliver is put in a waiting status, as something

is not available
OUTready : a list of goods to deliver is ready to be sent
OUTsent : a list of goods to deliver has been sent to the customer
OUTinvoice: a list of goods to deliver has been invoiced
OUTcancel : a list of goods to deliver has been cancelled by the user
OUTbackord : a list of goods to deliver has been partially delivered and a

back order has been created for the remaining items
OUTscrap: some items in list of goods to deliver have been marked as

scrapped
OUTnot2invoice: a list of goods to deliver has been marked not to be invoiced

(e.g. because it replaces something under warranty)
INVcreate: an invoice has been created in draft status
INVproforma: an invoice has been transformed in a pro-forma invoice
INVvalidate: an invoice has been confirmed by the user
INVcancel : an invoice has been cancelled
INVpay : an invoice has been paid
For the purchase process the events are:
POcreate: a purchase order is created in draft status
POconfirm: a purchase order has been confirmed by the user
INcreate: a list of goods to receive is created in draft status
INreceive: a list of goods has been received
INcancel : a list of goods to receive has been cancelled

48

For the manufacturing process the events are:
MOcreate: a manufacturing order is created in draft status
MOwaiting : a manufacturing order is waiting raw material
MOready : a manufacturing order is ready to produce
MOstart : a manufacturing order production started
MOdone: a manufacturing order has been produced
All the above events are defined by the ERP systems, that automatically

keeps track of their changes. The processes involving them have been mined and
are described by the Petri nets in the next sessions.

The analysis method is the following:
1 - first we load in PROM the event log extracted by the Odoo database and

preprocessed with Xesame
2 - we then take note of the main statistics of the complete log
3 - then we filter the cases in order to obtain cases that can be considered

complete by a business point of view, e.g. cases that have been invoiced and
paid, or, if not, that have been closed in some other reasonable way due to an
agreement with the customer or else that can be analyzed as they have completed
a definite section of the process

4 - next we build a model in Petri net format of the process as the company
intends it

5 - at this stage we compare the filtered log to the model and draw consid-
erations about its conformance and the general performance of the system

6 - we also analyze the filtered log to find users’ behavioural patterns, e.g. if
specific users are concerned with specific actions, or if some users tend to pass
activities to others

7 - we again filter the log keeping only the cases started in the first month
of operation, then those started in the last two months considered and repeat
steps 5 and 6 on both sets

2 The cases

2.1 The sample companies

Our sample consists of six small Italian enterprises, that were observed during
the first six months of their operations after the ERP implementation. We will
use two digit codes to label them and we will group them according to their
main business models:

1) Sale of goods that are kept in stock. Sample 01 (professional equipment
and spare parts) and in part sample 06 (electromechanical devices) belong to
this group.

2) Repair of customers’ devices. Samples 02 and 03 belong to this group, both
in the building industry, even if they sometimes sell devices and spare parts to
their customers.

3) Sale of goods that are bought on the customer order and of maintenance
services. Samples 04 and 05 belong to this group (electronic devices like PCs and
telecommunication apparatus, software, etc.).

49

4) Manufacture to customer order. Sample 06 produces electromechanical
components to fulfil customer orders, and sometimes to make stock, so in part
belongs to this group and in part to group 1.

The event logs of sample enterprises are actually small, especially of samples
02 and 03; this is in part due to the fact that we chose the six months test
period and the sample enterprises before knowing exactly how they would use
the software and how many transactions they would process. Probably samples
02 and 03 are so small that it is even questionable if an ERP fits their needs.

However, as these kinds of enterprises are presently adopting ERP systems
(as open source ERP systems are available), that forces them to follow structured
processes, it is interesting to understand how they face this task.

2.2 General data

All the tracks of all the samples start with the SOcreate event, as expected.
Some general data are summarized in table 1. The first lines refer to the total
log as it is extracted from Odoo.

The second set of values refers to the log filtered keeping all the cases that
end with INVpay, INVvalidate, OUTinvoice or OUTsent. This means that the
process has been followed at least until some goods have been sent to the cus-
tomer.

Table 1. General data of the samples

01 02 03 04 05 06

Total Log
Total tracks 2151 131 35 253 330 2105
Event classes 18 11 11 22 16 26
Events in the shortest track 1 1 2 1 1 1
Events in the longest track 61 20 12 64 50 66
Average events per track 11 9 8 9 9 13
Ending with INVpay 1064 73 11 45 125 845
Ending with INVvalidate 452 38 15 55 - 611
Ending with OUTsent 376 - - - - 105

Log of completed cases
Total tracks 1908 115 27 112 207 1579
Events in the shortest track 4 7 6 5 5 6
Events in the longest track 61 20 12 64 50 66
Average events per track 11 10 10 16 12 15
Min. event classes per track 4 10 6 4 5 6
Max event classes per track 14 11 11 17 15 19
Avg event classes per track 9 10 10 9 9 11

50

2.3 The 01 business sample

The process model is represented by the Petri net in figure 1. Sale orders always
refer to products, even if some services are sold together, so at least one OUT
is expected.

We note that:
- the first steps are related to the SO; when it is confirmed, the OUT is

created
- when the OUT becomes ready, an invoice is created
- after invoice creation there may be a loop involving invoice cancelling and

creating anew
- the process of sending goods may be repeated
- the last steps are validating the invoice and receiving payments
- no purchase orders are triggered by the sale orders, because the user sells

goods that are kept in stock

SO
create

OUT
create

OUT
waiting

SO
con rm

OUT
ready

INV
create

INV
proform

INV
cancel

OUT
sent

INV
validate

INV
pay

Fig. 1. The SO-OUT-INV process model for sample 01.

Applying the 1903 completed cases log onto this model, we found deviations
mainly related to the events SOconfirm, OUTcreate, OUTwaiting, OUTready,
INVcreate, INVvalidate, INVcancel and, to a lesser extent, INVproforma. The
average throughput time is 1 month. From a time perspective, INVvalidate and
INVcancel are critical; moreover, when a proforma invoice is issued, it is found a
time lag between this event and the actual invoice. Applying only cases ending
with INVpay (1064 items), we have similar results.

51

We then filtered the log for cases starting in the first month of the period,
and found 244 tracks; and for events starting in the last two, and ending with
one of the four events already considered by the end of the period, and found
178 tracks. These filtered logs, once applied onto the model, gave similar results.
The only remarkable difference is the reduction in the average throughput time
from 2 months to about 12 days. This is undoubtedly related to a better ability
in the use of the new system and to the fact that in the first time of operation
the users were still using their old software in parallel.

The PROM software can highlight actual cases that do not follow the model,
this is useful to discuss with the users if the model has to be modified or if any
unwanted actions are being performed. For instance, 255 cases follow the path:

SOcreate - SOconfirm - INVcreate - OUTinvoice - OUTsent - INVvalidate -
INVpay

that is the invoice is created starting from the SO instead of the OUT. This
is an alternative way of operating that can be included in the model.

On the other hand, 105 cases follow the path:
SOcreate - SOconfirm - OUTcreate - OUTwaiting - OUTwaiting - OUTready

- INVcreate - OUTwaiting - OUTready - OUTsent - INVvalidate - INVpay
probably meaning that sale orders are modified later than expected, when

an OUT has already been created. There are also much more complex exam-
ples, involving multiple sequences of OUTcreate - OUTconfirm - OUTcancel -
OUTnot2invoice - OUTcreate etc.

This, in turn, can suggest the opportunity of clearer communication with the
customers, so that they can place their orders correctly at the first time.

Finally, selective filtering of the log shows that all the users are involved in
all the events, that is there is no user dedicated to a specific process section.

2.4 The 02 and 03 business samples

As 03 is a spin off of 02, these two samples are quite similar. Both the companies
are very small and almost all the transactions were recorded by a single user, so
a general uniformity of behaviour is found in the data.

The process model for both 02 and 03 is represented by the Petri net in figure
2. Sale orders refer always to products, even if some services are sold together,
so at least one OUT is expected.

We note that in contrast with the 01 process, no loops are considered in this
model.

Applying the log of completed cases of sample 02 (115 cases) and of sample
03 (27 cases) onto this model, we found deviations mainly related to the event
INVcreate only. The average throughput time is 2.3 months for sample 02 and
1.35 for sample 03. From a time perspective, the main critical event for both
samples is INVpay; this probably reflects a commercial issue and is not related to
the process complexity. For sample 03 also OUTready is critical, whose average
throughput time is 20 days; this probably reflects the fact that the company
business mainly consists of fixing customers’ devices, so when something arrives

52

SO
create

SO
con�rm

OUT
create

OUT
con�rm

OUT
ready

OUT
sent

OUT
invoice

INV
create

INV
validate

INV
pay

Fig. 2. The SO-OUT-INV process model for samples 02 and 03.

at their warehouse, time is needed to repair it before it can be sent back to the
customer.

The filtered logs of sample 02 for cases starting in the first month and in the
last two months, once applied onto the model, gave similar results.

As the cases are very few for sample 03 we did not compare the first months
to the last ones.

Although the model is quite linear, the analysis of tracks highlighted some
cases comprising loops and some degrees of complexity. Their number, however,
was so low that they can be considered exceptional cases more than an indication
of a more complex process. An example with multiple OUT and INV processing
is shown in figure 3. Here an OUT can be cancelled after being confirmed and
declared ready, and even when the invoicing process has started, by a manual
action that has been represented as an ”invisible” task (see e.g. [7]), so that
it must be created again. Multiple invoices are created, one just after the SO
confirmation, and others after sending goods.

2.5 The 04 and 05 business samples

In both samples, sales are of two different kinds: sometimes the user sells devices
and equipment, that originate physical movement of goods (OUTs) and purchase
orders; other times they sell services, e.g. assistance contracts, that do not imply
any OUT. Moreover they manage assistance agreements with their customers,
that have a single sale order and several invoices to be paid e.g. quarterly, so it

53

SO
create

SO
con rm

OUT
con rm

OUT
invoice

INV
create

OUT
con rm

OUT
ready

OUT
sent

INV
validate

INV
pay

Fig. 3. A complex case of sample 02.

can happen that payment is not found as the last event in many recorded cases.
The users usually buy products when a SO is received, so the PO process is
triggered.

For both samples two business process models are found: for sample 04, 124
cases involve some physical products and 129 services only, for sample 05, 177
cases involve some physical products and 153 services only.

For 04 the filtered log of complete cases contains 58 cases involving products
and 54 service cases.

For 05 the filtered log of complete cases contains 92 cases involving products
and 115 service cases. Moreover 91 cases end with the SOmail event, that is they
are quotations that the customers did not accept.

The first process is represented by the Petri net in figure 4 and the second
in figure 5.

We note that for the first process:

- the first steps are related to the SO; when it is confirmed a PO is created

- when the PO is confirmed, an IN is created waiting for the purchased
products; when products are received the OUT becomes ready

- after sending the OUT the invoice is created, validated and paid

- there can be change requests before invoice validation, that restart the
process modifying the OUT

For the second process:

- the first steps are related to the SO; when it is confirmed an INV is created

54

- after invoice creation there is a loop involving invoice cancelling and creating
anew, or receiving a payment and creating a new invoice

SO
create

OUT
create

OUT
waiting

PO
create

PO
con rm

IN
create

IN
received

OUT
ready

OUT
sent

INV
create

INV
cancel

INV
validate

INV
pay

SO
con rm

Fig. 4. The SO-PO-OUT-INV process model for products of samples 04 and 05.

Applying the cases log onto these models, we did not find significant devia-
tions. For the product process of sample 04 the average throughput time is 1.4
months and for sample 05 it is 1.8 months. From a time perspective, no specific
events are critical.

For the service process of sample 04 the average throughput time is 2.7
months. From a time perspective, INVcreate is critical; however, as these kind
of sales involve long periods this could be a characteristic of the business (an
invoice being issued quarterly in most cases).

For the service process of sample 05 the average throughput time is 1.7
months. From a time perspective, no specific events are critical. The logs are in
good agreement with the model.

As the cases of sample 04 are very few, we did not compare the first month
to the last ones.

For sample 05 comparing cases of first month to the last two, we found that
in the first month the average throughput time was higher (2.45 months instead
of 11 days for products and 2.5 months instead of 10 days for services).

Finally, selective filtering of the log shows that in sample 04 all the users
are involved in all the events, moreover a single user was involved in about two
thirds of the cases.

55

SO
create

SO
mail

SO
con rm

INV
create

INV
validate INV

pay

INV
cancel

Fig. 5. The SO-INV process model for services of samples 04 and 05.

In sample 05 all the users are involved in the SO and OUT processing, but
only 3 in invoicing and 2 in purchasing.

2.6 The 06 business sample

The user manufactures products both for keeping stock and to fulfil specific sale
orders, so the MO process is triggered by an SO for some products. Most sales
involve products, although 179 service SO have been found.

The filtered log of complete cases contains 441 cases involving products specif-
ically manufactured for the SO and 1138 cases involving products taken from
the warehouse.

The first process is represented by the Petri net in figure 6, while the second
is similar to the one already analyzed in figure 1.

We note that for the first process:
- the first steps are related to the SO; when it is confirmed a MO is created
- when the MO is done, the OUT becomes ready
- after sending the OUT the invoice follows its usual process
Applying the cases log onto these models, we did not find significant devia-

tions. For the first process the average throughput time is 3.1 months. This long
time is probably due to customers placing their orders even months in advance.
From a time perspective, the only event that needs further analysis is the MOre-
ady as it is sometimes delayed for lack of raw materials, or sometimes due to an
agreement with the customer about the delivery date. The main deviations from

56

SO
create

SO
con rm

OUT
create

OUT
waiting

MO
create

MO
ready

MO
waiting

MO
start

MO
done

OUT
ready

OUT
invoice

OUT
sent

INV
create

INV
validate

INV
cancel

INV
pay

Fig. 6. The SO-MO-OUT-INV process model for sample 06.

the model are cases where products are delivered in two or more shipments, and
backorders are created.

For the second process the average throughput time is 2.5 months. From
a time perspective, no specific events are critical. Some deviations from the
model are found for the events SOconfirm and OUTconfirm, probably due to
late changes to the SO requested by the customers.

Comparing the first month of operation with the last two, we found that
the main difference is a decrease in throughput time and in case length, that
probably means that the users gradually become acquainted with the system
and do not need to cancel and redo operations if not in exceptional cases.

Finally, selective filtering of the log shows that although 9 users recorded
some transactions, sales orders and invoices were usually managed by 3 users,
manufacturing by 2 others and delivering by all of them.

3 Discussion

The results of our analysis show that, in general, the processes follow the models
that the users have in mind for their ”normal” business cases. This is somewhat
in contrast with the subjective impression that the users themselves have of their
own business.

In the preliminary meetings that we had, to check if the ERP would actually
fit the companys’ needs, the users described many complex situations that could

57

arise, as if they were very common. Looking at the data, it turned out that
these are actually exceptions; it is true that they can be very involved, and can
generate time loss and dissatisfaction, but they are rarer than expected.

Although the data are too few to get exact statistics, the indication is that
criticality is related to exceptional cases and not to the average ones.

We discussed specific cases, like that of fig. 3, with the users, and found
that the main source of complexity, for all samples, consists of the customers’
requests to change their agreements at a late stage. That is, some customers
want to change their SO after confirming them, or even after they have received
the products; or they want to change the shipment or payment conditions, etc.
This means that documents must be cancelled and processed again, often with
consequences on other documents.

It is interesting that we found two different reactions to the above remarks.
Some managers told us that their goal is to be flexible, and that to fulfill their
customers requests is exactly their mission. They think that complexity is in-
herent to their job, and used the cases logs to ask new implementations to our
ERP to fit the way they run their business.

Other managers, on the contrary, realized that simpler processes are more
efficient, and decided to follow the ERP standard processes for as long as possible.
They defined some new internal rules for this, e.g. a standard time to wait
before confirming the main documents (e.g. SO). If a customer wants to change
something after, he will have to pay an extra fee for the reprocessing of the order.

4 Conclusions

We applied process mining techniques to a sample of micro enterprises, that
would not be able to consider their own processes in other ways. The main
goal of this activity is, in our opinion, to bring process design to the managers’
attention.

About our business sample, we observe that:
- processes of similar business are very similar, for instance those of sample

04 and 05, and in part also of sample 01 and 06
- in general the actual processes follow the models, and specific deviations

can be discussed with the managers to suggest new ideas; anyway they are more
often exceptional cases than variants of the models

- we did not observe process modification or adaptation in time; the main
difference between the first and last months is an increase in performance. As it
is not realistic that the business itself has quickened so much in six months, this
is probably due to an increase in the users’ familiarity with the system

- especially in the smaller samples, there are no fixed correlations between
tasks and people (everybody does everything), while bigger companies tend to
assign specific roles to the users

Finally, we note that in this analysis we used the standard events traced by
Odoo, but it is possible to trace any events that the users think could be relevant
for their business.

58

References

1. Weijters, A.J.M.M., van der Aalst, W.M.P.: Workflow Mining: Discovering Workflow
Models from Event-Based Data, in C. Dousson, F. Happner, and R. Quiniou, editors,
Proceedings of the ECAI Workshop on Knowledge Discovery and Spatial Data, 78–
84, (2002)

2. Adriansyah, A.: Aligning observed and modeled behavior, PhD Thesis. Technische
Universiteit Eindhoven, Eindhoven, The Netherlands, (2014)

3. Buijs, J.C.A.M.: Mapping Data Sources to XES in a Generic Way, Master Thesis,
Technische Uviversiteit Eindhoven, Eindhoven, The Netherlands, (2010)

4. Kueng, P., Hagen, C., Rodel, M., Seifert, S.: Business Process Monitoring and Mea-
surement in a Large Bank: Challenges and selected Approaches, In: Proceedings
of the 16th International Workshop on Database and Expert Systems Applications
(DEXA2005), IEEE Press, New York, 955–961, (2005)

5. Hallerbach, A.,Bauer, T., Reichert, M.: Capturing Variability in Business Process
Models: The Provop Approach, Journal of Software Maintenance and Evolution:
Research and Practice, 519–546, (2010)

6. Bose, R.P.J.C., van der Aalst, W.M.P., Zliobaite, I., Pechenizkiy, M.:Dealing With
Concept Drifts in Process Mining, IEEE TRANSACTIONS ON NEURAL NET-
WORKS AND LEARNING SYSTEMS, (2014)

7. Wen, L., Wang, J., Van Der Aalst, W.M.P., Huang, B., Sun, J., Mining process
models with prime invisible tasks, Data and Knowledge Engineering, vol. 69, 999–
1021, (2010).

59

Reasoning on Data-Aware Business Processes with
Constraint Logic

Maurizio Proietti and Fabrizio Smith

National Research Council, IASI ”Antonio Ruberti” - Via dei Taurini 19, 00185 Roma, Italy
{maurizio.proietti, fabrizio.smith}@iasi.cnr.it

Abstract. We propose a framework grounded in Constraint Logic Programming
for representing and reasoning about business processes from both the workflow
and data perspective. In particular, our goal is twofold: (1) define a logical lan-
guage and a formal semantics for process models where data object manipulation
and interactions with an underlying database are explicitly represented; (2) pro-
vide an effective inference mechanism that supports the combination of reasoning
services dealing with process behavior and data properties. To this end we define
a rule-based process representation coping with a relevant fragment of the popular
BPMN modeling notation, extended with annotations that model data manipula-
tion. The behavioral semantics of a process is defined as a state transition system
by following an approach similar to the Fluent Calculus, and allows us to specify
state change in terms of preconditions and effects of the enactment of activities.
Our framework provides a wide range of reasoning services, which can be per-
formed by using standard Constraint Logic Programming inference engines.

Keywords: Business Process, Constraints, Logic Programming, Analysis, Verification

1 Introduction

The penetration of Business Process (BP) Management solutions into production re-
alities is constantly growing, due to its potential for an effective support to enterprise
actors and business stakeholders along the entire BP life-cycle. In this frame, model-
ing languages such as BPMN [1] are largely adopted by the stakeholders (designers,
analysts, business men) to develop conceptual models to be used for the design and
reengineering of BPs. One of the main advantages of having a machine-processable
representation of BPs available is that it enables the automation of tasks dealing with
process analysis, simulation and verification.

However, standard process-centric approaches focus on the procedural representa-
tion of a BP as a workflow graph that specifies the planned order of operations, while
the interactions of individual operations with the underlying data layer is often left im-
plicit or abstracted away. Indeed, the automated analysis issue is addressed in the work-
flow community mainly from a control flow perspective (see, for instance, the notion
of soundness [2]), and most of the tools today available aim at verifying whether the
behavior of the modeled system enforces requirements specified without considering
the data perspective.

60

In order to provide an integrated account of the workflow and data modeling, several
approaches have been proposed both in industrial realities (e.g., [3, 4]), as well as in the
database (e.g., [5]) and workflow (e.g., [6]) research communities. A data-aware BP
representation explicitly models the manipulation of data objects operated by individual
tasks and their interactions with databases, with the aim of enabling the automated
analysis of behavioral properties of the resulting system.

In this paper we propose a logic-based framework for representing and reasoning
about data-aware BP models, where the workflow perspective, specified according to
BPMN, is enriched by annotations defining preconditions and effects of individual pro-
cess elements in terms of data objects, used to store information that is read and modi-
fied by the process enactment. We also consider the existence of an underlying database,
which can be queried during the enactment, retrieving values to be used for data object
manipulation. The behavioral semantics of a process is defined as a state transition sys-
tem by following an approach derived from the Fluent Calculus [7], and by integrating
into the framework a symbolic representation of data object values, given in terms of
arithmetic constraints over the real numbers. The proposed rule-based formalization
supports a relevant fragment of BPMN in addition to expressive data modeling, and
its grounding into Constraint Logic Programming (CLP) [8] provides a uniform and
formal framework that enables automated reasoning.

In this work we do not propose yet another business process modeling language, but
we assume a pragmatic perspective aiming at supporting process-related knowledge ex-
pressed by means of de-facto standards for BP modeling, like BPMN. To the best of our
knowledge, this is one of the first attempts to provide a formal execution semantics for
expressive BPMN workflows in the presence of data and arithmetic constraints. No-
tably, the CLP formalization directly provides an executable semantics, which enables
the implementation of analysis and verification tasks relying on established automated
reasoning methods and tools. Due to the presence of data, the state space of the modeled
systems is potentially infinite and most verification problems are undecidable. However,
the symbolic representation of data values by means of constraints achieves the termi-
nation of a number of reasoning services in many cases of practical relevance also in
the presence of an infinite state space.

The paper is organized as follows. After presenting a motivating scenario and intro-
ducing the modeling framework in Section 2, we provide a formal account of the behav-
ioral semantics in Section 3. In Section 4 we show how automated reasoning methods
developed in the field of CLP can be directly applied to perform analysis and verifi-
cation tasks. In Section 5 we present a proof-of-concept prototype, and, finally, in the
concluding section we give a critical discussion of our approach, along with directions
for future work.

2 Modeling Data-Aware Business Processes

A data-aware Business Process Schema (DAPS) is an activity workflow model, where
each task can additionally operate on data objects used to store information that is read
and modified by process enactment. In our approach, data objects are essentially re-
garded as variables, and hence at any time during execution there is a single instance

61

of a given data object that may be read or (over-)written by some activity. We consider
two main types of relationships between activities and data objects. Firstly, the enact-
ment of an activity may be guarded by a condition involving a number of data objects.
Secondly, the enactment of an activity can modify the value of a data object, hence
producing a new value, possibly related to other data objects’ values by an arithmetic
constraint over the real numbers R. We also consider the presence of a database (DB)
that can be queried during process enactment, hence retrieving values to be used for data
object manipulation. For the scope of this work, we assume that DB cannot be updated
by activity executions. Furthermore, we assume to deal with BPs whose state space,
considering the control flow only, is finite. However, since the data objects can assume
infinitely many values, the state space of the overall system is in general infinite.

Fig. 1: Example DAPS for an eProcurement Scenario

For the representation of the workflow-related perspective, we mainly refer to the BPMN
standard [1], which will be used throughout as a reference notation. We show how a
DAPS is specified by means of the example depicted in Figure 1, which deals with the
handling of a purchase order in an eProcurement scenario.

62

A DAPS consists of a set of flow elements and relations between them, and it is
associated with a unique start event (e.g., s) and a unique end event (e.g., e), which are
flow elements that represent the entry point and the exit point, respectively, of the pro-
cess. An activity is a flow element that represents a unit of work performed within the
process. It can be modeled as a task, representing an atomic activity no further decom-
posable (e.g., choose prod), or as a compound activity, representing the execution of a
sub-processes (not exemplified here). The sequencing of flow elements is specified by
the sequence flow relation (corresponding to solid arrows), and the branching/merging
of the control flow is specified by using three types of gateways: exclusive (XOR, e.g.,
x1), inclusive (OR, e.g., o1), and parallel (AND, not exemplified here).

The item flow relation (corresponding to dotted arrows) specifies that a flow ele-
ment uses as input or manipulates as output particular data objects. In our setting, the
input and output of a flow element can be enriched by declarative descriptions of pre-
conditions and effects, respectively, formulated in terms of arithmetic constraints, value
assignments (denoted by :=), and database queries (following the | symbol). For in-
stance, the task apply coupon requires (precondition) a value of item price greater than
0, while upon its execution (effect), the value of item price is decreased by the amount
of coupon. More complex effects can be specified, as in the case of choose prod, where
the values assigned to item price and item weight are retrieved by performing the con-
junctive database query product price(X ,P),weight(X ,W). Uppercase letters denote
variables, representing values not known at design-time that are introduced during the
enactment, e.g., retrieved by database queries or produced after interactions with ex-
ternal systems or users. The values that variables are allowed to assume at run-time
can be characterized in terms of arithmetic constraints, as exemplified by the payment
effect where, due to the constraint 0<X≤amount, the possible values of X after each
execution of payment range from 0 to the current value of amount (representing any
admissible paid amount). Similarly to activity preconditions, guards can be attached to
outgoing sequence flows of inclusive and exclusive gateways, as in the case of o1 and
x2. Whenever a guard is not defined, a non-deterministic behavior is assumed.

The depicted BP is started by the user log-in, which triggers the execution of the
start event leading to the initialization of the involved data objects. The user can select
a number of products, by choosing for each of them a shipment compatible with the
item weight and optionally applying a coupon, which decreases the item price. When
the amount due exceeds the plafond associated with the user, a selected product cannot
be added to the order and it is refused. In order to proceed with the shipment, the full
amount due has to be paid, possibly through several subsequent payments.

3 Formal Semantics

Now we present a formal definition of the behavioral semantics, or enactment, of a
DAPS, by following an approach derived from the Fluent Calculus, a well-known rule-
based calculus for action and change (see [7] for an introduction), which is formalized
in Logic Programming (LP). In [9] we have proposed a specialized version of the Flu-
ent Calculus, developed to specifically deal with BPs. Here, in order to cope with the
data perspective, our formalization is enhanced by using Constraint Logic Programming

63

(CLP) [8], which extends LP with constraints over specific domains and, in particular,
over the domain of the real numbers with the usual arithmetic operations.

3.1 Constraint Logic Programming

We will consider CLP programs with constraints over the set R of the real numbers. We
will denote variables by upper case letters X1,X2, . . . , while we will denote constants,
predicate and function symbols by lower case letters, a, p, f , . . . Constraints are induc-
tively defined as follows. An atomic constraint is either a formula of the form p1≥ p2
or a formula of the form p1> p2, where p1 and p2 are polynomials with real variables.
We will also use the equality ‘=’ and the inequalities ‘≤’ and ‘<’ defined in terms of
‘≥’ and ‘>’ as usual. A constraint is either true, or false, or an atomic constraint, or a
conjunction of constraints.

An atom is an atomic formula of the form p(t1, . . . , tm), where p is a predicate sym-
bol not in {≥,>} and t1, . . . , tm, with m≥0, are terms. A literal is either an atom A or
a negated atom ¬A. A goal is a (possibly empty) conjunction of atoms. A constrained
goal c∧G is a conjunction of a constraint c and a goal G. A CLP program is a finite
set of rules of the form A← c∧G (to be understood as “A if c and G”), where A is an
atom and c∧G is a constrained goal. Given a rule A← c∧G, A is the head of the rule
and c∧G is the body of the rule. A rule with empty body is called a fact. A term or a
formula is ground if no variable occurs in it.

Let TR denote the set of ground terms built from R and from the set of function
symbols in the language. An R-interpretation is an interpretation that: (i) has universe
TR, (ii) assigns to +,×,>,≥ the usual meaning in R, and (iii) is the standard Herbrand
interpretation [10] for function and predicate symbols different from +,×,>,≥. We
can identify an R-interpretation I with the set of ground atoms (with arguments in TR)
which are true in I. We write R |= ϕ if ϕ is true in every R-interpretation. A constraint
c is satisfiable if R |= ∃X1, . . . ,Xn.c, where X1, . . . ,Xn are all variables occurring in c.
A constraint c entails a constraint d, denoted c v d, if R |= ∀X1, . . . ,Xn.c→ d, where
X1, . . . ,Xn are all variables occurring in c or d. An R-model of a CLP program P is an
R-interpretation that makes true every rule of P. Every CLP program P has a least (with
respect to set inclusion) R-model, denoted M(P).

We consider the standard operational semantics of CLP programs based on resolu-
tion extended with constraint solving [8]. For reasons of simplicity we assume that no
negated atom appears in the body of a CLP rule. However, we consider negated atoms
in queries. A query has the form← c∧C, where c is a constraint and C is a conjunction
of literals. A query← c∧C succeeds if it is possible to derive from it, possibly in many
steps, a query of the form ← c′ ∧ true, where c′ is a satisfiable constraint and true is
the empty conjunction of literals. The constraint c′ is also called an answer to the query
← c∧C. As usual in CLP systems, we assume the left-to-right selection strategy of lit-
erals during resolution. A query← c∧C (finitely) fails if the set of derivations from it is
finite and no query of the form← c′∧ true, where c′ is satisfiable, is derivable. The oper-
ational semantics is sound with respect to the least model semantics in the sense that, if a
query←Q succeeds with answer c′ then M(P) |= ∀X1, . . . ,Xn.c′→Q, where X1, . . . ,Xn
are the variables occurring in c′→Q. If←Q fails then M(P) |= ∀X1, . . . ,Xn.¬Q, where
X1, . . . ,Xn are the variables occurring in Q.

64

3.2 Data-Aware BP Schema Representation

A DAPS is formally represented by a triple 〈WF,DC,DBS〉, where WF is a workflow
specification, DC (data constraints) is a specification of the preconditions and effects
of activities on data objects, and DBS is a database schema.

The workflow specification WF is a set of ground facts of the form p(a1, . . . ,an),
where a1, . . . ,an are constants denoting individual flow elements and p is a predicate
symbol representing a BPMN construct (e.g., activity, gateway, sequence flow). For in-
stance, the formal specification of the eProcurement BP in Figure 1 will contain facts
such as: bp(eProc,s,e), stating that eProc is a process starting with s and ending with
e; task(choose prod), stating that choose prod is an atomic activity within the work-
flow; exc branch(x2), stating that x2 is an exclusive branch point, i.e., a decision point;
seq(choose prod,choose ship,eProc), stating that a sequence flow relation is defined
between choose prod and choose ship in eProc.

The data constraints DC specify the way data objects are manipulated during pro-
cess enactment, by means of the following relations:

Precondition: pre(A,C,Proc), which specifies an enabling condition C that the data
objects must satisfy to enable the execution of an activity A in the process Proc;

Effect: eff(A,E,Proc), which specifies the effect expression E describing the effect on
the data objects of executing A in the process Proc;

Guard: guard(C,B,Y,Proc), which specifies a conditional sequence flow used to select
the set of successors of decision points, where the enabling condition C must hold in
order to enable the flow element Y , successor of B in the process Proc.

Enabling conditions and effect expressions are formally defined as follows. Let DO
denote the set of data objects occurring in the DAPS. An arithmetic expression is an
expression constructed from DO, (CLP) variables, real numbers, +, and×. A constraint
expression is an expression of the form a1 rel a2, where a1, a2 are arithmetic expressions
and rel ∈ {≥,>} (i.e., a constraint expression is an atomic constraint on data objects
and CLP variables). A db-query is an atom whose predicate is defined in the database
schema DBS. A data update is an expression of the form o := a, where o ∈DO and a is
an arithmetic expression. An enabling condition is the conjunction of n ≥ 0 constraint
expressions. An update condition is either a constraint expression or a db-query. An
effect expression is a pair data-updates 8 conds, where data-updates is a sequence of
data updates and conds is a conjunction of update conditions.

Returning to the eProcurement example of Section 2, a precondition associated with
the payment activity is:

pre(payment, [amount > 0]),eProc)

meaning that the task payment can be executed only if the data object amount has a
positive value. In the above example and in the sequel, both sequences and conjunctions
appearing as predicate arguments are represented using lists. The specification of the
effect associated with the choose ship activity is:

eff(choose ship, [item price := item price+P] 8
[ship price(S,P),max weight(S,W),W > item weight],eProc)

65

meaning that the effect of the execution of the task choose ship is that the value of the
data object item price is incremented by a quantity P, where P is the price of a shipment
type S and the value of item weight is below the maximum weight allowed for S.

The specification of the guard associated with the flow from x2 to refuse item is:
guard([amount+ item price>plafond],x2,refuse item,eProc)

meaning that the control flow can proceed from the gateway x2 to the refuse item task
only if the sum of the values of amount and item price exceeds the value of plafond.

The database schema DBS consists of a set of predicate symbols (with arity) repre-
senting the relations stored in the database, together with a set of formulas of the form
p(X1, . . . ,Xn)→ c, where p is a predicate symbol in the schema and c is a constraint
whose variables are among X1, . . . ,Xn, representing integrity constraints (for simplicity
we do not consider more complex integrity constraints). A database instance of DBS is
a finite set of ground facts p(a1, . . . ,an) that satisfies all formulas in DBS.

3.3 Behavioral Semantics of Data-Aware Processes

Similarly to the Fluent Calculus, we represent the state of the world as a set of fluents,
i.e., terms denoting atomic properties that hold at a given instant of time. The execu-
tion of a flow element may cause a change of state, i.e., an update of the collection of
fluents associated with it. In particular, a change of state can be determined by the ef-
fects of activities specified by DC. A fluent is represented by an expression of the form
f (a1, . . . ,an), where f is a fluent symbol and a1, . . . ,an are constants or variables. We
take a closed-world interpretation of states, that is, we assume that a fluent F holds in
a state S iff F ∈ S. Our set-based representation of states relies on the assumption that
the DAPS is safe, that is, during its enactment there are no concurrent executions of the
same flow element [2]. This assumption enforces that, in absence of data objects, the
set of states reachable by a given DAPS is finite.

We will consider the following three kinds of fluents:
– cf(E1,E2,Proc), which means that the flow element E1 has been executed and the

successor flow element E2 is waiting for execution, during the enactment of the
process Proc (cf stands for control flow);

– en(A,Proc), which means that the activity A is being executed during the enactment
of the process Proc (en stands for enacting).

– val(O,V), which means that the data object O ∈ DO has value V .
The truth value of a fluent or update condition depends on the state where it is

evaluated. For this reason we introduce the satisfaction relation holds(C,S), which holds
if C is true in the state S, where C is either a fluent or a conjunction of update conditions.
1. holds([],S)
2. holds([C|Cs],S)← holds(C,S)∧holds(Cs,S)
3. holds(p(X1, . . . ,Xn),S)← p(X1, . . . ,Xn) for every p declared in DBS
4. holds(F,S)← fluent(F)∧F ∈ S
5. holds(val(X ,V),S)← constant(X)∧V = X
6. holds(val(X ,V),S)← variable(X)∧V = X
7. holds(A1 > A2,S)←V1 >V2∧holds(val(A1,V1),S)∧holds(val(A2,V2),S)
8. holds(val(A1+A2,V),S)←V =V1+V2∧holds(val(A1,V1),S)∧holds(val(A2,V2),S)

66

Recall that in this paper we assume that the database does not change during process
enactment, and hence in Rule 3 the evaluation of the db-query p(X1, . . . ,Xn) does not
depend on the state S. Rule 4 has one instance for each kind of fluents, and a particular
instance is the following rule for retrieving the value of a data object O in a state S:
holds(val(O,V),S)← val(O,V) ∈ S. Rules 5 and 6 express the fact that the value of
logical variables and constants is independent of the state. Rules 7 and 8 are needed to
define the value of constraint expressions by structural induction. We have omitted the
rules for ≥ and ×, which are similar to rules 7 and 8, respectively.

The change of state determined by the execution of an action will be formalized
by a relation result(S1,A,S2), which holds if action A can be executed in state S1 lead-
ing to state S2. For the definition of result(S1,A,S2), we assume that an instance of
the database schema DBS is provided. We also assume that the execution of an activ-
ity has a beginning and a completion (although we do not associate a duration with
activity execution), while the other flow elements execute instantaneously. Thus, we
will consider two kinds of actions: begin(A) which starts the execution of an activity A,
and complete(E), which represents the completion of the execution of a flow element E
(possibly, an activity). The following auxiliary predicate will be used: update(S1,T,U,S2),
which holds if S2 = (S1−T)∪U , where S1,T,U, and S2 are sets of fluents.

Let us now present some of the rules that define the behavioral semantics of a DAPS.
The state change determined by the execution of a task is defined by the following two
rules, corresponding to the start and the completion of the task, respectively:
result(S1,begin(A),S2)← task(A)∧holds(cf(X ,A,P),S1)∧pre(A,C,P)∧holds(C,S1)

∧update(S1,{cf(X ,A,P)},{en(A,P)},S2)
result(S1,complete(A),S2)← task(A)∧holds(en(A,P),S1)∧ seq(A,Y,P)

∧ eff(A,DU8C,P)∧holds(C,S)∧apply(DU,S1,S′)
∧update(S′,{en(A,P)},{cf(A,Y,P)},S2)

The first rule states that the execution of task A is started if the control flow has
reached it (holds(cf(X ,A,P),S1)) and the enabling conditions associated with it hold
in the current state (pre(A,C,P)∧ holds(C,S1)). The successor state is obtained by
asserting that the process is enacting A (update(S1,{cf(X ,A,P)},{en(A,P)},S2)). The
second rule states that the execution of task A can be completed if the update con-
ditions associated with A hold in the current state (eff(A,DU 8C,P)∧ holds(C,S)).
The successor state is obtained by applying the sequence DU of data updates, hence
updating the values of the data objects (apply(DU,S1,S′)), and moving the control
flow to the next flow element Y (update(S′,{en(A,P)},{cf(A,Y,P)},S2)). The rela-
tion apply(DU,S1,S′), meaning that state S′ is obtained from state S1 by performing the
sequence DU of data updates is defined as follows:
apply([],S,S).
apply([DU|DUs],S,T)← apply(DU,S,S′)∧apply(DUs,S′,T)
apply(O := A,S,S′)← holds(val(A,V),S)∧update(S,{val(O,X)},{val(O,V),S′})

The following two rules formalize the state changes determined by the execution of
an exclusive branch (with a guard associated with an outgoing flow) and an exclusive
merge, respectively.
result(S1,complete(B),S2)← exc branch(B)∧holds(cf(X ,B,P),S1)∧ seq(B,Y,P)

∧guard(C,B,Y,P)∧holds(C,S1)∧update(S1,{cf(X ,B,P)},{cf(B,Y,P)},S2)

67

result(S1,complete(M),S2)← exc merge(M)∧holds(cf(A,M,P),S1)∧ seq(M,Y,P)
∧update(S1,{cf(A,M,P)},{cf(M,Y,P)},S2)

Note that, in particular, in order to proceed from the exclusive branch B to the next
flow element Y , the guard C associated with the flow from B to Y should hold in the
current state (guard(C,B,Y,P)∧holds(C,S1)).

The behavioral semantics of other flow elements, e.g., parallel or inclusive gate-
ways, can be formalized by rules defined in a similar style. For lack of space we omit
those rules and we refer to [9] for more details in the simpler case where data object
manipulation (which is the main contribution of this paper) is not considered1.

The relation r(S1,S2) holds if a state S2 is immediately reachable from a state S1,
that is, some action A can be executed in state S1 leading to state S2:
r(S1,S2)← result(S1,A,S2)

We say that a state S2 is reachable from a state S1 if there is a finite, possibly empty, se-
quence of actions from S1 to S2, that is, reachable state(S1,S2) holds, where the relation
reachable state is the reflexive-transitive closure of r.

4 Reasoning Services

The formal semantics of data-aware BP schemas introduced in Section 3 is the basis for
developing automated reasoning techniques for the analysis and verification of business
processes that manipulate data objects. A major point is that our formal semantics is
a CLP program, and hence we can directly apply automated reasoning methods and
tools developed in the field of Constrained Logic Programming to perform analysis
and verification tasks. Indeed, by using standard CLP systems we are able to provide
a framework that supports several reasoning services and, in particular, in this section
we will demonstrate some of them and their use for analyzing process enactment, for
testing process executions, and for verifying behavioral properties.

Given a DAPS 〈WF,DC,DBS〉 and a database instance D of the schema DBS, let
KB be the CLP program consisting of: (1) the ground facts WF specifying the work-
flow, (2) the pre, eff, and guard facts in DC specifying the enabling conditions, effects,
and guards associated with the workflow, (3) the ground facts in D, and (4) the rules
(introduced in Section 3) that define the behavioral semantics of the DAPS.

Reasoning services will be realized by evaluating queries to the CLP program KB .
One major advantage of our approach is that query evaluation relies on a symbolic rep-
resentation of states, which often avoids the actual exploration of the whole, in general
infinite, state space, by covering that space by means of a finite set of constraints. More
specifically, a symbolic state is represented as a set of the form:
{ f1, . . . , fk,val(o1,V1), . . . ,val(om,Vm)} satisfying a constraint c on V1, . . . ,Vm.

In the above symbolic state f1, . . . , fk are ground cf or en fluents and val(o1,V1), . . . ,
val(om,Vm) are fluents that associate data objects o1, . . . ,om with their values V1, . . . ,Vm,
respectively. Thus, a symbolic state represents the, possibly infinite, set of concrete

1 The semantics presented in [9] supports the definition of unstructured workflows with arbitrary
cycles, exceptional flows, and inclusive merge points, under the safeness assumption [2].

68

states that satisfy the given constraint. We say that a symbolic state S with associated
constraint c is subsumed by another symbolic state T with associated constraint d, if S
is equal to T , modulo variable renaming, and cv d. We can often reduce the state space
by avoiding to consider symbolic states that are subsumed by previously visited ones.

4.1 Enactment

We model the enactment of a DAPS as an execution trace (corresponding to a plan in
the Fluent Calculus), i.e., a sequence of actions of the form [act(a1), . . . ,act(an)] where
act is either begin or complete.

The predicate trace(S1,T,S2,N) defined below holds if T is a sequence of actions
of maximum length N that leads from state S1 to state S2:

trace(S1, [],S2,N)← N = 0∧S1 = S2
trace(S1, [A|T],S2,N)← N > 0∧N1 = N−1∧ result(S1,A,U)∧ trace(U,T,S2,N1).

In the following we use the abbreviation s0Proc to denote the initial state of a process
Proc, where the start event of Proc is enabled to fire. Furthermore, we introduce the
following rule to characterize the set of final states, where the end event of Proc is
enabled to fire

holds(final(Proc),S)← bp(Proc,Estart,Eend)∧holds(en(Eend,Proc),S).

Our framework provides two services for analyzing process enactment, namely
trace compliance and simulation.

(1) Trace compliance is the task of verifying whether an execution trace of a process
is correct with respect to a given DAPS specification. Execution traces are commonly
stored by BP management systems as process logs, representing the evolution of the
process instances that have been enacted. Formally, a correct trace T of length N of a
process Proc is a trace that leads from the initial state to the final state of Proc, that is:

ctrace(T,Proc,N)← trace(s0Proc,T,S f ,N)∧holds(final(Proc),S f)

The compliance of a trace with respect to a given DAPS can then be verified by
evaluating a query of the form← ctrace(t, p,n) with respect to program KB , where t
is a ground list of length at most n and p is a process name. It is easy to see that such
query terminates for every ground t, as the length of the second argument of the trace
predicate decreases at each recursive call. An example of correct trace related to our
running example is reported below.

[comp(s),comp(x1),comp(o1),beg(choose prod),comp(choose prod),
beg(choose ship),comp(choose ship), comp(o2),comp(x2),beg(add item),
comp(add item),comp(x3),beg(payment),comp(payment),
comp(x4),beg(shipment),comp(shipment),comp(e)]

The trace is guaranteed to be compliant also with respect to the data constraints associ-
ated with the DAPS, even if the information about the actual values of the data objects
is not explicitly represented. A more complex representation of traces that also includes
information about the data object values can easily be defined, but we omit it for reasons
of simplicity.

69

(2) Simulation is the task of generating execution traces that represent possible process
enactments. In order to analyze the dynamic behavior of the process in various situa-
tions, the process designer can analyze test cases where: (i) data objects are initialized
to ground values in R, and (ii) a subset of the database instance D is selected. A query
of the form← trace(s0Proc,T,S,n), where T is a free variable, can be used to generate
the execution traces T of length not larger than n. The query terminates for every fixed
integer n, as the last argument of trace decreases at each recursive call, and for each
successful derivation from the query, the unification mechanism employed by CLP will
bind T to a ground list of actions. Similarly, to the case of trace compliance, we can eas-
ily extend our definitions so as to generate traces that also contain explicit information
about data values.

4.2 Symbolic Testing

Simulation is performed by selecting a finite set of test cases, that is, by fixing values for
initializing the data objects and taking into consideration a specific database instance.
However, the generation of test cases is not always straightforward. The mechanisms
of symbolic computation provided by CLP (notably, unification and constraint solving)
enable us to generate execution traces by only specifying constraints that those val-
ues are required to satisfy. Thus, we can initialize a data object to a value in a range,
rather than to a concrete value. Furthermore, we can exploit the integrity constraints in
the database schema DBS to perform a symbolic evaluation of a trace query without
considering a fixed database instance.

For instance, in our eProcurement example, we can evaluate a trace query by ini-
tializing the data object coupon to a value X with 0 < X < 10, as specified in Figure 1.
Similarly, we can initialize plafond to a value X with 0 < X < 1000. Furthermore, sup-
pose that in our running example the integrity constraints relative to product price and
ship price are:
product price(X ,P)→ P > 5∧P < 100
ship price(X ,P)→ P > 0∧P < 15.
Then we replace the database instance D in KB by the inverse implications of these
integrity constraints, that is, by the rules:
product price(X ,P)← P > 5∧P < 100
ship price(X ,P)← P > 0∧P < 15.

In general, for performing a symbolic testing task, we replace the ground facts that
constitute the database instance D in KB , by the inverse implications p(X1, . . . ,Xn)←
c of all integrity constraints p(X1, . . . ,Xn) → c specified by DBS, hence deriving a
new CLP program KB ′. Due to the least model semantics of CLP, we will have that
M(KB ′) |= p(X1, . . . ,Xn)↔ c1∧ . . .∧ck, where c1, . . . ,ck are the constraints implied by
p(X1, . . . ,Xn) in DBS. KB ′ is an over-approximation of KB , i.e., M(KB) ⊆M(KB ′).
Then we evaluate a query of the form← trace(s0Proc,T,S,n), for a given integer n. This
query always terminates and, if it succeeds and returns an answer T = t, then there
exists a database instance of DBS such that the DAPS 〈WF,DC,DBS〉 has t as a possi-
ble execution trace. The converse in not necessarily true, i.e., there may exist database
instances that do not generate the trace t.

70

KB ′ can be used to test reachability properties of the DAPS. For instance, the reach-
ability of a deadlock state in n steps can be verified trough a query of the form:

← trace(s0Proc,T,Sd ,n)∧¬r(Sd ,Sn)

If the query succeeds, then the DAPS can reach, for some database instance, a potential
deadlock state Sd and T is bound to a trace that leads to that state. If the query fails
then, for any database instance satisfying the given database schema DBS, no deadlock
is reachable in at most n steps.

In our example, two potential deadlock states are reachable by taking n = 20, both
occurring when the control flow reaches payment (i.e., holds(en(payment,eProc),Sd)).
In the first case the potential deadlock is due to a negative value of amount caused
by a coupon value higher than the price of the product chosen by choose prod, which
prevents the execution of payment. Indeed, the following constraint associated with Sd
is computed as an answer to the above query:

Vamount <0 ∧ Vitem price<0 ∧ Vcoupon>5

where Vo is the logical variable associated to the data object o in the state Sd through
the fluent val (i.e., holds(val(o,Vo),Sd)). In the second case we have that the following
constraint associated with Sd is computed as another answer to the above query:

Vamount =0 ∧ Vitem price<Vplafond<115

Here the potential deadlock is due to a value of item price that exceeds the plafond
granted to the user. For this reason, no item is added to the order, causing a zero value
amount and preventing the execution of payment.

In order to prevent the above potential deadlocks it is sufficient to fix different ranges
for the data objects plafond and coupon that make the two constraints unsatisfiable, e.g.,
0 < coupon≤5 and 115≤plafond<1000. In this way, the lowest plafond always covers
the purchase of at least one product, and the highest coupon cannot exceed the price of
any product.

4.3 Verification

Verification aims at checking whether a temporal property holds for all enactments of a
given DAPS. Unlike the trace conformance, simulation, and symbolic testing tasks, for
verification we do not assume a bounded trace length. Thus, due to the presence of data
objects with values in R and arbitrary, unstructured workflow graphs, the state space is
infinite. Most verification problems, and in particular reachability, are undecidable in
this setting. However, since we encode verification tasks as CLP queries, whose eval-
uation is based on a symbolic representation of states, by applying state subsumption
we can avoid the actual exploration of the whole state space and terminate in many
concrete verification examples.

(1) A very relevant behavioral property of a DAPS p is that, from any reachable state, it
is possible to complete the process, i.e., reach the final state. This property, also known
as option to complete [2], holds if the following query fails:

← reachable state(s0p,S)∧¬reachable final(S)

where reachable final(S) holds if a final state can be reached from S, i.e.,

71

reachable final(S)← reachable state(S,S f)∧holds(final(p),S f)
In our running example, modified as suggested at the end of Section 4.2, the above

query fails, hence enforcing the option to complete property.

(2) Another property that may reveal potential flaws in a DAPS is executability [11],
according to which no activity reached by the control flow should be unable to exe-
cute due to some unsatisfied enabling condition. In our framework we can verify non-
executability by the following query, which succeeds if it can be reached a state where
some activity A is waiting for execution but its precondition is not enforced.

← reachable state(s0p,S)∧holds(cf(A1,A, p),S)∧activity(A)
∧pre(C,A, p)∧¬holds(C,S)

In our running example we have a case of non-executability whenever apply coupon
and choose prod are both scheduled for execution after o1, according to the inclusive
gateways semantics. In this case, since apply coupon requires a value of item price
greater than 0, it will not begin its execution until the completion of apply coupon.

(3) Temporal queries can also be used for the verification of compliance rules, i.e.,
directives expressing internal policies and regulations aimed at specifying the way an
enterprise operates. We report below two such compliance rules related to our running
example. The first one requires that in any possible enactment the amount never reaches
a negative value. The following query succeeds if it is possible to reach a state of the
process where amount<0.

← reachable state(s0eProc,S)∧holds(amount<0,S)

In our running example, modified to avoid deadlock as indicated at the end of Sec-
tion 4.2, this query fails, thus enforcing the compliance rule.

A second example is a compliance rule requiring that it is possible to add an item to
the order after the payment of part of the due amount. This property is encoded by the
following query, which succeeds in our running example.

← reachable state(s0eProc,S1)∧holds(en(payment,eProc),S1)
∧ reachable state(S1,S2)∧holds(en(add item,eProc),S2)

5 Implementation

We implemented the proposed framework in a proof-of-concept tool, extending the sys-
tem discussed in [12, 9]. This extension provides an integrated environment to: i) edit
BPs using the graphical BPMN editor shown in Figure 1, ii) annotate BP elements in
terms of preconditions, effects, and guards iii) translate the annotated BPs into Con-
straint Logic Programming, and iv) handle the communication with an underlying in-
ference engine that compiles the CLP program representing the DAPS and performs
reasoning services through the querying mechanism.

The inference engine is built upon SWI Prolog2 and is based on a suitable encoding
of the set KB of rules defined in Section 4. The constraints are handled by the built-in
SWI solver for equality and inequality constraints over the reals. While the translation

2 http://www.swi-prolog.org/

72

of KB is straightforward, additional considerations are needed when dealing with the
evaluation of queries that involve state reachability (i.e., the relation reachable state).
Indeed, similarly to many other Prolog engines, SWI generates derivations from a query
by using a depth-first search strategy that never looks at the queries derived before the
current one. For this reason query evaluation may enter an infinite loop in the presence
of recursive rules. To mitigate this difficulty, at least partially, the definition of the pred-
icate reachable state (reported below) has been implemented through memoing [13],
i.e., a strategy for storing intermediate results and avoiding to prove sub-goals more
than once.

reachable state(X,X).
reachable state(X,Z) :-

result(X, ,Y),
constrained state(Y,cs(Y1,CY)),
\+ subsumed by visited(cs(Y1,CY)),
assert(visited(cs(Y1,CY))),
reachable state(Y,Z).

where: constrained state(Y,cs(Y1,CY)) holds if Y1 is the set of fluents in Y and CY
is the constraint associated with the variables in Y; subsumed by visited(cs(Y1,CY))
holds if a fact visited(cs(W1,CW)) belongs to the program, such that Y1 is an instance
of W1 for some substitution and CW entails CY; assert(visited(cs(Y1,CY))) adds the
fact visited(cs(Y1,CY)) to the program.

Essentially, during the evaluation of a goal including a reachable state atom (i.e.,
requiring the state space exploration), for every reached state a subsumption test is
performed, in order to verify whether a state that subsumes the current one has been
already considered. If it is the case, the sub-goal fails, avoiding redundant computations.
Otherwise, the state is added to the set of the visited states and the exploration proceeds.

By exploiting this simple memoing mechanism, we were able to verify many reach-
ability properties of various versions of the eProcurement example, and in particular
all properties presented in Section 4.3, which in principle require the exploration of an
infinite state space.

6 Conclusions and Discussion

In this paper we presented a framework, grounded in Constraint Logic Programming,
for reasoning on BP models represented through a data-aware extension of the popular
BPMN notation. The behavioral semantics of a process is defined as a (possibly infinite)
state transition system by following an approach derived from the Fluent Calculus. Data
values have a symbolic representation based on arithmetic constraints, which allow us
to specify data objects manipulations and database interactions in terms of precondi-
tions and effects of the enactment of activities. We discussed the reasoning tasks the
framework enables, dealing with enactment, testing and verification, and how they can
be implemented through CLP engines.

Our work is related to a growing stream of research ([14–17]) dealing with an
integrated view of the process and data perspective in BP modeling and verification

73

(see, e.g., [5] for a survey). In [14] decidability and complexity results are provided
for the verification of artifact-systems, specified according to a variant of the artifact-
centric model introduced by IBM [3, 4] and extended with data dependencies and arith-
metic. The main result is the identification of classes of decidable and tractable artifact-
systems, under particular restrictions on the interactions between control flow and ar-
tifacts. In [15] Data-Centric Dynamic Systems are introduced, through a formalism
whose expressive power is equivalent to artifact-centric models, where arithmetic con-
straints among data objects are not explicitly addressed. Here, a process is described in
terms of condition-action rules and the data layer is a relational database that is updated
by actions execution. The verification of temporal properties given µ-calculus variants
is addressed, and some decidability and computational complexity results are provided.
With respect to the above works, our objective is more pragmatic, in that our formaliza-
tion enables the implementation of a number of reasoning services by taking advantage
of CLP engines specifically designed to deal with constraint solving. Since we do not
pose any restrictions on the procedural description of processes, directly corresponding
to BPMN diagrams, nor to data manipulation, in our setting verification is in general
undecidable. However, by considering process runs of bounded length, many tasks with
a practical relevance terminate, in particular when related to simulation and testing.

Several approaches have been recently proposed in the workflow community to take
into account process data, extending consolidated results originally conceived for deal-
ing with control-flow only. Among them, some related problems addressed in literature
concern: run-time support for the enactment of data-aware process models [18]; verifi-
cation of workflow models where the data-flow is also represented [19]; conformance
checking of the execution logs of a BP with respect to its modeled behavior [20]. In
contrast, we focus on a logic-based formalization of data-aware BPs to enable static
analysis tasks in the presence of arithmetic constraints and data dependencies.

Finally, other approaches based on LP that are worth mentioning are [17, 16]. In [17]
it is discussed a formalization of constraints dealing with the data-flow perspective,
designed to extend declarative workflow specifications. The framework is grounded
in the Event Calculus, and its LP implementation is intended to address a-posteriori
analysis of process logs and runtime monitoring. In [16] it is presented an approach to
BP verification based on an extension of answer set programming with temporal logic
and constraints, where the compliance of business rules is checked by bounded model
checking techniques extended with constraint solving for dealing with conditions on
numeric data. With respect to our setting, the framework assumes finite domains for
variables besides several restrictions on the workflow, resulting in a less expressive
(decidable) language, whose verification can be reduced to finite-state analysis.

The preliminary results presented in this paper open up several directions for future
research. First of all, we plan to push forward the empirical evaluation of our proposal
in each application scenario reported in Section 4. To this end, a relevant aspect to be
further elaborated regards the adoption of program optimization techniques to enhance
the performances of the reasoning approach. On a more theoretical perspective, we are
investigating the class of BPs for which a symbolic finite-state space can be computed,
in order to characterize the decidability and complexity of temporal verification tasks.

74

References

1. OMG: Business Process Model and Notation. http://www.omg.org/spec/BPMN/2.0 (2011)
2. van der Aalst, W.M.P.: The application of Petri nets to workflow management. Journal of

Circuits, Systems, and Computers 8(1) (1998) 21–66
3. Nigam, A., Caswell, N.S.: Business artifacts: An approach to operational specification. IBM

Syst. J. 42(3) (July 2003) 428–445
4. Hull, R.: Artifact-centric business process models: Brief survey of research results and chal-

lenges. In: On the Move to Meaningful Internet Systems: OTM 2008, Part II. Volume 5332
of LNCS. Springer (2008) 1152–1163

5. Calvanese, D., De Giacomo, G., Montali, M.: Foundations of data-aware process analysis:
A database theory perspective. In: Proceedings of the 32nd Symposium on Principles of
Database Systems. PODS ’13, ACM (2013) 1–12

6. van der Aalst, W., Weske, M.: Case handling: A new paradigm for business process support.
Data Knowl. Eng. 53(2) (2005) 129–162

7. Thielscher, M.: Introduction to the Fluent Calculus. Electron. Trans. Artif. Intell. 2 (1998)
179–192

8. Jaffar, J., Maher, M.: Constraint logic programming: A survey. Journal of Logic Program-
ming 19/20 (1994) 503–581

9. Smith, F., Proietti, M.: Rule-based behavioral reasoning on semantic business processes. In:
Proceedings of the 5th Int. Conf. on Agents and Artificial Intelligence, Volume II, SciTePress
(2013) 130–143

10. Lloyd, J.W.: Foundations of logic programming. Springer-Verlag New York, Inc. (1987)
11. Weber, I., Hoffmann, J., Mendling, J.: Beyond soundness: On the verification of semantic

business process models. Distrib. Parallel Databases 27 (2010) 271–343
12. Smith, F., Missikoff, M., Proietti, M.: Ontology-Based Querying of Composite Services. In:

Business System Management and Engineering. Volume 7350 of LNCS. Springer (2010)
159–180

13. Dietrich, S., Fan, C.: On the completeness of naive memoing in Prolog. New Generation
Computing 15(2) (1997) 141–162

14. Damaggio, E., Deutsch, A., Vianu, V.: Artifact systems with data dependencies and arith-
metic. ACM Trans. Database Syst. 37(3) (September 2012) 22:1–22:36

15. Bagheri Hariri, B., Calvanese, D., De Giacomo, G., Deutsch, A., Montali, M.: Verification of
relational data-centric dynamic systems with external services. In: Proceedings of the 32nd
Symposium on Principles of Database Systems. PODS ’13, ACM (2013) 163–174

16. Giordano, L., Martelli, A., Spiotta, M., Dupré, D.T.: Business process verification with
constraint temporal answer set programming. TPLP 13(4-5) (2013) 641–655

17. Montali, M., Chesani, F., Mello, P., Maggi, F.M.: Towards data-aware constraints in Declare.
In: Proceedings of the 28th Annual ACM Symposium on Applied Computing. SAC ’13,
ACM (2013) 1391–1396

18. Meyer, A., Pufahl, L., Fahland, D., Weske, M.: Modeling and enacting complex data depen-
dencies in business processes. In: Proceedings of 11th International Conference on Business
Process Management, BPM 2013. Volume 8094 of LNCS. Springer (2013) 171–186

19. Sidorova, N., Stahl, C., Trcka, N.: Soundness verification for conceptual workflow nets with
data: Early detection of errors with the most precision possible. Inf. Syst. 36(7) (2011)
1026–1043

20. de Leoni, M., van der Aalst, W.M.P.: Aligning event logs and process models for multi-
perspective conformance checking: An approach based on integer linear programming. In:
Proceedings of 11th International Conference on Business Process Management, BPM 2013.
Volume 8094 of LNCS. Springer (2013) 113–129

75

CoPrA2GO: An App for Coding Collaboration Processes

Emmanuel Nowakowski

University of Innsbruck, Innsbruck, Austria
emmanuel.nowakowski@student.uibk.ac.at

Isabella Seeber

University of Innsbruck, Innsbruck, Austria
isabella.seeber@uibk.ac.at

Ronald Maier

University of Innsbruck, Innsbruck, Austria
ronald.maier@uibk.ac.at

Fulvio Frati

Università degli Studi di Milano, Milan, Italy
fulvio.frati@unimi.it

Abstract. Organizations seek ways how to support teams in their communication
but face challenges how to make communication processes measurable and visi-
ble. Past communication research came up with numerous interaction coding sys-
tems enabling the analysis of communication. However, today we see only few
applications in research and practice due to the labor-intensive effort connected
to coding and analysis. This paper addresses this problem and introduces the iPad
application CoPrA2GO that strives to make the coding and analysis of commu-
nication more convenient and applicable for researchers and practitioners. A user
acceptance test was conducted involving 4 IS graduate students coding 23 team
meetings in real-time. Our findings suggest that CoPrA2GO is useful for coding
communication in real-time and providing feedback immediately after meetings.

Keywords: communication analysis, CoPrA, real-time, CoPrA2GO, team per-
formance

1 Introduction

Worldwide organizational structures have been transformed from work organized
around individual jobs to team-based work structures [1]. The transformation is mainly
attributed to pressures created by increasing global consolidation, innovation, and com-
petition. There is a need for more rapid, adaptive, and flexible responses to overcome

76

these pressures [2]. Additionally, problems are more and more complex, so that no sin-
gle individual has enough influence, resources, or expertise to solve the problem alone.
Therefore, team collaboration has become an omnipresent feature of organizational life
[3]. Given this, it is important for organizations that teams work effectively. According
to Pentland [4] it is possible to predict a team's success by looking at communication
data generated during collaboration. This stream of research recommends automated
ways of gathering and analyzing communication by e.g., calculating the frequency of
interaction exchanges [4]. Yet, it is not adequate to capture the meaning of communi-
cation. Several interaction analysis approaches [e.g., 5, 7, 8, and 9] have been suggested
to gather and analyze communication and its content. All of these approaches require
the manual creation of communication logs to deduce the meaning of communication
[7, 8, and 9]. Interaction coding systems such as IPA [8], SYMLOG [16], DFCS [9],
and TEMPO [15] are usually independent of software tools and consequently additional
information in relation to the communication act such as timestamp or name of the team
member needs to be included by hand. For further analysis additional extra human ma-
nipulation is required to transfer communication logs into tools for analysis to calculate,
e.g., depth or breadth of discussions and participation. Consequently, researchers and
practitioners are faced with labor-intensive and time-consuming efforts to analyze team
communication [5]. Better methods are needed that allow analyzing team behavior and
team performance in a discreet, flexible and real-time manner [10, 11].

This paper strives to contribute to this call for better methods and presents a design
artifact, which enables IT-supported coding of communication. This design artifact is
implemented as an iPad application, named CoPrA2GO, which adopts a range of com-
munication acts as defined in the COllaboration PRocess Analysis (CoPrA) technique
[5]. The app allows for real-time coding of communication and is interfaced with the
CoPrA Tool [12] for process analysis. We evaluated the usefulness of the tool by con-
ducting a laboratory experiment in which four IS graduate students coded communica-
tion of 23 teams working on a decision-making task in real-time. The coders were in-
terviewed in a subsequent focus group interview to gain insights into their experience
with using the tool. The following three research questions were stated to assess the
acceptability of the tool: (1) For which purpose is CoPrA2GO used?, (2) What makes
CoPrA2GO useable?, and (3) In which settings could CoPrA2GO be used?.

The paper is structured as follows. Section 2 provides the background on team ef-
fectiveness and communication coding. Section 3 introduces the CoPrA2GO function-
ality. Section 4 describes the laboratory experiment and the focus group interview in
which the application was tested for user acceptance. Section 5 reports the results of
the CoPrA2GO user acceptance test. Finally, Section 6 and 7 contain our discussion
and conclusion.

2 Background

Teams gain more and more importance and so does measuring team effectiveness [2,
3]. According to Cohen and Bailey [13] effectiveness can be measured along three di-

77

mensions comprising performance outcomes (e.g. productivity, response times, inno-
vation), behavioral outcomes (e.g. turnover, absence, safety), and member attitudes
(e.g. commitment, employee satisfaction, trust in management). Team performance is
context specific, which makes it difficult to define criteria that are generalizable to other
teams, the organization or even beyond [6]. In this paper, team effectiveness is primar-
ily based on team performance composites, which are shaped by team behavior patterns
evolving through social interaction. Firstly, because it is considered as important in
organizational behavior and human resource management literature [14]. Secondly, be-
cause it is observable with the help of automated tools, and thirdly, because we need
better measurement of factors influencing team effectiveness [11].

For the automated analysis of team performance based on communication, Pentland
[4] proposed a composite of three performance criteria that he refers to as energy, en-
gagement and exploration. Where energy denotes the individual participation in the
team, engagement the communication of team members within the team, and explora-
tion the communication of team members with other teams. Additionally, Pentland [4]
states that the most important factor for high performing teams is the balance between
energy and engagement.

There are long-established approaches for the analysis of team behavior based on
communication. Examples are the Interaction Protocol Analysis (IPA) [8], the Decision
Functioning Coding System (DFCS) [9], the TEMPO system [15], and the SYMLOG
methodology [16]. For these traditional approaches, the researcher first needs to tran-
scribe video and/or audiotaped communication, perform a coding procedure on the tran-
scripts, and analyze the communication logs that resulted from the previous step. Each
code describes the meaning of the underlying information [17]. The whole procedure
aims at reducing the complexity of the team’s communication to a simpler set of cate-
gories [18]. Each of the above mentioned approaches differ to a certain extent to the
kind of team behavior they can deduce. For example, the IPA framework [8] includes
categories for coordination and emotions and is, like the DFCS [9], capable of coding
task-related communication. SYMLOG [16] and TEMPO [15] are further develop-
ments of IPA [8] and allow to create team member profiles and distributions of team
behavior (for taskwork and teamwork), respectively. A further advancement in com-
munication analysis is represented by the CoPrA technique. The technique differs from
other interaction analysis methods in such sense that it puts emphasis on aggregating
communication to topics during its data preparation phase [19].

3 Artifact Description: CoPrA2Go App

The basis of our work builds upon the aforementioned CoPrA technique. The
CoPrA2GO application supports two major activities of collaboration analysis, com-
prising real-time coding of communication (data preparation) and mining patterns of
team behavior (data analysis). Its main functionality is to facilitate real-time coding of
communication. CoPrA2GO adopts the coding schema of the CoPrA technique to en-
sure compatibility with the CoPrA Tool. CoPrA2GO consists of five screens, in Objec-
tive-C so-called view controllers, which guide the coder from the login screen to the

78

coding screen. During coding, the app generates an MXML file in the background,
which allows to be analyzed by the CoPrA Tool for mining team behavior patterns and
whose results are returned to the iPad screen (see Fig. 1). Please refer to [12] for more
information on the mining of team behavior patterns. The remainder of the section de-
scribes the intended use of CoPrA2GO and its interface to the CoPrA Tool.

Fig. 1. CoPrA2GO for Real-Time Analysis.

Pre-Conditions
A pre-condition of using CoPrA2GO is that any coder is familiar with the commu-

nication actions that can be used for coding communication. The code book contains
18 codes including codes such as propose idea, ask for clarification, or support idea
(see Appendix for a more detailed description). In addition, all coders need to be famil-
iar with the app interface so that the respective codes can be quickly found. This ensures
the on-the-fly interpretation of communication is possible and does not hinder the use
of CoPrA2GO by longer thinking about code meanings and location.

Observer Registration View Controller

The design goal is that the user engagement with the application is aided by a visual
representation of a meeting that looks like a physical meeting room. Therefore, the first
view controller looks like a doorplate and is the entrance to the room. The coder has to
register by entering their name (or a nickname) in the text field, to make it traceable

79

who coded the specific collaboration session. After the registration is finished, the coder
is able to continue to the next view controller by hitting the submit button.

Choose Table Design View Controller
In this view the coder has to choose one of four table designs. Together with the next

step, group setup view controller, the coder recreates a virtual environment that reflects
the physical setting including team members, facilitator, and meeting table. This is con-
sidered to ease the cognitive load for coding communication as the drag-and-drop of
communication acts onto team members or the facilitator on the iPad screen is similar
to their location in the physical environment.

Group Setup View Controller
After that, the coder is forwarded to the group setup view controller, used for the

MXML file generation. Here, the coder enters the names of the facilitator and the team
members for later placement in the virtual meeting room. Furthermore, the coder in-
cludes the server address of the CoPrA Tool server for sending the MXML for further
analysis. The number of team members is currently limited to six plus one facilitator.
The number of team members could be easily adapted by adjusting the underlying ar-
ray, table view, and restriction. The data collected here is saved and passed to the ob-
servation view controller.

Observation Screen View Controller
Fig. 2 depicts the observation screen in which the communication coding takes place.

We first describe the elements seen on the screen identified by 1 to 7 in Fig. 2 and then
the actions that can be coded. In particular, (1) shows the text field where the Task ID
has to be entered, (2) depicts the member labels, initially placed on the left and right
hand side of the screen, which have the names specified in the group setup view con-
troller, (3) shows the play/pause mechanism for the timer functionality, (4) depicts all
the 18 code buttons from the CoPrA code book, (5) shows the activity stream that con-
tains the last seven coded actions, (6) points out the undo and redo mechanism for the
activity stream, which has also effects on the resulting MXML file, and finally, (7)
shows the facilitator, who is guiding the team members through the collaboration ses-
sion.

To be able to start the coding procedure, the coder first has to enter the Task ID to
make communication acts assignable to a specific task. The second step is to drag-and-
drop the representations of the team members on their actual sitting position at the table.
After these steps are fulfilled, the play button for the timer, at the bottom on the left
side, has to be hit to enable the assignment of timestamps to any coded communication
action. Once the timer runs, the actual coding activity can begin.

Each code button (4) can be moved per drag-and-drop and is able to detect collisions
with the member labels. Therefore, if for example the provision button collides with
the label of member1 (2), it is logged that member1 performed, e.g., a provision action
at a specific time. Furthermore, the facilitator (7), displayed as the figure behind the
desk, has also a collision detection. After each code assignment, the activity stream (5)

80

adds the latest code assignment at the top of the list and moves the older one field below.
Additionally, with the undo and redo buttons (6) on the right side, it is possible to delete
the last performed actions, if an error occurred, or to restore the last deleted action.
Furthermore, the Task ID (1) can be changed during the coding procedure to ensure
that after a new task has started, the corresponding collaboration codes are assigned to
the correct task, e.g., evaluation or idea. That has the effect of generating a new “Pro-
cessInstance” in the MXML file. The definition of task and the corresponding Task ID
has to happen before the actual use of the application.

Fig. 2. Observation Screen View Controller.

After the collaboration session is finished, the pause button (3) has to be hit, in order
to activate the “Analyze” and “Send per Mail” buttons. This is implemented to prevent
errors, which could happen by accidentally tapping the “Analyze” button during the
coding procedure.

At the end of the coding, the coder can choose between sending the generated
MXML file per email to further analyze it by using, e.g., ProM [20], or to send it di-
rectly to the CoPrA Tool server for further analysis.

Web View Controller
This controller will be activated when the analyze option in the observation screen

view controller is chosen. At this point, the connection to the CoPrA Tool is established
and the MXML file is sent to the server for further analyses. In this controller, the coder
can choose which analysis methods to perform on the MXML files sent to the server.

1

2

3

6

5

4

2

7

81

In fact, the CoPrA Tool applies a set of predefined metrics to the communication logs
and allows the visualization of results, both in distribution and flow perspectives. The
results are then shown in the CoPrA2GO app in form of tables or graphs.

4 Method

This paper describes a design science research study reporting on the activities of the
research cycles comprising rigor cycle, design cycle, and relevance cycle [21]. In May
2014, the CoPrA2GO tool was tested in the context of a laboratory experiment at the
University of Innsbruck collecting data from 92 undergraduate students that were ran-
domly assigned to 23 teams. The collaboration task is named Norvos and represents a
decision making task. The task was adapted from an existing one and developed further
to better fit a student context. It is about a flooding that hit the city of Norvos. The goal
of collaboration is to decide on supporting measures to deal with the aftermath of the
flooding (e.g. organizing additional support of water and food, providing medical per-
sonnel and supplies, assisting in the repair of infrastructure, and supplying general
clothing and shelter). Each session was guided by one of five facilitators. In addition,
one (of four) IS graduate students joined the session as testers to evaluate CoPrA2GO
by observing team discussions and performing real-time communication coding. They
received a short training on how to use CoPrA2GO and were handed-out an adapted
version of the CoPrA code book explaining each code of a communication act. Addi-
tionally, testers were asked to write down instant feedback on "what works well", "what
does not work well", and "what catches your eye in general". After they finished their
coding, they sent the resulting MXML file per email, for backup reasons, and to the
CoPrA-Tool test-server, for analyzing it directly.

Additionally, the testers were asked to jointly reflect on their experiences in a focus
group interview about their perceptions on the usefulness of CoPrA2GO. The interview
lasted for 30 minutes, and it was videotaped and transcribed afterwards. The transcrip-
tion was analyzed by applying the coding procedure and method of Corbin et al. [22]
using ATLAS.ti [23]. This procedure consists of open, axial, and selective coding. The
goal of open coding is to break down the data analytically by an interpretive process.
This should help to gain new insights on the data and generate subcategories. The goal
of axial coding is to relate coding categories to their subcategories and to test these
relationships against the data. During this coding phase the categories are also devel-
oped further. Finally, the goal of selective coding is to unify all categories, found in the
phase before, around a central “core” category, where the core category represents the
central phenomenon of the study [22]. Additionally, the sheets for instant feedback
were matched with the interview answers to enrich them.

5 Results of the User Acceptance Test

The aim of the qualitative content analysis was to test the user acceptance of the
CoPrA2GO application on the basis of three research questions comprising (1) For
which purpose is CoPrA2GO used?, (2) What makes CoPrA2GO useable?, and (3) In

82

which settings could CoPrA2GO be used? We tested the user acceptance based on the
criteria of the technology acceptance model [26], where primarily perceived ease-of-
use and perceived usefulness lead to user acceptance of technology.

When addressing research question (1), the results show that three out of four testers
see the purpose of CoPrA2GO in providing feedback immediately after the meeting.
All of the testers agreed on its usefulness for recognizing team behavior patterns and
performing descriptive statistics. In this context, they mentioned that it is very interest-
ing to see how many ideas were generated (descriptive statistics), and which ideas got
immediately challenged or supported (team behavior patterns).

“I think that at the end you can easily see who has contributed the most. Especially,
the number of generated options of each team member. You can also see the participa-
tion of each member.” – Tester 1

“Additionally, you are able to see which option is immediately challenged or sup-
ported. Therefore, it is nice for pattern recognition.” – Tester 2

Testers also mentioned some disadvantages for using CoPrA2GO. The application
cannot compensate the reflection cycles that are common to traditional qualitative con-
tent coding. That is mainly because the traditional coding of audio or videotaped com-
munication happens at a later point in time, is not as time-pressured, and options for
discussing specific codes exists. This is believed to lead to a higher precision of coding.

“It is really fast, but it cannot be compared with manual communication coding,
because the level of detail of manual coding cannot be reached. During manual coding
you have time to think about the communication log, to discuss about the codes you
would like to apply, you are able to perform an intercoder reliability, and more. –
[CoPrA2GO] is another approach, a simpler and faster one.” – Tester 2

When addressing research question (2), the results show what aspects make
CoPrA2GO usable for real-time coding of communication in synchronous, small sized,
face-to-face settings. All testers agreed on the clear, understandable, simple, and intui-
tive interaction with the application and hence described it as an easy to use application.

“It was very easy to interact with the application, the drag-and-drop functionality
worked perfectly and the coding never failed.” – Tester 4

“[…] The application was simple to use, it was obvious what was to do, and yes, it
was very intuitive.” – Tester 1

Additionally, the testers agreed on a quick learning phase while using CoPrA2GO.
For instance, just one out of four testers had problems with using the application in the
first coding session. This could also be seen in the log file where the first session con-
sisted of 20 collaboration act entries with six codes used and the second consisted al-
ready of 167 entries with 12 codes used. Thus, he/she needed just 30 minutes to learn
how the application should be used.

“In the first session I was not used to the application and the setting, so I was just
able to code on a coarse grained level of abstraction. […] In the following sessions I
was able to code in much more detail, because I knew the setting of the experiment and
I was used to the application.” – Tester 1

83

They also mentioned that it is an interesting coding approach as the efforts inherent
to traditional coding are low. With the above outlined constraints, it represents an easy
way to code communication.

“An advantage is that you get results without the need of manually coding commu-
nication.” – Tester 4

When addressing research question (3), testers gave opinions about the setting in
which they deem CoPrA2GO as useful. The testers stated that the team’s communica-
tion needs to be well-structured. The reason for this is that there exist problems with
the real-time coding of parallel communication, when just one coder has to code the
communication of a small group. Another reason is that the communication should not
be too fast-paced, otherwise the coder is too slow to code every aspect of the collabo-
ration session.

“I think that the application is very useful in […] moderated setting, for example,
Tester 1, then Tester 3, and finally, I say a sentence.” – Tester 2

“To code a discussion after a presentation would be possible.” – Tester 4
“Yes, and a podium discussion would be a good example.” – Tester 2
“[…] But I could imagine, that in a business meeting, where real discussions hap-

pen, it could be very hard to assign the codes [with CoPrA2GO].” – Tester 2
“Yes, because there is parallel communication and discussions are too fast paced to

code for one coder. I would propose to use at least two coders for four team members,
or for every team member one real-time coder.” – Tester 4

Table 1 summarizes the results of the user acceptance test. The first column includes
the research question and the second column provides the answers to each research
question that were derived from qualitative content coding.

Table 1. Results of the User Acceptance Test

WHAT purposes is CoPrA2GO
used for?

• recognizing team behavior patterns
• providing quantitative team output statis-

tics
WHAT makes CoPrA2GO usa-
ble?

• simplicity
• easy-to-learn
• no extra manual coding
• providing feedback immediately after the

meeting
WHERE CoPrA2GO could be
used?

• well-structured communication
• little parallel communication
• limited speed of communication

84

6 Discussion and Limitations

In this paper we presented CoPrA2GO, an iPad application, for real-time communica-
tion coding, which offers the possibility to get feedback on collaboration processes im-
mediately after the session. In the previous section we presented the results of our user
acceptance test (summarized in Table 1), which will now be discussed, again structured
along the three research questions we posed in the introduction of this paper.

1. For what purposes is CoPrA2GO used?

The user acceptance test showed that the application is a tool that is mainly useful
for receiving feedback on team behavior patterns and outputs, and giving the possibility
to analyze the generated log files immediately after the meeting. This is possible be-
cause each communication act is combined with a timestamp and is stored in chrono-
logical order in the communication log, and, in particular, because CoPrA2GO is con-
nected to the CoPrA Tool [12] in the back-end. Additionally, the MXML log files have
a structure that can also be analyzed with ProM, which provides additional process
metrics that could be applied [20]. Many teams do not have the necessary communica-
tion ability to guide their team members or keep their interactions effective [24]. Feed-
back can mitigate this problem because it allows to draw the team’s attention to the task
or the group, hence, affecting behavior [25]. Additionally, it is possible to code while
being fully aware of the context of the communication and the non-verbal communica-
tion in the room, which makes it possible to gain deeper insights in the communication
than looking at a simple communication log ex-post. Additionally, CoPrA2GO could
also be used to analyze video and/or audiotaped collaboration sessions ex-post. Fur-
thermore, this ex-post approach could be used to refine an initial real-time coding.

2. What makes CoPrA2GO usable?

CoPrA2GO is usable because of its simplicity, clearness, and intuitiveness. The ap-
plication is easy-to-use and easy-to-learn, because its design is perceived as user-
friendly. Specifically, it does not allow erroneous user inputs and offers just the neces-
sary input possibilities. Furthermore, the drag-and-drop functionality is already well
established in software, like operating systems and mobile applications, which makes
the effort of getting used to it low. The quick learning process is on the one hand influ-
enced by the just mentioned user friendliness and on the other hand by the obviousness
of the application usage. Alongside this, coding happens quickly and is relatively ef-
fortless, compared to common qualitative coding practices. This is mainly due to the
reason that the coding happens on-the-fly during the meeting and is IT-supported, i.e.
CoPrA2GO. Additionally, the analysis happens at the back-end with help of the CoPrA
Tool which enables CoPrA2GO, unlike other coding systems, to run analysis immedi-
ately after coding without extra effort related to the insertion of data in spreadsheets,
conversion of log files, or switching consciously between systems.

85

3. In which settings is CoPrA2GO useful?

The results show that CoPrA2GO is especially a tool for teams having well-struc-
tured communication. There were two aspects mentioned, which could hinder the use
of the application, namely, parallel and too fast-paced communication. For this reason
there is a need of either a facilitator who moderates the collaboration session, or a self-
managed team that selects a leader to coordinate their processes. The facilitator’s job is
to manage the meeting effectively, to handle group dynamics, and to use adequate tech-
nology [27]. A facilitator may intervene into the content, process, or how technology
should be used [28]. To overcome the issues of parallel and too fast-paced communi-
cation, especially, the process facilitation part is interesting. Process facilitation helps
a team to manage and coordinate collaboration activities [29]. As a result, the structure
of the overall process is improved, for example, by agreeing on interaction routines
[28]. Furthermore, this well-structured communication is needed because, according to
Cognitive Load Theory [30], the working memory of humans is limited in capacity
when it has to process new information. Therefore, it could happen that parallel and too
fast-paced communication lead to an overload of cognitive capacity, which can result
in a decrease of the overall performance [31]. In our conducted experiment the testers
had no issues with cognitive load and, therefore, were capable of keeping up with what
was said and of using CoPrA2GO for real-time coding, which was indicated by the user
acceptance test. According to the model of technology acceptance [26] it is likely that
CoPrA2GO will find acceptance as it is perceived as useful and easy-to-use.

However, there also exist limitations that should be considered. Firstly, the applica-
tion used during the real-time coding testing scenario is just a stable prototype. Sec-
ondly, the number of testers was limited to four, which could lead to a bias in the user
acceptance test. Finally, the user acceptance test is based on a focus group interview,
where maybe additional single interviews reveal different opinions.

7 Conclusion

This paper introduced CoPrA2GO, an application suitable for real-time coding of com-
munication of small teams in face-to-face settings. The user acceptance test shed light
on the perceived purpose of the tool, in which settings it could be used and why its use
is perceived as effortless. There exist topics for future research that should be consid-
ered. Firstly, the limited code book does not allow tracking socio-emotional cues, such
as mood or specific body language. Especially during real-time coding of a collabora-
tion session, the coder has the possibility to see such behavior and assign it to a team
member. Also tracking the mood of each team member and the general mood within
the team would be an interesting addition for the analysis of team performance. This
could be done by adding a mood barometer to the application that reacts interactively
when a change in mood is coded. In fact, recent studies [32] demonstrate that it is indeed
very difficult to understand individual and team emotions. Even if it is possible to detect
emotion of an individual by analyzing video registration it is very difficult, because
these emotions are closely related to the actual context that will influence the interpre-
tation of facial and body signals and movements. Therefore, a coder who is present in

86

the collaboration session and aware of the context, is able to detect the general mood
and will help to understand also this aspect of collaboration. For this purpose, the
MXML schema would also need a revision, adding a specific tag and properties to save
mood information. Furthermore, the CoPrA Tool would need new metrics for mood
evaluation, and to combine mood with the overall team performance. Secondly, the user
acceptance test was performed in small team settings. It would be interesting to validate
the usefulness of CoPrA2GO in bigger teams. One challenge could be that a single
CoPrA2GO coder might not be able to handle the cognitive load of real-time commu-
nication coding of bigger teams.

As result the paper has implications for research and practice. On the one hand, the
paper contributes to research because CoPrA2GO represents a tool for IT-supported
communication coding with less demand on time and labor than traditional coding sys-
tem. This should benefit further advances in our research on team effectiveness and
collaboration analysis on the basis of communication. On the other hand, it contributes
to practice by providing an easy-to-learn and easy-to-use tool for real-time coding and
collaboration process feedback immediately after meetings. Consequently, it gives the
possibility to get better measurements on teamwork and team performance [11].

Appendix

Table 2. CoPrA2GO Code Book; short forms are in brackets.

Code Description
Information / Knowledge Provision
(provision)

 Occurs when someone provides clarifica-
tions for problem analysis

Information / Knowledge request
(request)

Occurs when someone asks for clarifications
of the problem analysis, or for repetition of
immediately preceding information

Option Generation – Complete
(generateOption(c))

Statements explicitly proposing a complete
or near complete solution on the basis of
parts of solutions and statements that close
the discussion on a specific idea

Option Generation – Partly
(generateOption)

Statements that provide an incomplete solu-
tion and are part of the generation and evolu-
tion of an idea

Ask Option (askOption) Occurs when someone asks for a response to
a proposed option which is part of the prob-
lem-solving task

Option Challenge (challengeOption) Occurs when someone provides criticism of
a single potential proposed idea (option) in
the problem-solving task environment

Option Support (supportOption) Occurs when someone provides support to a
proposed idea, a partly proposed option or to
a complete option by providing an argument
for the option

87

Plan Propose (proposePlan) Utterances that suggest (1) to move on in the
team process or (2) to alter the team process
by including a further team process step

Plan Support (supportPlan) Utterances that give reasoning why to sup-
port a proposition made for a process or plan
regulation

Plan Challenge (challengePlan) Utterances that give reasoning why to chal-
lenge a proposition made for a process or
plan regulation

Plan Ask (askPlan) Question utterances asking where, when,
why, who, and how should proceed with the
team process

Situation Update (situationUpdate) Statements that provide information about
what the team is currently doing, or what it is
currently happening, both on process and
task level

Situation Request
(situationRequest)

Statements that ask about what the team is
currently doing or what is currently happen-
ing with the task

Agreement / Disagreement Expressions of agreement or disagreement
with no rationale provided.

Incomplete / Filler (filler) Utterances that cannot be categorized into
one of the other categories because state-
ments are incomplete or just fillers

Non Task (nonTask) Utterances that signal joking or that are out
of the topic of the task

Not Assignable (notAssignable) In this case no communication action can be
associated to a thought unit

References

1. Lawler, E.E., Mohrman, S.A., Ledford, G.E.: Creating High Performance Organizations:
Practices and Results of Employee Involvement and Total Quality Management in Fortune
1000 Companies. Jossey-Bass, San Francisco (1995)

2. Kozlowski, S.W.J., Bell, B.S.: Work Groups and Teams in Organizations. In: Borman,
W.C., Ilgen, D.R., Klimoski, R.J. (eds.) Handbook of Psychology. Industrial and Organiza-
tional Psychology, vol. 12, pp. 333-375. Wiley-Blackwell, New York (2003)

3. De Vreede, G., Briggs, R.: Collaboration Engineering: Foundations and Opportunities. Jour-
nal of the Association for Information Systems: Editorial to the Special Issue on the Journal
of the Association of Information Systems. 10(3), 121-137 (2009)

4. Pentland, A.: The New Science of Building Great Teams. Harward Business Review. April,
60-70 (2012)

5. Seeber, I., Maier, R., Weber, B.: Macrocognition in Collaboration: Analyzing Processes of
Team Knowledge Building with CoPrA. Group Decis Negot. 22(5), 915-942 (2013)

88

6. Mathieu, J., Maynard, M. T., Rapp, T., Gilson, L.: Team Effectiveness 1997-2007: A Re-
view of Recent Advancements and a Glimpse into the Future. Journal of Management. 34(3),
410-476 (2008)

7. Keyton, J., Beck, S.J: The Influential Role of Relational Messages in Group Interaction.
Group Dynamics: Theory, Research, and Practice. 13(1), 14-30 (2009)

8. Bales, R.F.: Interaction Process Analysis: A Method for the Study of Small Groups. Addi-
son-Wesley, Oxford (1950)

9. Poole, M.S., Holmes, M.E.: Decision Development in Computer-Assisted Group Decision-
Making. Human Communication Research. 22(1), 90-127 (1995)

10. McCowan, I., Gatica-Perez, D., Bengio, S., Lathoud, G., Barnard, M., Zhang, D.: Automatic
Analysis of Multimodal Group Actions in Meetings. IEEE Transactions on Pattern Analysis
and Machine Intelligence. 27(3), 305–317 (2005)

11. Salas, E., Cooke, N. J., Rosen, M.a.: On Teams, Teamwork, and Team Performance: Dis-
coveries and Developments. Human Factors: The Journal of the Human Factors and Ergo-
nomics Society. 50(3), 540–547 (2008)

12. Frati, F., Seeber, I.: CoPrA: A tool for Coding and Measuring Communication in Teams.
2013 7th IEEE International Conference on Digital Ecosystems and Technologies (DEST).
43-48 (2013)

13. Cohen, S.G., Bailey, D.E.: What Makes Teams Work: Group Effectiveness Research from
the Shop Floor to the Executive Suite. Journal of Management. 23(3), 239-290 (1997)

14. Bommer, W.H., Johnson, J.L., Rich, G.A., Podsakoff, P.M., MacKenzie, S.B.: On the Inter-
changeability of Objective and Subjective Measures of Employee Performance. Personnel
Psychology. 48(3), 587-605 (1995)

15. Futoran, G.C., Kelly, J.R., McGrath, J.E.: TEMPO: A Time-Based System for Analysis of
Group Interaction Process. Basic and Applied Social Psychology. 10(3), 211-232 (1989)

16. Keyton, J., Wall, V.D.: Symlog: Theory and Method for Measuring Group and Organiza-
tional Communication. Management Communication Quarterly. 2(4), 544-567 (1989)

17. Myers, M.D.: Qualitative Research in Business & Management. SAGE Publications Limited
(2008)

18. Patton, M.Q.: Qualitative Evaluation and Research Methods. Sage Publication. Thousand
Oaks, California (2002)

19. Seeber, I., Maier, R., Ceravolo, P., Frati, F.: Tracing the Development of Ideas in Distrib-
uted, IT-Supported Teams during Synchronous Collaboration. Proceedings of the 22nd Eu-
ropean Conference on Information Systems. Tel Aviv, Israel. 1–17 (2014)

20. van der Aalst, W., van Dongen, B., Günther, C., Mans, R., de Medeiros, A., Rozinat, A.,
Rubin, V., Song, M., Verbeek, H., Weijters, A.: ProM 4.0: Comprehensive Support for Real
Process Analysis. Springer Verlag, Berlin (2007)

21. Hevner, A.R.: A Three Cycle View of Design Science Research. Scandinavian Journal of
Information Systems. 19(2), 87–92 (2007)

22. Corbin, J., Strauss, A., Clarke, A., Gerhardt, U., Glaser, B.: Grounded Theory Research:
Procedures, Canons and Evaluative Criteria. Qualitative Sociology. 13(1), 3-21 (1990)

23. Muhr, T., Friese, S.: User’s Manual for ATLAS.ti 5.0. ATLAS. ti Scientific Software De-
velopment GmbH. Berlin (2004).

24. Keyton, J., Beck, S. J., Beth, M.: Macrocognition: A Communication Perspective. Theoret-
ical Issues in Ergonomics Science. 11(4), 272–286 (2010)

25. Kluger, A., & DeNisi, A.: The Effects of Feedback Interventions on Performance: A Histor-
ical Review, a Meta-Analysis, and a Preliminary Feedback Intervention Theory. Psycholog-
ical Bulletin. II(2), 254–284 (1996)

89

26. Davis, F. D.: Preceived Usefulness, Perceived Ease of Use, and User Acceptance of Infor-
mation Technology. MIS Quarterly. 13(3), 319–340 (1989)

27. De Vreede, G.-J., Boonstra, J., Niederman, F.: What Is Effective GSS Facilitation? A Qual-
itative Inquiry into Participants' Perceptions. Proceedings of the 35th Annual Hawaii Inter-
national Conference on System Sciences, HICSS. 616-627 (2002)

28. Seeber, I., Maier, R., Weber, B.: Opening the Black Box of Team Processes and Emergent
States: A Literature Review and Agenda for Research on Team Facilitation. 2014 47th Ha-
waii International Conference on System Sciences. 473–482 (2014)

29. Tan, B., Wei, K.-K., Lee-Partridge, J.: Effects of Facilitation and Leadership on Meeting
Outcomes in a Group Support System Environment. European Journal of Information Sys-
tems. 8(4), 233-246 (1999)

30. Sweller, J.: Cognitive Load during Problem Solving. Cognitive Science. 12(2), 257–285
(1988)

31. Paas, F., Renkl, A., Sweller, J.: Cognitive Load Theory: Instructional Implications of the
Interaction between Information Structures and Cognitive Architecture. Instructional Sci-
ence. 32(1/2), 1–8 (2004)

32. Saneiro, M., Santos, O.C., Salmeron-Majadas, S., and Boticario J.G.: Towards Emotion De-
tection in Educational Scenarios from Facial Expressions and Body Movements through
Multimodal Approaches. The Scientific World Journal. Vol. 2014 (2014)

90

Scalable Dynamic Business Process Discovery
with the Constructs Competition Miner

David Redlich1,2, Thomas Molka1,3, Wasif Gilani1, Gordon Blair2, and Awais
Rashid2

1 SAP Research Center Belfast, United Kingdom,
[david.redlich|thomas.molka|wasif.gilani]@sap.com

2 Lancaster University, United Kingdom,
[gordon|marash]@comp.lancs.ac.uk

3 University of Manchester, United Kingdom

Abstract. Since the environment for businesses is becoming more com-
petitive by the day, business organizations have to be more adaptive to
environmental changes and are constantly in a process of optimization.
Fundamental parts of these organizations are their business processes.
Discovering and understanding the actual execution flow of the processes
deployed in organizations is an important enabler for the management,
analysis, and optimization of both, the processes and the business. This
has become increasingly difficult since business processes are now often
dynamically changing and may produce hundreds of events per second.
The basis for this paper is the Constructs Competition Miner (CCM): A
divide-and-conquer algorithm which discovers block-structured processes
from event logs possibly consisting of exceptional behaviour. In this pa-
per we propose a set of modifications for the CCM to enable scalable
dynamic business process discovery of a run-time process model from
a stream of events. We describe the different modifications and carry
out an evaluation, investigating the behaviour of the algorithm on event
streams of dynamically changing processes.

Key words: run-time models, business process management, process
mining, complex event processing, event streaming, big data

1 Introduction

The success of modern organizations has become increasingly dependent on the
efficiency and performance of their employed business processes (BPs). These
processes dictate the execution order of singular tasks to achieve certain business
goals and hence represent fundamental parts of most organizations. In the con-
text of business process management, the recent emergence of Big Data yields
new challenges, e.g. more analytical possibilities but also additional run-time
constraints. An important discipline in this area is Process Discovery: It is con-
cerned with deriving process-related information from event logs and, thus, en-
abling the business analyst to extract and understand the actual behaviour of
a business process. Even though they are now increasingly used in commercial
settings, many of the developed process discovery algorithms were designed to
work in a static fashion, e.g. as provided by the ProM framework [15], but are

91

not easily applicable for processing real-time event streams. Additionally, the
emergence of Big Data results in a new set of challenges for process discovery on
event streams, for instance [11, 16]: (1) diversity of event formats from differ-
ent sources, (2) high event frequency (e.g. thousands of events per second), and
(3) less rigid processes (e.g. BPs found on the operational level of e-Health and
security use-cases are usually subjected to frequent changes).

With the focus on addressing the latter two of these challenges, we propose
in this paper modifications for the Constructs Competition Miner (CCM) [10]
to enable Scalable Dynamic Process Discovery as proposed in [11]. The CCM
is a process discovery algorithm that follows a divide-and-conquer approach to
directly mine a block-structured process model which consists of common BP-
domain constructs and represents the main behaviour of the process. This is
achieved by calculating global relations between activities and letting different
constructs compete with each other for the most suitable solution from top to
bottom using ”soft” constraints and behaviour approximations. The CCM was
designed to deal with noise and not-supported behaviour. To apply the CCM on
event streams the algorithm was split up into two individually operating parts:

1. Run-time footprint calculation, i.e. the current footprint1, which repre-
sents the abstract ”state” of the system, is updated with occurrence of each
event. Since every occurring event constitutes a system state transition, the
algorithmic execution-time needs to be kept to a minimum.

2. Scheduled footprint interpretation, i.e. from the footprint the current
business process is discovered in a scheduled, reoccurring fashion. Since this
part is executed in a different lifecycle it has less execution-time constraints.
In this step the abstract ”computer-centric” footprint is transformed into a
”human-centric” business process representation.

The remainder of this paper provides essential background information (Sec-
tion 2), a discussion of related work (Section 3), a summarized description of the
original CCM (Section 4), the modifications that were carried out on top of the
CCM to enable Scalable Dynamic Process Discovery (Section 5), an evaluation
of the behaviour of the resulting algorithm for event streams of dynamically
changing processes (Section 6), and an outlook of future work (Section 7).

2 Background

Business Processes are an integral part of modern organizations, describing the
set of activities that need to be performed, their order of execution, and the en-
tities that execute them. Prominent BP examples are Order-to-Cash or Procure-
to-Pay. According to Ko et al. BPs are defined as ”...a series or network of value-
added activities, performed by their relevant roles or collaborators, to purposefully
achieve the common business goal” [4]. A BP is usually described by a process
model conforming to a business process standard, e.g. Business Process Model
and Notation (BPMN) [9], or Yet Another Workflow Language (YAWL) [13].
In this paper, we will focus on business processes consisting of a set of common

1 footprint is a term used in the process discovery domain, abstractly representing
existent ”behaviour” of a log, e.g. activity ”a” is followed by activity ”b”

92

control-flow elements, supported by most of the existing BP standards: start and
end events, activities (i.e. process steps), parallel gateways (AND-Split/Join),
and exclusive gateways (XOR-Split/Join) (see [9, 13]). In Figure 1 an example
process involving all the introduced elements is displayed. Formally, we define a
business process model as follows [10]:

Definition 1 A business process model is a tupel BP = (A,S, J,Es, Ee, C)
where A is a finite set of activities, S a finite set of splits, J a finite set of joins,
Es a finite set of start events, Ee a finite set of end events, and C ⊆ F × F the
path connection relation, with F = A ∪ S ∪ J ∪ Es ∪ Ee, such that

– C = {(c1, c2) ∈ F × F | c1 6= c2 ∧ c1 /∈ Ee ∧ c2 /∈ Es},
– ∀a ∈ A ∪ J ∪ Es : |{(a, b) ∈ C | b ∈ F}| = 1,
– ∀a ∈ A ∪ S ∪ Ee : |{(b, a) ∈ C | b ∈ F}| = 1,
– ∀a ∈ J : |{(b, a) ∈ C | b ∈ F}| ≥ 2,
– ∀a ∈ S : |{(a, b) ∈ C | b ∈ F}| ≥ 2, and
– all elements e ∈ F in the graph (F,C) are on a path from a start event a ∈ Es

to an end event b ∈ Ee.

For a block-structured BP model it is furthermore required that the process
is hierarchically organised [10], i.e. it consists of unique join-split-pairs, each
representing either a single entry or a single exit point of a non-sequential BP
construct, e.g. Choice, Parallel, Loop, etc. The example process in Figure 1 is a
block-structured process. A similar representation gaining popularity in recent
years is the process tree, as defined based on Petri nets/workflow nets in [5].

When a business process is automatically or semi-automatically executed
with a BP execution engine, e.g. with a Business Process Management System
(BPMS), an event log is produced, i.e. a all occurred events are logged and
stored. These logs and their contained events may capture different aspects of a
process execution, e.g. a different granularity of events are logged. In this paper
however, we only focus on a minimal set of event features: In order to allow the
discovery of the control-flow, every event is required to have a reference (1) to the
associated process instance and (2) to the corresponding activity. Furthermore,
we assume that the log contains exactly one event for each activity execution, i.e.
activity lifecycle events are not regarded. All events resulting from the execution
of the same process instance are captured in one trace. A trace is assumed to be
independent from other traces, i.e. the execution order of a process instance is
not in any way dependent on the execution of a second instance. Accordingly,
an event e is represented by a pair e = (t, a) where t ∈ N is the unique identifier
of the trace and a ∈ A is a unique reference to the executed activity.

Start
Event

End
Event

AND
Join

b

d

a

c

e

Legend

Start/End
Event

Activity

XOR
Split/ Join

AND
Split/Join

h

XOR
Join

AND
Split

AND
Split

AND
Join

XOR
Split

AND
Split

AND
Join

g f

Fig. 1. Example business process with all element types included

93

The research area of Process Discovery is concerned with the extraction of
a business process model from event logs without using any a-priori informa-
tion [17]. Conventional challenges in process discovery originate from the moti-
vation to achieve a high quality of results, i.e. discovered processes should sup-
port as accurately as possible the behaviour contained in the log. In particular
that means, process discovery algorithms have to deal with multiple objectives,
e.g. precision, simplicity, fitness - over-fitting vs. under-fitting (see [17]). Process
discovery algorithms are usually assumed to be carried out in an static way as an
”offline” method. This is reflected by the fact that the input for these algorithms
is an entire log as conceptually shown by the following definition:

Definition 2 Let the log Ln = [e0, e1, ...en] be a sequence of n+1 events ordered
by time of occurrence (∀i < j∧ei, ej ∈ Ln : time(ei) ≤ time(ej)) and BPn be the
business process model representing the behaviour in Ln, then process discovery
is defined as a function that maps a log Ln to a process BPn:

ProcessDiscovery : [e0, e1, ..., en]⇒ BPn

3 Related Work

A large number of process discovery algorithms exist, e.g. Inductive Miner [5],
HeuristicsMiner [19], alpha-miner [14] and CCM [10]. These and many algo-
rithms have in common that at first a footprint of the log is created based on
which the process is constructed. Similar to the CCM, the following related al-
gorithms also discover block-structured processes: (1) Genetic process discovery
algorithms that restrict the search space to block-structured process models,
e.g. [2]. However, these are non-deterministic and generally have a high exe-
cution time due to exponentially expanding search space. (2) Another relevant
approach that is conceptually similar to the CCM is proposed in [5], the Induc-
tive Miner (IM): A top-down approach is applied to discover block-structured
Petri nets. The original algorithm evaluates constraints based on local relation-
ships between activities in order to identify the representing construct in an
inductive fashion. In recent work, the IM has also been extended to deal with
noise [6]. Generally, in all discovery approaches based on footprints known to the
authors the footprint is represented by a direct neighbours matrix representing
information about the local relations between the activities, e.g. for the BP of
Figure 1: h can only appear directly after g or e. As discussed in Section 4 the
CCM on the other hand extracts the process from a footprint based on global
relations between activities, e.g. h appears at some point after g or e.

However, of little importance for conventional process discovery algorithms
is their practicality with regards to an application during run-time: as defined
in Definition 2 process discovery is a static method that analyses an event log
in its entirety. An alternative to this approach is the immediate processing of
events when they occur to information of an higher abstraction level in order to
enable a real-time analysis. This approach is called Complex Event Processing
(CEP): a method that deals with the event-driven behaviour of large, distributed
enterprise systems [7]. More specifically, in CEP events produced by the sys-
tems are captured, filtered, aggregated, and finally abstracted to complex events

94

representing high-level information about the situational status of the system,
e.g. performance, control-flow, etc. The need for monitoring aspects of business
processes at run-time by applying CEP methodologies has been identified by
Ammon et al., thus coining the term Event-Driven Business Process Manage-
ment (EDBPM) - a combination of two disciplines: Business Process Manage-
ment (BPM) and Complex Event Processing [1]. The dynamic process discovery
solution proposed in this paper is an application of EDBPM (see Section 5).

In the context of process discovery, an often used term for discovering pro-
cesses from event streams is Streaming Process Discovery. In [3] the Heuristic-
sMiner has been modified for this purpose by maintaining queues of fixed size
n ∈ N containing the latest n events, i.e. the queues function as a ”sliding win-
dow” over the event stream. Three different approaches of how to process these
queues to a footprint have been proposed: (1) Stationary - every queue entry
has the same weight, (2) Ageing - older entries have a decreasing weight, and
(3) Self-Adapting Ageing - the factor with which the influence of older entries
decreases is dependent on whether a concept drift2 has been detected (quickly
decreasing) or the process is assumed to be stationary (slowly decreasing). Ad-
ditionally, Lossy Counting, a technique using approximate frequency count, has
been investigated as a modification. A second approach for discovering concept
drifts on event streams is presented in [8]: an incremental discovery of declarative
process models using the stationary approach and Lossy Counting.

4 Static Constructs Competition Miner

The CCM as described in [10] is a deterministic process discovery algorithm that
operates in a static fashion and follows a divide-and-conquer approach which,
from a given event log, directly mines a block-structured process model that rep-
resents the main behaviour of the process. The CCM has the following main fea-
tures [10]: (1) A deadlock-free, block-structured business process without dupli-
cated activities is mined; (2) The following BP constructs are supported and can
be discovered for single activities: Normal, Optional, Loopover, and Loopback;
or for a set of activities: Choice, Sequence, Parallel, Loop, Loopover-Sequence,
Loopover-Choice, Loopover-Parallel (see Figure 2), and additionally all of them
as optional constructs - these are constructs supported by the majority of busi-
ness process standards like BPMN or YAWL; (3) If conflicting or exceptional
behaviour exists in the log, the CCM picks the ”best” fitting BP construct.

Algorithm 1 shows the conceptual methodology of the CCM algorithm in
pseudocode. The CCM applies the divide-and-conquer paradigm and is im-
plemented in a recursive fashion (see lines 7, 16, and 17). At the beginning
getFootprintAndBuildConstruct is initially called for all involved activities
(Am = A) with the process bp consisting of only a start and end element. The
recursive function is first creating a footprint fp from the given log L only consid-
ering the activities specified in set Am (at the beginning all involved activities).
In a next step it will be decided which is the best construct to represent the
behaviour captured by fp: (1) if the activity set Am only consists of one element,

2 A concept drift in this context is a behavioural change in the monitored process

95

AND
Split

XOR
Split

AND
Join

XOR
Join

Source Target

Source TargetA First A Second

A First

A Second

Source Target

A First

A Second

Source Target

a

XOR
Join

XOR
Split

Source Target

A First A Second

XOR
Join

XOR
Split

Source Target
XOR
Join

XOR
Split

XOR
Split

XOR
Join

A First

A Second

Source Target
XOR
Join

XOR
Split

A First

A Second

AND
Join

AND
Split

(a)tSequence

(c)tParallel

(b)tChoice

(4)tLoopback

(e)tLoop-
overt

Sequence

(f)tLoopovert
Parallel

(g)tLoopovert
Choicet
(Flower)

Source Target

a

XOR
Join

XOR
Split

(3)tLoopover

XOR
Split

XOR
Join

Source Target

a
(2)tOptional

Source Target

A First

A Second

XOR
Join

XOR
Split

(d)tLoop

Source Targeta

(1)tNormal

Fig. 2. Business Process Constructs Supported by the CCM [10]

Algorithm 1: Methodology of the CCM in Pseudocode
Data: Log L
Result: BP bp

1 begin
2 A← getSetOfAllActivitiesInLog(L);
3 BP bp ← buildInitialBPWithStartAndEnd();
4 bp ← getFootprintAndBuildConstruct(A,L, bp);
5 return bp;

6 Function getFootprintAndBuildConstruct(Am , Log L,BP bp)
7 Footprint fp = extractFootprintForActivities(Am, L);
8 if |Am| = 1 then
9 Construct c← analyseConstructForSingleActivity(fp);

10 bp ← createSingleActivityConstruct(c, Am);

11 else
12 ConstructsSuitability[] cs ← calculateSuitabilityForConstructs(fp, Am);
13 (Construct c, Afirst , Asecond) ← constructCompetition(cs, Am);
14 bp ← createBlockConstruct(c, bp);
15 bp ← getFootprintAndBuildConstruct(Afirst , L, bp);
16 bp ← getFootprintAndBuildConstruct(Asecond , L, bp);

17 return bp;

it will be decided which of the single activity constructs (see bottom of Figure 2)
fits best - the process bp will then be enriched with the new single activity con-
struct (see line 11); (2) If the activity set Am contains more than one element,
the suitability for each of the different constructs is calculated for any two activ-
ities x, y ∈ Am based on ”soft” constraints and behaviour approximations, e.g.
activities a and b are in a strong Sequence relationship. The result of this calcu-
lation (line 13) is a number of suitability matrices, one for each construct. In the
subsequent competition algorithm it is determined what is the best combination
of (A) the construct type c ∈ {Sequence,Choice,Loop, ...}, and (B) the two sub-
sets Afirst and Asecond of Am with Afirst ∪ Asecond = Am, Afirst ∩ Asecond = {},
and Afirst , Asecond 6= {}, that best accommodate all x, y-pair relations of the
corresponding matrix of construct c (line 14). The construct is then created and

96

added to the existing process model bp (line 15), e.g. XOR-split and -join if the
winning construct c was Choice. At this stage the recursive method calls will be
executed to analyse and construct the respective behaviour for the subsets Afirst

and Asecond . The split up of the set Am continues in a recursive fashion until
it cannot be divided any more, i.e. the set consists of a single activity (see case
(1)). The process is completely constructed when the top recursive call returns.

Of particular interest for the transformation of the CCM algorithm to a so-
lution for scalable dynamic process discovery is the composition of the footprint
and its calculation from the log. As opposed to many other process discovery
algorithms, e.g. alpha-miner [14], the footprint does not consist of absolute re-
lations, e.g. h is followed by a (see example in Figure 1), but instead holds
relative relation values, e.g. a is eventually followed by g in 0.4 ∼= 40% of the
traces. Furthermore, the footprint only contains global relations between activ-
ities in order to guarantee a low polynomial execution time for the footprint
interpretation [10]. The footprint of the CCM contains information about: (1)
the occurrence of each involved activities x ∈ Am, i.e. how many times x appears
at least once per trace, how many times an x appears on average per trace, and
how many times the trace started with x; (2) the global relations of each activ-
ity pair x, y ∈ Am, i.e. in how many traces x appears sometime before the first
occurrence of y in the trace, and in how many traces x appears sometime before
any occurrence of y in the trace3. All measures in the footprint are relative to
the number of traces in the log. Furthermore, not only one overall footprint is
created for the CCM but also for every subset Afirst and Asecond , that is created
during execution, a new sub-footprint is created (see Algorithm 1).

5 Dynamic Constructs Competition Miner

As established in Section 1, increasingly dynamic processes and the need for im-
mediate insight require current research in the domain of process mining to be
driven by a set of additional challenges. To address these challenges the concept
of Scalable Dynamic Process Discovery (SDPD), an interdisciplinary concept
employing principles of CEP, Process Discovery, and EDBPM, has been intro-
duced in [11]: ”SDPD describes the method of monitoring one or more BPMSs
in order to provide at any point in time a reasonably accurate representation of
the current state of the processes deployed in the systems with regards to their
control-flow, resource, and performance perspectives as well as the state of still
open traces.” That means, any potential changes in the mentioned aspects of
the processes in the system that occur during run-time have to be recognized
and reflected in the continuously updated ”current state” of the process. Due to
its purpose, for solutions of SDPD an additional set of requirements applies. For
this paper, the most relevant of them are [11]:

– Detection of Change: An SDPD solution is required to detect change in two
different levels defined in [12]: (1) Reflectivity: A change in a process instance

3 This stands in contrast to existing discovery solutions since in the CCM the foot-
print and its interpretation is not based on local relationships between activity oc-
currences, e.g. direct neighbours, but based on global relationships between them.

97

(trace), i.e. every single event represents a change in the state of the associated
trace. (2) Dynamism: A change on the business process level, e.g. because
events/traces occurred that contradicts with the currently assumed process.

– Scalability/Algorithmic Run-time: An SDPD solution is applied as CEP con-
cept and has to be able deal with large business processes operating with a
high frequency, i.e. the actual run-time of the algorithms becomes very im-
portant. Additionally, the key algorithms are required to be scalable to cope
with increasing workload at minimal possible additional computational cost.

Motivated by these challenges the initial process discovery approach was altered
to allow for dynamic process discovery. As opposed to the traditional static
methodology (see Definition 2), dynamic process discovery is an iterative ap-
proach as defined in the following:

Definition 3 Let log Ln = [e0, e1, ...en] be a sequence of n+ 1 events ordered by
time of occurrence (∀i < j ∧ ei, ej ∈ Ln : time(ei) ≤ time(ej)) and BPn be the
business process model representing the behaviour in Ln, then dynamic process
discovery is defined as a function that projects the tuple (en, BPn−1) to BPn:

DynamicProcessDiscovery : (en, BPn−1)⇒ BPn

As described in Section 4, the CCM is a static mining algorithm and has to be
modified in order to enable SDPD. The result of this modifications is called Dy-
namic CCM (DCCM). However, two restrictions for the DCCM with regards to
the previously mentioned requirements of SDPD apply: (1) instead of discovering
change on the BP perspectives control-flow, resources, and performance perspec-
tive, the DCCM described in this paper only focuses on discovering change in
the control-flow, and (2) only change on the abstraction level of Dynamism is
detected, i.e. whether or not the control-flow of the process has changed - the
detection of change on the abstraction level of Reflectivity will not be supported
by the DCCM. Additionally to the requirements of SDPD the DCCM features
the following important aspects: (1) robust : if conflicting, exceptional, or not
representable behaviour occurs in the event stream, the DCCM does not fail but
always picks the BP construct that best accommodates the recorded behaviour;
(2) deterministic: the DCCM yields the exact same output BP for the same
input stream of events.

The following modifications were applied to the default CCM to create the
DCCM and are described in more detail in the remainder of this section:

1. Splitting up the algorithm in two separate parts: one for dynamically updat-
ing the current footprint(s) complying to the scalability requirement, and
one for interpreting the footprint into a BP model which has less restrictions
with regards to its execution-time.

2. In the CCM the footprint is calculated in relation to all occurring traces.
This is not applicable for SDPD since the number of traces should not have
an influence on the execution-time of any component of an SDPD solution.
For this reason the footprint has to be calculated in a dynamic fashion, i.e.
an event-wise footprint update independent from the previously occurred
number of events or traces.

98

3. The original behaviour of the CCM to carry out a footprint calculation
for every subset that has been created by the divide-and-conquer approach
is not optimal as then the DCCM would have to extract up to 2 ∗ n + 1
different footprints if only one activity was split-up from the main set for each
recursion.4 This has been improved for the DCCM: for the most common
constructs Choice and Sequence the sub-footprints are automatically derived
from the parent footprint.

4. In rare cases it can happen that for every appearing event the state of the
process is alternating between a number of different control-flows. This is
caused by ”footprint equivalent” BP models, i.e. two models are footprint
equivalent if they both express the behaviour captured by the footprint. We
introduce a measure which favours the last control-flow state in order to
prevent the described behaviour.

5.1 Methodology of the Dynamic CCM

The original CCM algorithm had to be split up into two separate parts in or-
der to comply to the scalability requirement of SDPD. A component triggered
by the occurrence of a new event to update the dynamic footprint and a com-
ponent decoupled from the event processing which interprets the footprint into
a BP Model. The conceptual methodology of the DCCM is depicted in Fig-
ure 3. The components, models, and functionality of the DCCM are described
in the following: Events from the monitored Enterprise System, in which the
end-to-end process is deployed, are fed into an event stream. The Footprint Up-
date component is the receiver of these events and processes them directly into
changes on the overall Dynamic Footprint which represents the abstract state of
the monitored business process. If additional footprints for subsets of activities
are required as specified by the Sub-Footprint Configurations, e.g. if a Loop or
Parallel construct was identified, then these sub-footprints are also updated (or
created if they were not existent before). The Dynamic Footprint(s) can then at
any point in time be compiled to a human-centric representation of the business
process by the Footprint Interpretation component, i.e. the abstract footprint
representation is interpreted into knowledge conforming to a block-structured
BP model. In the DCCM this interpretation is scheduled dependent on how
many new completed traces appeared, e.g. the footprint interpretation is exe-
cuted once every 10 terminated traces. If the interpretation frequency m ∈ N of
the DCCM is set to 1 a footprint interpretation is executed for every single trace
that terminated. The Footprint Interpretation algorithm works similar to the
CCM algorithm shown in Algorithm 1; but instead of extracting footprints from
a log (line 8), the modified algorithm requests the readily available Dynamic
Footprint(s). If a sub-footprint is not yet available (e.g. at the beginning or if
the process changed) the Footprint Interpretation specifies the request for a sub-
footprint in the Sub-Footprint Configurations in the fashion of a feedback loop.

4 e.g. for A = {a, b, c, d} : (a, b, c, d) → ((a, b, c), (d)) → (((a), (b, c)), (d)) →
(((a), ((b), (c))), (d)), seven different footprints for sets {a, b, c, d}, {a, b, c}, {b, c}, {a},
{b}, {c}, {d} need to be created - (,) denote the nested blocks that emerge while
splitting the sets recursively.

99

Run-Time
Event

Processing

Events
Footprint

Interpretation
Footprint
Update

Dynamic
Footprint

Sub-
Footprint
Configs.

Business Process
Model

Enterprise
System

Scheduled
Process

Discovery

Eve
n

t Stre
am

Fig. 3. Conceptual Methodology of the Dynamic CCM

Thus, Sub-Footprint Configurations and Dynamic Footprints act as interfaces
between the two components, Footprint Update and Footprint Interpretation.
The Footprint Interpretation cannot continue to analyse the subsets if no sub-
footprint for these exist yet. In this case, usually occurring in the warm-up or
transition phase, an intermediate BP model is created with activities containing
all elements of the unresolved sets as depicted in Figure 4.

Start
Event

End
Event

[e, f, g, h]

XOR
Join

XOR
Split

[a, b, c, d]

Fig. 4. Result of the Footprint Interpretation on an event stream produced by the
example from Figure 1 if no sub-footprints for {a, b, c, d} and {e, f, g, h} are available
yet - only the top-level loop has been discovered

5.2 Run-time Update of the Dynamic Footprint

The Footprint Update component processes events to changes in the Dynamic
Footprint, i.e. updates the abstract representation of the process state. The orig-
inal footprint extraction of the CCM algorithm calculates all values in relation
to the number of occurred traces, i.e. every trace’s influence on the footprint is
equal: 1

|traces| . To comply to the scalability requirement of SDPD the footprint

update calculation should only take a fixed amount of time, independent from
the total number of previously occurred events or traces. An increase of the
total number of involved activities can cause, however, a linear increase of the
execution-time due to the recalculation of the relations between the occurred
activity and, in the worst case, all other activities. The independence from pre-
vious traces is the reason the footprint is calculated in a dynamic fashion, i.e.
the dynamic footprint is incrementally updated in a way that older events ”age”
and thus have less influence than more recent events.

The ageing approach that is utilized in the Footprint Update of the DCCM
is the creation of an individual trace footprint5 (TFP) for each trace and
add it multiplied by the trace influence factor tif ∈ R to the current dy-
namic overall footprint (DFP) multiplied by 1 − tif , e.g. for tif = 0.01:

5 the occurrence values for activities as well as the global relations (see end of Sec-
tion 4) are represented in the trace footprint by absolute statements true ≡ 1 if it
occurred and false ≡ 0 if not

100

Fig. 5. Development of the influence of a trace for different trace influence factors(tif)

DFP = 0.01 ∗ TFP + 0.99 ∗ DFP . That means, a trace footprint TFP i has
at the beginning the influence of 0.01, after another TFP i+1 has been added the
influence of TFP i decreases to 0.01 ∗ 0.99, and after another 0.01 ∗ 0.992 and so
on. By applying this incremental method, older TFP are losing influence in the
overall dynamic footprint. Figure 5 shows how the influence of a trace is depen-
dent on its ”age”: If tif = 0.1, the influence of a trace that appeared 60 traces
ago became almost irrelevant. At the same time if tif = 0.01 the influence of a
trace of the same age is still a little more than half of its initial influence when
it first appeared. Essentially, the purpose of the trace influence factor tif is to
configure the ”memory” and adaptation rate of the footprint update component.

Another important dynamism feature that had to be implemented was the
possibility to add an activity that has not appeared before. A new activity is
first recorded in the respective trace footprint. When the trace is terminated
it will be added to the overall footprint in which it is not contained yet. The
factored summation of both footprints to build the new dynamic footprint is
carried out by assuming that a not previously in the dynamic overall footprint
contained relation value is 0. An exception of this behaviour is the ”warm-up”
phase of the Footprint Update, i.e. if the amount of occurred traces is < 1

tif
then

the influence of the dynamic footprint is |traces|
|traces|+1 and of the trace footprint

1− |traces|
|traces|+1 . For instance if tif = 0.01 and |traces| = 9 then is a new dynamic

footprint calculated with DFP10 = 1
10 ∗TFP + 9

10 ∗DFP9 and for the next trace
DFP11 = 1

11 ∗TFP + 10
11 ∗DFP9. Because of this implementation the ”warm-up”

phase of the Footprint Update could be drastically reduced, i.e. processes were
already completely discovered a few traces after the start of the monitoring.

Furthermore, activities that do not appear any more during operation should
be removed from the dynamic footprint. This was implemented in the DCCM
in the following way: If the occurrence once value of an activity drops below a
removal threshold tr ∈ R, tr < tif it will be removed from the dynamic footprint,
i.e. all values and relations to other activities are discarded.

The fact that especially many Choice and Sequence constructs are present
in common business processes, motivates an automated sub-footprint creation
in the Footprint Interpretation based on the parent footprint rather then cre-
ating the sub-footprint from the event stream. This step helps to decrease the
execution-time of the Footprint Update and was achieved by introducing an ex-

101

tra relation to the footprint6 - the direct neighbours relation as used by other
mining algorithms (see Section 3). In the Footprint Interpretation this relation is
then used for creating the respective sub-footprints for Sequence and Choice con-
structs but not for identifying BP constructs since the direct neighbours relation
does not represent a global relation between activities.

5.3 Modifications in the Footprint Interpretation Component

As analysed in the beginning of this section, the original behaviour of the CCM
to retrieve a sub-footprint for each subset that has been created by the divide-
and-conquer approach is not optimal. This is why, in the Footprint Interpretation
the DCCM calculates the sub-footprints for the most common constructs, Choice
and Sequence, from the available parent footprint: (1) For the Choice construct
the probability of the exclusive paths are calculated with pfirst =

∑
x∈Afirst

Fel(x)

and psecond =
∑

x∈Asecond
Fel(x) with Fel(x) being the occurrences of x as first el-

ement (see CCM footprint description in Section 4). Then the relevant values of
the parent footprint are copied into their respective new sub-footprints and nor-
malized, i.e. multiplied with 1

pfirst
and 1

psecond
, respectively. (2) The sub-footprints

for the Sequence construct are similarly built, but without the normalization.
Instead, the direct neighbours relation, now also part of the dynamic footprint,
is used to calculate the new overall probabilities of the sub-footprints.

If two or more BP constructs are almost identically suitable for one and the
same footprint, a slight change of the dynamic footprint might result in a differ-
ently discovered BP. This may cause an alternating behaviour for the footprint
interpretation, i.e. with almost every footprint update the result of the inter-
pretation changes. This is undesirable behaviour which is why the competition
algorithm was additionally modified as follows: All combinations of BP con-
struct and subsets are by default penalized by a very small value, e.g.

tif

10 , with
the exception of the combination corresponding to the previously discovered BP
model, hence reducing the risk of discovering alternating BP models.

6 Evaluation

The static CCM algorithm has been tested for its accuracy in [10]: (1) in a
qualitative analysis the CCM was able to rediscover 64 out of 67 processes for
which a log was produced through simulation. (2) in the second part of the
evaluation the discovery performance of the CCM was compared to the mining
algorithms HeuristicsMiner (HM) [19], Inductive Miner (IM) [6], and the Flower
Miner (FM), all of which are readily available in the ProM nightly build [15]. For
ten given logs (including real-life logs and publicly available logs) the results of
the algorithms (each configured with their default parameters) were evaluated
for their trace fitness ftf , precision fpr, generalization fg, and simplicity fs with
the help of the PNetReplayer plugin [18]. The averaged results of this analysis
are shown in Table 1; Note, that a lower simplicity value is better.

6 In rare cases (if Loop and Parallel constructs dominate) this modification can have a
negative effect on the execution-time since extra information needs to be extracted
without the benefit of mining less sub-footprints

102

 Table 1. Conformance results of the different discovery algorithms

Trace Fitness ftf Precision fpr Generalization fg Simplicity fs
HM IM FM CCM HM IM FM CCM HM IM FM CCM HM IM FM CCM
0.919 0.966 1.0 0.979 0.718 0.622 0.124 0.663 0.941 0.915 0.992 0.930 155.3 122.8 56.4 111.9

In the remainder of this section early evaluation results of the DCCM are
presented with regards to its capability of detecting certain basic changes of a
real-time monitored business process. The basis of this evaluation is the example
model in Figure 1 which is simulated and the resulting event stream fed into the
DCCM. The CCM core is again configured with its default noise parameters.
Figure 6 shows the different values we want to measure. In the figure BP1 and
BP2 are the business processes deployed in the monitored system and BP ′1 to
BP ′n are the discovered models by DCCM. Additionally, BP1 and BP ′m are
equivalent (BP1 ≡ BP ′m) as well as BP2 and BP ′n (BP2 ≡ BP ′n). For this part
of the evaluation the following measures are of interest:

– Warm-up: tw ∈ N the amount of completed traces the DCCM needs as input
at the start until the resulting model equivalently represents the process in
the system, i.e. until BP1 ≡ BP ′m.

– Change Detection: td ∈ N the amount of completed traces it takes to detect a
certain change in the monitored process - from the point at which the process
changed in the system to the point at which a different process was detected.
When the change is detected the newly discovered process is usually not equiv-
alent to the new process in the system BP2 but instead represents parts of
the behaviour of both processes, BP1 and BP2.

– Change Transition Period: ttr ∈ N the amount of completed traces it takes
to re-detect a changed process - from the point at which the process change
was detected to the point at which the correct process representation was
identified, i.e. until BP2 ≡ BP ′n. In this period multiple different business
processes may be detected, each best representing the dynamic footprint at
the respective point in time.

The first test will evaluate how the DCCM behaves at the beginning when
first exposed to the event stream, more particularly, we want to determine tw.
Figure 7 shows a selection of the first few bp models extracted with trace in-
fluence factor tif = 0.01 (see Section 5.2) and interpretation frequency m = 10,
i.e. an interpretation is executed every 10 completed traces: After the first trace
the discovered process is a sequence reflecting the single trace that defines the
process at that point in time. At trace 10, which is the next scheduled footprint
interpretation, the the algorithm discovered a Loop construct but cannot further
analyse the subsets since the corresponding sub-footprint was not requested yet.
Because of that, the feedback mechanism via the Sub-Footprint Configurations
is utilized by the Footprint Interpretation algorithm to register the creation of

of traces

BP’ - BP’

BP1 BP2

BP’m

BP in system:

Observed BP’: BP’nm+1 n-1

td ttr

BP’ - BP’1 m-1

tw

Fig. 6. Measures for Detection of BP Change in System

103

Fig. 7. The Evolution of the Discovered BP Model During the Warm-up Phase

the missing sub-footprints. In the next scheduled run of the footprint interpre-
tation, the Parallel construct of a, b, c, and d is discovered but again the analysis
can not advance since a sub-footprint for the individual activity subsets has not
been created yet. Activities e, f, g, and h seem to have appeared only in exactly
this sequence until trace 20. Skipping one of the interpretation steps, we can see
that at trace 40 the complete process has been mined, i.e. tw = 40.

In Figure 8 the development of tw for different m ∈ {1, 2, 3, 6, 10} and
tif ∈ {0.001, 0.005, 0.01, 0.03} is depicted. The warm-up phase seems generally
very short and not strongly influenced by tif . For m = 10 the warm-up phase
cannot be any shorter because the example process consists of a block-depth
of 3: Parallel-in-Parallel-in-Loop, i.e. 3 subsequent requests for sub-footprints
have to be made. This is an indicator that the modification effort to shorten the
warm-up phase had a positive effect. A small decrease of tw can be noticed when
increasing the trace influence factor tif for small m, e.g. m ∈ {1, 2, 3}.

In a second test we applied a change to the business process in the monitored
system and are interested in the behaviour of the DCCM as well as in the change
detection td and the change transition period ttr . Figure 9 shows the evolution of
the discovered BP model with trace influence factor tif = 0.01 and interpretation
frequency m = 10. The change applied is the move of activity a from the position
before the inner Parallel construct to the position behind it (see traces 5750 and
6310). The change was applied after 5753 traces. The footprint interpretation

Fig. 8. The Warm-up Time in Relation to the Trace Influence Factor

104

Fig. 9. The Evolution of the Discovered BP Model During a Change (Move of A)

Fig. 10. The Change Transition Period in Relation to the Trace Influence Factor

detects at the first chance to discover the change (trace 5760) a concept drift
and finds via competition the best fitting construct: Parallel of a, c and b, d. The
change detection td seemed to be independent from m and tif and was in all
cases immediately recognized7. In Figure 10 the development of ttr for different
m ∈ {1, 10} and tif ∈ {0.001, 0.005, 0.01, 0.03} is shown. The change transition
period ttr was strongly influenced by tif . If the value was very small (tif = 0.001)
a change took up to almost 5000 traces in order to be reflected correctly in the
discovered BP model. On the other hand if the trace influence factor is chosen
too high, e.g. tif = 0.05, not all variations of the process are included in the
dynamic footprint which results in frequently changing/alternating discovered
BP models. This is more likely to occur in large business processes containing
rarely executed but still relevant behaviour.

Additionally, first performance tests have been carried out for large artifi-
cially produced processes (without change). For a randomly created and strongly
nested process consisting of 100 activities the throughput of the footprint update
was close to 100, 000 events per second and the footprint interpretation success-
fully discovered the process in a matter of seconds. Although not tested yet in a

7 Note, that other changes like deletion of an activity will take longer to recognise,
since their existence still ”linger” in the footprints ”memory” for some time.

105

real-life setting, the shown results indicate that the DCCM is very suitable for
discovering and monitoring large enterprise processes.

7 Conclusion and Future Work

In this paper we suggested modifications for the Constructs Competition Miner
to enable Scalable Dynamic Process Discovery as proposed in [11]. The CCM
is a process discovery algorithm that follows a divide-and-conquer approach to
directly mine a block-structured process model which consists of common BP-
domain constructs and represents the main behaviour of the process. This is
achieved by calculating global relations between activities and letting the differ-
ent supported constructs compete with each other for the most suitable solution
from top to bottom using ”soft” constraints and behaviour approximations. The
CCM was designed to deal with noise and not-supported behaviour. To apply the
CCM in a real-time environment it was split up into two separate parts, executed
on different occasions: (1) the footprint update which is called for every occurring
event and updates the dynamic footprint(s) and (2) the footprint interpretation
which derives the BP model from the dynamic footprint through applying a
modified top-down competition approach of the original CCM algorithm. The
modifications on the CCM were mostly motivated by the scalability requirement
of SDPD and successfully implemented which is shown by the performance re-
sults in the evaluation section. It was furthermore shown that changes in the
monitored process are almost instantly detected.

The presented approach of Dynamic CCM (DCCM) is driven by the require-
ments of real life industrial use cases provided by business partners within the
EU funded project TIMBUS. During the evaluation in the context of the use-
cases it became apparent that this concept still has a number of limitations which
are considered to be future work: (1) Changes in the state of the business pro-
cess are usually detected almost immediately but it may take a long time until
the new state of the system is reflected appropriately in the extracted business
process model. This behaviour originates from the fact that the footprint and
the interpreted business process are in a sort of intermediate state for a while
until the influence of the old version of the business process has disappeared.
Furthermore, the trace influence factor tif is a pre-specified value but in real-
ity it is dependent on how many traces we need to regard to represent all the
”behaviour” of the model8. This in turn is strongly dependent on the amount
of activities in the model, since more activities usually mean more control-flow
behaviour. A possible future modification could be to have the influence factor
dynamically adapt, i.e. similar to the self-adapting ageing proposed in [3]. (2) If
no sub-footprint is available for a set of activities, the footprint interpreter does
not further analyse this set. Through approximations or the use of the direct
neighbours relation at least a ”close enough” control-flow for the subset could
be retrieved. (3) The discovery of the state of a business process should also
comprise information of other perspectives than the control-flow, e.g. resource
and performance.

8 if tif is set too high normal behaviour unintentionally becomes exceptional behaviour

106

References
1. von Ammon, R., Ertlmaier, T., Etzion, O., Kofman, A., Paulus, T.: Integrating

Complex Events for Collaborating and Dynamically Changing Business Processes.
In: ICSOC/ServiceWave 2009 Workshops. LNCS, pp. 370–384. Springer, 2010

2. Buijs, J., Van Dongen, B., Van Der Aalst, W.: A genetic algorithm for discovering
process trees. In: Evolutionary Computation (CEC). pp. 1-8, IEEE, 2012

3. Burattin, A., Sperduti, A., Van Der Aalst, W.: Heuristics Miners for Streaming
Event Data. In: CoRR abs/1212.6383, 2012

4. Ko, Ryan K. L.: A computer scientist’s introductory guide to business process
management (BPM), In: Crossroads Journal, ACM, 2009

5. Leemans, S., Fahland, D., Van Der Aalst, W.: Discovering Block-Structured Pro-
cess Models from Event Logs - A Constructive Approach. In: Application and
Theory of Petri Nets and Concurrency, LNCS, pp. 311–329, Springer, 2013

6. Leemans, S., Fahland, D., Van Der Aalst, W.: Discovering Block-Structured Pro-
cess Models from Event Logs Containing Infrequent Behaviour, In: Business Pro-
cess Management Workshops 2013, LNBIP, pp. 66–78, Springer, 2013

7. Luckham, D.: The Power of Events: An Introduction to Complex Event Processing
in Distributed Enterprise Systems. Addison-Wesley Professional, Reading, 2002

8. Maggi, F. M., Burattin, A., Cimitile, M., Sperduti, A.: Online Process Discovery
to Detect Concept Drifts in LTL-Based Declarative Process Models, OTM 2013,
LNCS, pp. 94–111, Springer, 2013

9. OMG Inc: Business Process Model and Notation (BPMN) Specification 2.0, http:
//www.omg.org/spec/BPMN/2.0/PDF. formal/2011-01-03, 2011

10. Redlich, D., Molka, T., Rashid, A., Blair, G., Gilani, W.: Constructs Competition
Miner: Process Control-flow Discovery of BP-domain Constructs. In: 12th Int.
Conf. on Business Process Management, LNCS, pp. 134–150, Springer, 2014

11. Redlich, D., Gilani, W., Molka, T., Drobek, M., Rashid, A., Blair, G.: Introducing a
Framework for Scalable Dynamic Process Discovery. In: 4th Enterprise Engineering
Working Conference (EEWC), LNBIP 174, pp. 151–166. Springer, 2014

12. Redlich, D., Blair, G., Rashid, A., Molka, T., Gilani, W.: Research Challenges for
Business Process Models at Run-time. In: LNCS State-of-the-Art Survey Volume
on Models@run.time, 2014

13. Van Der Aalst, W., Ter Hofstede, A.: YAWL: Yet Another Workflow Language,
2003

14. Van Der Aalst, W., Weijters, A., Maruster, L.: Workflow Mining: Discovering Pro-
cess Models from Event Logs. IEEE Transactions on Knowledge and Data Engi-
neering. 16(9):1128-1142, 2004

15. Van Der Aalst, W., Van Dongen, B.: ProM : The Process Mining Toolkit. Industrial
Engineering. 489: 1-4, 2009

16. Van Der Aalst et al., Process Mining Manifesto. BPM 2011 Int. Workshops, 2011
17. Van Der Aalst, W.: Process Mining - Discovery, Conformance and Enhancement

of Business Processes, Springer, 2011
18. Van Der Aalst, W., Adriansyah, A., Van Dongen, B.: Replaying history on process

models for conformance checking and performance analysis. WIREs Data Mining
and Knowledge Discovery, 2(2), 182-192, 2012

19. Weijters, A., Van Der Aalst, W., Alves de Medeiros, A.: Process Mining with
the Heuristics Miner-algorithm. BETA Working Paper Series, WP 166, Eindhoven
University of Technology, 2006.

Project partially funded by the European Commission under the 7th Framework Programme
for research and technological development and demonstration activities under grant agreement
269940, TIMBUS project (http://timbusproject.net/).

107

Scalable Process Monitoring
Through Rules and Neural Networks

Alan Perotti1, Guido Boella1, and Artur d’Avila Garcez2

1 University of Turin, Italy
2 City University London, United Kingdom

Abstract. In this paper we introduce RuleRunner, a Runtime Verification system
for monitoring LTL properties over finite traces. By exploiting results from the
Neural-Symbolic Integration area, a RuleRunner monitor can be encoded in a
recurrent neural network. The results show that neural networks can perform
real-time runtime verification and techniques of parallel computing can be applied
to improve the performance in terms of scalability. Furthermore, our framework
allows for property adaptation by using a standard neural network learning
algorithm.

1 Introduction

A trend in high-performance computation is parallel computing, and the field of neural
networks has been showing impressive improvements in performance, especially with
the use of GPU accelerators. For example, in 2012 Google used approximately 1,000
CPU-based servers, or 16,000 CPU cores, to develop its neural network (1.7 billion
parameters), which taught itself to recognise cats in a series of YouTube videos [13].
One year later, the Stanford team created an equally large network with only three
servers using NVIDIA GPUs to accelerate the processing of the big data generated by
the network [7]. Our first Research Question is the following:
Is it possible to use the connectionist paradigm and parallel computing techniques in
order to improve the performance of a runtime verification system?
Neural networks are also known to offer intrinsic learning capabilities [11], and many
fields using verification also involve learning-based tasks. For instance, Business Process
(BP) Management [19] attempts to continuously improve business effectiveness and
efficiency, typically relying on Business Process Management Systems (BPMS). A
BPMS allows to automatically execute a BP according to its process schema, i.e., to a
formalised model in which the actions to be performed and the control flow relations
to be respected among them are specified. However, BP optimisation may ask the
enterprise to be able to flexibly change and adapt such a predefined process schema, in
response to expected situations (e.g., new laws, reengineering efforts, concept drift [19])
as well as to unanticipated exceptions and problems in the operating environment (e.g.,
emergencies) [12]. Our second Research Question is therefore:
Can one develop a single framework that combines efficient monitoring, possibly through
parallel computing techniques, with property adaptation through learning?
In this paper, we answer both Research Questions positively. We present our runtime

108

monitoring system: RuleRunner creates and maintains a single, detailed state, avoiding
the possible worlds branching structure typical of tableaux-based formulations. Furthermore,
RuleRunner is designed as a set of rules that can be fired in parallel, rather than in a strict
sequence. We show how a RuleRunner system can be translated into an equivalent logic
program, in order to exploit results from the Neural-Symbolic Integration area [8] to
encode it in a recurrent neural network. We validate our framework by comparing
three implementations based on neural networks, observing how sparse form and
GPU computing improve the performance, respectively, in terms of absolute speed
and scalability. We show how in our framework learning corresponds to adapt the
encoded property according to the observed behaviour of a system, but the application
of learning strategies and approaches is outside the scope of this paper.
As an example, suppose several violations (signalled by an access control monitor)
coming from a given area of a LAN turn out to be false positives [6]. The reasonable
reaction is to relax the encoded property it in order to correctly identify the transactions
from the given area as acceptable. In this way, the security system still encodes the given
property, but reducing the number of false positives makes the system more efficient.
This paper is structured as follows: Section 2 introduces background and related work
and Section 3 analyses our rule-based system, RuleRunner. Section 4 discusses the
translation of our rule system in a neural network; Section 5 shows experimental results
and a motivational example for parallel monitoring and property adaptation; Section 6
ends the paper with closing remarks and directions for future work.

2 Background and Related Work

2.1 Runtime Verification

Runtime Verification (RV) relates an observed system with a formal property φ specifying
some desired behaviour. An RV module, or monitor, is defined as a device that reads a
trace and yields a certain verdict [14]. A trace is a sequence of cells, which in turn are
lists of observations occurring in a given discrete span of time. Runtime verification may
work on finite (terminated), finite but continuously expanding, or on prefixes of infinite
traces. While LTL is a standard semantic for infinite traces [17], there are many semantics
for finite traces: FLTL [15], RVLTL [3], LTL3 [4], LTL± [10] just to name some. Since
the standard LTL semantics is based on infinite behaviours, the issue is to close the gap
between properties specifying infinite behaviours and finite traces. In particular, FLTL
differs from LTL as it offers two next operators (X, X̄ in [3], X,W in this paper), called
respectively strong and weak next. Intuitively, the strong (and standard) X operator is
used to express with Xφ that a next state must exist and that this next state has to satisfy
property φ. In contrast, the weak W operator in Wφ says that if there is a next state,
then this next state has to satisfy the property φ. More formally, let u = a0..an−1 denote
a finite trace of length n. The truth value of an FLTL formula ψ (either Xφ or Wφ) w.r.t.
u at position i < n, denoted by [u, i � ψ], is an element of B and is defined as follows:

[u, i � Xφ] =
{
[u, i+ 1 � φ], if i+1 < n

⊥, otherwise
[u, i �Wφ] =

{
[u, i+ 1 � φ], if i+1 < n

>, otherwise
While RVLTL and LTL3 have been proven to hold interesting properties w.r.t. FLTL

(see [3]), we selected FLTL as we think it captures a more intuitive semantics when

109

dealing with finite traces. Suppose to monitor φ = �a over a trace t, where a is observed
in all cells: we have that [t � φ] equals, respectively, > in FLTL, ? in LTL3, and T p

in RVLTL. If t is seen as a prefix of a longer trace tσ, then LTL3 and RVLTL provide
valuable information about how φ could be evaluated over σ. But if t is a conclusive,
self-contained trace (e.g. a daily set of transactions), then the FLTL semantics captures
the intuitive positive answer to the query does a always hold in this trace?
Several RV systems have been developed, and they can be clustered in three main
approaches, based respectively on rewriting, automata and rules [14]. Within rule based
approaches, RuleR [2] uses an original approach. It copes with the temporal dimension
by introducing rules which may reactivate themselves in later stages of the reasoning.
RuleRunner is inspired by this powerful idea, and in particular by the striking similarity
of triggering rules and activating neurons. While various formalisms can be encoded
in a RuleR monitor, we focus on FLTL and extend RuleR to allow structures of a fixed
size that can be implemented in efficient networks. The next section will describe the
difference in the two approaches in more detail.

2.2 Neural networks and Neural-symbolic Integration

An artificial Neural Network (NN, [11]) is an information processing paradigm that is
inspired by the way biological nervous systems, such as the brain, process information.
The key element of this paradigm is the structure of the information processing system.
It is composed of a large number of highly interconnected processing elements (neurons)
working in unison to solve specific problems. Within the umbrella term of connectionist
approach, many NN models have been developed, varying from those with only one
or two layers of single direction logic, to complicated models with multi-input and
many-directional feedback loops and layers. On the whole, these systems use algorithms
in their programming to determine control and organisation of their functions. What
they do have in common, however, is the principle of non-linear, distributed, parallel and
local processing and adaptation.
The main purpose of a neural-symbolic system is to bring together the connectionist and
symbolic approaches exploiting the strengths of both paradigms and, hopefully, avoiding
their drawbacks. In [18], Towell and Shavlik presented the influential neural-symbolic
system KBANN (Knowledge-Based Artificial Neural Network), a system for rule
insertion, refinement and extraction from feedforward neural networks. KBANN served
as inspiration for the construction of the Connectionist Inductive Learning and Logic
Programming (CILP) system [8] (example in Fig. 1). CILP’s Translation Algorithm
maps a general logic program P into a single-hidden-layer neural network N such that
N computes the least fixed-point of P . In particular, rules are mapped onto hidden
neurons, the preconditions of rules onto input neurons and the conclusion of the rules
onto output neurons. The weights are then adjusted to express the dependence among
all these elements. The obtained network implements a massively parallel model for
Logic Programming, and it can perform inductive learning from examples, by means of
standard learning strategies.

110

(d)(c)(b)(a)

Fig. 1: Logic program P as a network N (CILP); (a) shows a simple logic program P .
Applying CILP to P generates a NN N as depicted in (c). The input-outputs behaviour
in P and N is shown in (b) and (d) respectively. For instance, if P is presented with the
fact A, the first two clauses will produce A,B (second line in (b)). Similarly, if the input
neuron representing A is activated in N , the signal propagation will activate the first two

hidden neurons and both output neurons (second line in (d)).

3 The RuleRunner Rule System

RuleRunner is a rule-based online monitor observing finite but expanding traces and
returning an FLTL verdict. RuleRunner accepts formulae φ generated by the grammar:

φ ::= true | a | !a | φ ∨ φ | φ ∧ φ | φUφ | Xφ |Wφ | ♦φ | �φ | END
a is treated as an atom and corresponds to a single observation in the trace. We assume,
without loss of generality, that temporal formulae are in negation normal form (NNF),
e.g., negation operators pushed inwards to propositional literals and cancellations applied.
W is the weak next operator. END is a special character that is added to the last cell of a
trace to mark the end of the input stream.

Algorithm 1 RuleRunner monitoring (abstract)
1: function RR-MONITORING(φ,trace t)
2: Build a monitorRRφ encoding φ
3: while new cells exist in t do
4: Observe the current cell
5: Compute truth values of φ in the current cell of t . Evaluation rules
6: if φ is verified or falsified then
7: return SUCCESS or FAILURE respectively
8: end if
9: Set up the monitor for the next cell in t . Reactivation rules
10: end while
11: end function

Given an FLTL formula φ and a trace t, Algorithm 1 provides an abstract description
of the creation and runtime behaviour of a RuleRunner system monitoring φ over t. At
first, a monitor encoding φ is computed. Second, the monitor enters the verification loop,
composed by observing a new cell of the trace and computing the truth value of the
property in the given cell. If the property is irrevocably satisfied or falsified in the current
cell, RuleRunner outputs a binary verdict. If this is not the case (because the φ refers
to cells ahead in the trace), the system shifts to the following cell and enters another
monitoring iteration. The FLTL semantics guarantees that, if the trace ends, the verdict
in the last cell of the trace is binary. RuleRunner is a runtime monitor, as it analyses one
cell at a time and never needs to store past cells in memory nor peek future ones.

111

Definition 1. A RuleRunner system is a tuple 〈RE , RR, S〉, where RE (evaluation rules)
and RR (reactivation rules) are rule sets, and S (for state) is a set of active rules,
observations and truth evaluations.

Given a finite set of observations O and an FLTL formula φ over (a subset of) O, a
state S is a set of observations (o ∈ O), rule names (R[ψ]) and truth evaluations ([ψ]V);
V ∈ {T, F, ?} is a truth value. A rule name R[ψ] in S means that the logical formula
ψ is under scrutiny, while a truth evaluation [ψ]V means that the logical formula ψ
currently has the truth value V . The third truth value, ? (undecided), means that it is
impossible to give a binary verdict in the current cell.
Evaluation rules follow the pattern R[φ], [ψ1]V, . . . , [ψn]V,→ [φ]V and their role is
to compute the truth value of a formula φ under verification, given the truth values of
its direct subformulae ψi (line 5 in Algorithm 1). For instance, R[♦ψ], [ψ]T → [♦ψ]T
reads as if ♦a is being monitored and ψ holds, then ♦ψ is true.
Reactivation rules follow the pattern [φ]?→ R[φ], R[ψ1], . . . , R[ψn] and the meaning is
that if one formula is evaluated to undecided, that formula (together with its subformulae)
is scheduled to be monitored again in the next cell of the trace (line 9 in Algorithm 1).
For instance, [♦ψ]?→ R[♦ψ], R[ψ] means that if ♦ψ was not irrevocably verified nor
falsified in the current cell of the trace, both ψ and ♦ψ will be monitored again in the
next cell.
A RuleRunner feature is that rules never involve disjunctions. In RuleR, for instance, the
simple formula ♦a is mapped to the rule R♦a : −→ a | R♦a and its meaning, intuitively,
is that, if ♦a has to be verified, either a is observed (thus satisfying the property) or the
whole formula will be checked again (in the next cell of the trace). The same formula
corresponds to the following set of rules in RuleRunner:

R[♦a], [a]T → [♦a]T

R[♦a], [a]?→ [♦a]?

R[♦a], [a]F → [♦a]?

R[♦a], [a]?, END → [♦a]F

[♦a]?→ R[a], R[♦a]

The disjunction in the body of the RuleR rule corresponds to the additional constraints
in the head of the RuleRunner rules. Therefore, where RuleR generates a set of alternative
hypotheses and later matches them with actual observations, RuleRunner maintains a
detailed state of exact information. This is achieved by means of evaluation tables:
three-valued truth tables (as introduced by Lukasiewitz [16]) annotated with qualifiers.
Each evaluation rule for φ corresponds to a single cell of the evaluation table for the main
operator of φ; a qualifier is a subscript letter providing additional information to ? truth
values. Figure 2 gives the example for disjunction. Qualifiers (B,L,R in this case) are
used to store and propagate detailed information about the verification status of formulae.
For instance, if φ is undecided and ψ is false when monitoring φ ∨ ψ (highlighted cell
in Figure 2), ?L means that the disjunction is undecided, but that its future verification
state will depend on the truth value of the Left disjunct. Note, in fact, how ∨L is a unary
operator. An example for this is monitoring ♦b ∨ a against a cell including only c: a is
false, ♦b is undecided (as b may be observed in the future), and the whole disjunction
will be verified/falsified in the following cells depending on ♦b only.

112

Fig. 2: Truth table (left) and evaluation tables (right) for ∨

a (observation)

a ∈ state
a ∉ state

!a

a ∈ state
a ∉ state

XW

^B ^L ^R _R_L_B

UA UB UL UR

WM XM

?B

?L

?R

?A

?K

?M?M

T
T

T T T
T

T T

TTTT

T
T

T
T

T T

F

F

F

F

?R

T

F

?L

T

F

?B ?B?L

?A ?AT

FFF

?B

?R

?A

?A

?AT

T

T F

T

F

F
?M

T

F

T

F

?M

T

F

F

F

?L

T

F

?R

T

F

?B ?L

?R

T

T

T

T T

F

?R

T

F

?L

T

F

?B?L

?RT

F F F

F

F

T

FT

F
F

F

F F F

F

F F

FF
FF

F

F F

F F F

?

?

? ? ?

?

? ?

??????
?

?

T

?

?

?

?

?

?

? ?

??

?K

F

?

⇤
END � W END � X

END � U

END �⇤ END � ⌃⌃

Fig. 3: Complete set of evaluation tables

The complete set of evaluation tables is reported in Fig. 3, while the generation of
evaluation and reactivation rules is summarised in Algorithm 2. The algorithm parses
φ in a tree and visits the parsing tree in post-order. The system is built incrementally,
starting from the system(s) returned by the recursive call(s). If φ is an observation (or its
negation), an initial system is created, including two evaluation rules (as the observation
may or may not occur), no reactivation rules and the single R[φ] as initial state. If φ is
a conjunction or disjunction, the two systems of the subformulae are merged, and the
conjunction/disjunction evaluation rules, reactivation rule and initial activation are added.
The computations are the same if the main operator is U , but the reactivation rule will
have to reactivate the monitoring of the two subformulae; in particular, UA denotes the
standard until operator, while UB is the particular case where the ψ failed and the until
operator cannot be trivially satisfied anymore. Formulae with X or W as main operator
go through two phases: first, the formula is evaluated to undecided, as the truth value
can’t be computed until the next cell is accessed. Special evaluation rules force the truth
value to false (for X) or true (for W) if no next cell exists. Then, at the next iteration, the
reactivation rule triggers the subformula: this means that if Xφ is monitored in cell i, φ
is monitored in cell i+ 1. φ is then monitored independently, and the Xφ (or Wφ) rule
enters a ’monitoring state’ (suffix M in the table), simply mirroring φ truth value and
self-reactivating. The evaluation of �φ is false (undecided) when φ is false (undecided);
it is also undecided when φ holds (as �φ can never be true before the end of the trace),

113

but the K suffix indicates when, at the end of the trace, an undecided � can be evaluated
to true. Finally, ♦φ constantly reactivates itself and its subformula φ, unless φ is verified
at runtime (causing ♦φ to hold), the trace ends (♦φ fails).

Algorithm 2 Generation of rules
1: function INITIALISE(φ)
2: op← main operator

. Apply recursively to subformula(e)
3: if op ∈ {�,♦, X,W} then
4: 〈R1

E , R
1
R, S

1〉 ← Initialise(ψ1)
5: RE ← R1

E ;
6: RR ← R1

R;
7: else if op ∈ {∨,∧, U} then
8: 〈R1

E , R
1
R, S

1〉 ← Initialise(ψ1)
9: 〈R2

E , R
2
R, S

2〉 ← Initialise(ψ2)
10: RE ← R1

E ∪ R
2
E ;RR ← R1

R ∪ R
2
R;

11: else
12: RE ← ∅;RR ← ∅;
13: end if

. Compute and add evaluation rules for main operator
14: Cells←op’s-evaluation-tables
15: for all cell ∈ Cells do
16: Convert cell to single rule re, substituting formula names
17: RE ← RE ∪ re
18: end for
19: if φ-is-main-formula then
20: RE ← RE ∪ ([φ]T → SUCCESS)
21: RE ← RE ∪ ([φ]F → FAILURE)
22: RE ← RE ∪ ([φ]?→ REPEAT)
23: end if

. Compute initial state for this subsystem
24: if op = a then S ← R[a]
25: else if op =!a then S ← R[!a]
26: else if op ∈ {∨,∧} then S ← S1 ∪ S2 ∪ R[φ]B
27: else if op = U then S ← S1 ∪ S2 ∪ R[φ]A
28: else if op ∈ {�,♦} then S ← S1 ∪ R[φ]
29: else if op ∈ {X,W} then S ← R[φ]
30: end if

. Compute and add reactivation rules for main operator
31: if op ∈ {∨,∧} thenRR ← RR ∪ ([φ]?Z → R[φ]?Z), for Z ∈ L,R,B
32: else if op = U thenRR ← RR ∪ ([φ]?Z → R[φ]?Z, S1, S2), for Z ∈ A,B,L,R
33: else if op ∈ {�,♦} thenRR ← RR ∪ ([φ]?→ R[φ], S1)
34: else if op ∈ {X,W} thenRR ← RR ∪ ([φ]?→ R[φ]M,S1) ∪ ([φ]?M → R[φ]M)
35: end if

. Return computed system
36: return 〈RE , RR, S〉
37: end function

RuleRunner generates several rules for each operator, but this number is constant,
as it corresponds to the size of evaluation tables plus special rules (like the SUCCESS
one). The number of rules corresponding to φ ∨ ψ, for instance, does not depend in any
way on the nature of φ or ψ, as only the final truth evaluation of the two subformulae
is taken into account. The preprocessing phase creates the parse tree of the property to
encode and adds a constant number of rules for each node (subformula). The obtained
rule set does not change at runtime nor when monitoring new traces. During the runtime
verification, for each cell of the trace the system goes through all rules exactly once. This
is guaranteed by the post-order visit of the parsing tree, as shown in Algorithm 2, assuring
pre-emption for rules evaluating simpler formulae. Therefore, the complexity of the
system is inherently linear. This is not in contrast with known exponential lower bounds

114

for the temporal logic validity problem, as RuleRunner deals with the satisfiability
of a property on a trace, thus tackling a different problem from the validity one (this
distinction is also mentioned in [9]). A prototype for RuleRunner can be found here.

As an example, consider the formula φ = a ∨ ♦b and the trace t = [c − a −
b, d− b, END] (dashes separate cells and commas separate observations in the same
cell). If monitoring φ over t, a fails in the first cell, while b is sought until the third cell,
when it is observed. Thus the monitoring yields a success even before the end of the trace.

EVALUATION RULES

– R[a], a is not observed→ [a]F
– R[b], b is observed→ [b]T
– R[b], b is not observed→ [b]F
– R[♦b], [b]T → [♦b]T
– R[♦b], [b]F → [♦b]?
– R[a ∨ ♦b]B, [a]F , [♦b]?→ [a ∨ ♦b]?R
– R[a ∨ ♦b]R, [♦b]T → [a ∨ ♦b]T
– R[a ∨ ♦b]R, [♦b]?→ [a ∨ ♦b]?R
– [a ∨ ♦b]T → SUCCESS

REACTIVATION RULES

– [♦b]?→ R[b], R[♦b]
– [a ∨ ♦b]?R → R[a ∨ ♦b]R

INITIAL STATE

– R[a], R[b], R[♦b], R[a ∨ ♦b]B

EVOLUTION OVER [c− a− b, d− b, END]

state R[a], R[b], R[♦b], R[a ∨ ♦b]B
+ obs R[a], R[b], R[♦b], R[a ∨ ♦b]B, c

eval [a]F, [b]F, [♦b]?, [a ∨ ♦b]?R
react R[b], R[♦b], R[a ∨ ♦b]R

state R[b], R[♦b], R[a ∨ ♦b]R
+ obs R[b], R[♦b], R[a ∨ ♦b]R, a

eval [b]F, [♦b]?, [a ∨ ♦b]?R
react R[b], R[♦b], R[a ∨ ♦b]R

state R[b], R[♦b], R[a ∨ ♦b]R
+ obs R[b], R[♦b], R[a ∨ ♦b]R, b, d

eval [b]T, [♦b]T, [a ∨ ♦b]T, SUCCESS
STOP PROPERTY SATISFIED

The behaviour of the runtime monitor is the following:

– At the beginning, the system monitors a,b,♦b and a∨♦b (initial state =R[a], R[b], R[♦b],
R[a∨♦b]B). The−B in R[a∨♦b]B means that both disjuncts are being monitored.

– In the first cell, c is observed and added to the state S. Using the evaluation rules,
new truth values are computed: a is false, b is false, ♦b is undecided. The global
formula is undecided, but since the trace continues the monitoring goes on. The −R
in R[a ∨ ♦b]R means that only the right disjunct is monitored: the system dropped
a, since it could only be satisfied in the first cell.

– In the second cell, a is observed but ignored (the rules for its monitoring are not
activated); since b is false again, ♦b and a ∨ ♦b are still undecided.

– In the third cell, d is ignored but observing b satisfies, in cascade, b, ♦b and a ∨ ♦b.
The monitoring stops, signalling a success. The rest of the trace is ignored.

4 Encoding the monitor in a Neural Network

The translation of a RuleRunner monitor in an equivalent neural network is composed by
two main steps, respectively encoding a rule system in a logic program and the resulting
logic program in a neural network. We hereby describe the details of the first step and
explain how to use CILP for the second one. The first step of the neural encoding is the
translation of a RuleRunner system into an equivalent logic program (Algorithm 3).

115

http://www.di.unito.it/~perotti/RuleRunner.jnlp

Algorithm 3 From RuleRunner to Logic Programs
1: function RR2LP(φ)
2: CreateRRφ = 〈RE , RR, S〉 encoding φ
3: Create an empty logic program LP

. CE
4: for allR[φ], [ψ1]V, . . . , [ψn]V,→ [φ]V ∈ RE do
5: LP ← LP ∪ [φ]V :-∼[UPDATE], R[φ], [ψ1]V, . . . , [ψn]V
6: end for

. CP
7: for all o ∈ RE ∪ RR do
8: LP ← LP ∪ o :-∼[U], o
9: end for
10: for allR[φ] ∈ RE ∪ RR do
11: LP ← LP ∪ R[φ] :-∼[UPDATE], R[φ]
12: end for

. CR
13: for all [φ]?→ R[φ], R[ψ1], . . . , R[ψn] ∈ RR do
14: LP ← xLP ∪ R[φ] :- [UPDATE], [φ]?

15: for allR[ψi] do
16: LP ← LP ∪ R[ψi] :- [UPDATE], [φ]?
17: end for
18: end for
19: LPφ = LP

20: return LPφ
21: end function

The algorithm creates a single logic programLP ; however, for the sake of explanation,
we distinguish three kinds of clauses: evaluation, reactivation and persistence (marked
as CE , CR, CP in Algorithm 3). Intuitively, evaluation and reactivation clauses (in LP)
mirror, respectively, evaluation and reactivation rules in RuleRunner. Persistence clauses
are used to remember observations and active rules by explicit re-generation: these
clauses follow the pattern x :- ∼[UPDATE], x, where x is is a rule name (R[φ]) or an
observation (o ∈ O). Evaluation clauses are obtained from evaluation rules by adding
one extra literal in the body, ∼[UPDATE]. The reactivation rules are split into several
reactivation clauses, one for each literal in the head of the rule; [UPDATE] is added in
the body of all these rules. Finally, for all observations and truth evaluations in the rules,
a persistence clause is added.

RuleRunner’s monitor loop fires the evaluation and reactivation rules in an alternate
fashion. We simulate that by introducing the [UPDATE] literal and using it as a switch:
when [UPDATE] holds, only reactivation clauses can hold, while when it does not all
reactivation rules are inhibited and evaluation and persistence clauses are potentially
active. RuleRunner iteratively builds a state, going through partial solutions; in the same
way, some sort of memory is necessary for the partial results to be remembered by the LP.
We achieve that by adding persistence clauses: as long as [UPDATE] does not hold,
all observations and rule names are re-obtained at each iteration of the logic program.
Another way to achieve this persistence is to add the desired observations/rule names
as facts: we opted for the former because persistence clauses have a standard structure,
while adding facts to the LP correspond to clamping neurons in a neural network.

The example in the previous section corresponds to the logic program LP(a∨♦b),
depicted below ([UPDATE] shortened to [U]).

116

EVALUATION CLAUSES

– [a]F :-∼[U], R[a],∼a
– [b]T :-∼[U], R[b], b
– [b]F :-∼[U], R[b],∼b
– [♦b]T :-∼[U], R[♦b], [b]T
– [♦b]? :-∼[U], R[♦b], [b]F
– [a ∨ ♦b]?R :-∼[U], R[a ∨ ♦b]B, [a]F, [♦b]?
– [a ∨ ♦b]T :-∼[U], R[a ∨ ♦b]R, [♦b]T
– [a ∨ ♦b]?R :-∼[U], R[a ∨ ♦b]R, [♦b]?
– SUCCESS :-∼[U], [a ∨ ♦b]T

REACTIVATION CLAUSES

– R[♦b] :- [U], [♦b]?
– R[b] :- [U], [♦b]?
– R[a ∨ ♦b]R :- [U], [a ∨ ♦b]?R

PERSISTENCE CLAUSES

– a :-∼[U], a
– b :-∼[U], b
– R[a] :-∼[U], R[a]
– R[b] :-∼[U], R[b]
– R[♦b] :-∼[U], R[♦b]
– R[a ∨ ♦b]B :-∼[U], R[a ∨ ♦b]B
– R[a ∨ ♦b]R :-∼[U], R[a ∨ ♦b]R

Summarising, we start from a formal property φ expressed as an FLTL formula, we
compute a RuleRunner rule system RRφ monitoring that formula, and then we encode
the rule set in a logic program LPφ. The correctness of this translation can be proved
by induction on the monitoring process; we omit such proof due to lack of space. We
can then exploit the CILP algorithm [8] to translate the logic program LPφ into an
equivalent neural network NNφ.

Algorithm 4 CILP System - Translation
1: function CIL2P (LPφ)
2: Create empty networkNN
3: for all clause c ∈ LPφ, c = h :- b1, . . . , bn do
4: Add a neuron C to the hidden layer
5: If not there, add a neuronH to the output layer
6: Connect C toH
7: for all clause bi ∈ c do
8: If not there, add a neuronBi to the input layer
9: ConnectBi to C
10: end for
11: end for
12: NNφ = NN

13: returnNNφ
14: end function

Each clause (c) of LPφ is mapped from the input layer to the output layer of NNφ
through one neuron (labelled C) in the single hidden layer of NNφ . We omitted the
computation of the parameters; intuitively, the Translation Algorithm from LPφ to NNφ
has to implement the following conditions: (C1) the input potential of a hidden neuron
(C) can only exceed C’s threshold, activating C, when all the positive antecedents of
c are assigned the truth value true while all the negative antecedents of c are assigned
false; and (C2) the input potential of an output neuron H can only exceed H’s threshold,
activating H , when at least one hidden neuron C that is connected to H is activated; the
translation algorithm is sound and complete [8].

LP(a∨♦b) is translated into the neural network NN(a∨♦b) in Fig. 4.

The result of the neural encoding phase is a neural network NNφ able to perform
runtime verification, monitoring φ over the given trace(s). The general algorithm for

117

neural monitoring is described in Algorithm 5. Adding x to a given layer means activating
the neuron corresponding to x in that layer. In terms logic programming, this corresponds
to adding the fact x to the program. It is worth comparing how, from an operational
point of view, a RuleRunner system (RRφ) and its neural encoding (NNφ) carry out
the monitoring task. In each iteration of the main loop, RuleRunner goes through the
list of evaluation rules, adding the result of each active rule to the state. When the
end of the evaluation rules list is reached, the reactivation rules are allowed to fire,
collecting the output in a new state. In the neural network the alternation of evaluation
and reactivation is achieved by means of the [UPDATE] neuron, which acts as a
switch. In the evaluation phase, all evaluation rules are fired in parallel until convergence.
Moving to the next trace cell is achieved by firing all reactivation rules in parallel once.

e p p e e p p e e p e p

a bR[a] R[b] R[⌃b] R[a _ ⌃b]RR[a _ ⌃b]B

[b]T

[b]F [a]F[b]T

e e p e

[⌃b]? [⌃b]T [a _ ⌃b]T

r r r

[U] [⌃b]?

[a]F a bR[a] R[b][b]F [⌃b]? [⌃b]T R[⌃b] [a _ ⌃b]?R [a _ ⌃b]TR[a _ ⌃b]B R[a _ ⌃b]R [S]

[a _ ⌃b]?R

Fig. 4: (simplified) Neural network for monitoring a ∨ ♦b: NN(a∨♦b). The input and
output layers include neurons whose labels correspond to atoms in the logic program;

active neurons are filled in grey, representing the initial state
R[a], R[b], R[♦b], R[a ∨ ♦b]. [U] stands for [UPDATE] and [S] for [SUCCESS].

Hidden neurons correspond to clauses, labelled with e (resp. p,r) to mark that it encodes
an evaluation (resp. persistence, reactivation) clause. Solid lines represent connection

with positive weights, dashed lines represent negative weights. To simplify the
visualisation, all recurrent connections and connections from [U] are omitted in Fig. 4.

For instance, the leftmost hidden neuron in Fig. 4 has ingoing connections from a
(negative weight) and R[a] (positive weight), plus the negative connection from [U]

(omitted in the figure); it has an outgoing connection towards [a]F : this corresponds to
the clause [a]F :- ∼[UPDATE], R[a],∼a, the first evaluation clause in LP(a∨♦b).

Algorithm 5 Runtime Verification using NNφ
1: function NN-MONITOR(φ,trace t)
2: CreateRRφ = 〈RR, RE , S〉 encoding φ (Algorithm 2)
3: RewriteRRφ into LPφ (Algorithm 3)
4: Rewrite LPφ intoNPφ (Algorithm 4: CILP)
5: Add S to the input layer
6: while new observations exist in t do
7: Add the new observations to the input layer
8: Let the network converge
9: if S contains SUCCESS (resp.FAILURE) then
10: return return SUCCESS (resp.FAILURE)
11: end if
12: Add UPDATE to the input layer
13: Fire the network once
14: end while
15: end function

118

5 Experiments

5.1 Parallel Monitoring

The encoding of RuleRunner in a neural network allows for the monitoring of several
traces in parallel. A cell in a trace is a vector of observations which is fed to the neural
network. To monitor multiple traces, it is sufficient to compose all observation vectors (of
different traces at the same time) as rows in a matrix. The monitoring is then carried out
as explained above, with all vector-matrix steps substituted by matrix-matrix operations.
Furthermore, the matrix-based nature of neural networks allows for straightforward
optimisations in order to speed up the monitoring: we focused on sparse form and
GPU computation, using Matlab 2013a for all experiments. A sparse matrix is a matrix
primarily populated by zeros (e.g. any identity matrix). The sparse(m) function is a
lossless compression that stores only the non-null elements in a matrix m. The weight
matrices in our networks are sparse: the size depends on the complexity of the encoded
formula (and therefore the number of rules in the monitor), but the number of non-null
elements per row/column is constant, as each rule (clause) only involves truth values
of direct subformulae and has a constant number of literals in the body/head. We
also exploited MathWork’s Parallel Computing Toolbox to run our code on GPU. We
used GPUArray, a special array type with several associated functions that allows to
perform computations on CUDA-enabled NVIDIA GPUs directly from MATLAB. In
the following set of experiments, the base implementation for φ is the neural-network
encoding a monitor for φ as described in the previous section (NNφ); the sparse and
GPU implementations were simply obtained, respectively, the sparse(·) and gpuArray(·)
functions to all the matrices in the base implementation.

(A) (B)

(C) (D)

Fig. 5: Scalability experiments for matrix-based monitors

In terms of code, the difference between the three implementations is deliberately
minimal, as our goal is to show how tiny modifications to the code allow for performance
improvement. For this experiments, we generated random formulae from the FLTL
grammar and sets of observations: rather than testing domain-specific properties, we

119

aimed at checking a set of unbiased formulae. The complexity of the temporal formulae
is measured in terms of leaves of the parsing tree: for instance, �(a ∨ b) has two leaves
(a, b), ♦(Xa∧ ((c∨d)Ud)) has four leaves (a, b, c, d), et cetera. In Figure 5.A, we show
how the length of the trace has no impact on the average time required to monitor a
cell: the resources required by our system do not grow over time. In Figure 5.B, we
measured how increasing the complexity of the formula impacts on the average time
required to monitor a cell. The first striking feature of these curves is that, while for
simple formulae base and sparse are significantly faster than gpu, for higher number
of leaves base ends up having average times similar to those of gpu. Moreover, base’s
curve looks steeper than the other two. The same values can be averaged over the number
of leaves: that is, given the average time required to monitor a cell when monitoring
a formula with n leaves, we can divide that time value by n. The chart in Figure 5.C
shows how the gpu curve significantly lowers the time per cell per leaf, when the number
of leaves increases. Our explanation for this behaviour is that the GPU implementation
suffers from a remarkable overhead in the CPU-GPU communication: this delta becomes
less influent when making the formula more complex and thus the matrices bigger.
Finally, it is relevant to measure the increase rate of these curves: to do so, we divided
all measured times by the first experiment in each curve (Figure 5.D). We observed that
base scales linearly w.r.t. the number of leaves: for instance, the experiment with 32
leaves is 16 times slower than the experiment (with the same implementation) with 2
leaves. The curve for the sparse form is more gradual, with the last experiment being
∼ 4 times slower than the first one. But the implementation with the smoothest curve is
the gpu-based one, with the 32-leaves experiment being only ∼ 1.5 times slower than
the 2-leaves one.
We ran other tests to study the impact of other features, such as the number of consecutive
next operators or the interleaving of temporal and classical operators. All tests generated
curves following the same patterns. We thus observed how the sparse form allows for a
speed-up of the monitoring, while the gpu implementation shows the best scaling factor.

5.2 Learning as property adaptation

Neural networks also offer intrinsic learning capabilities. In our system, observations
(events) are presented to the monitor as the activation of labelled input neurons. The
feedforward propagation then causes some output neurons to be activated, representing
the result of the monitoring of the encoded formula on the given cell. It may be the case
that a user or domain expert would like to modify the verdict of a monitoring task: for
instance, consider a security system built to detect consecutive login operations from
the same user with no logout in between: φ = login ⇒ X(!login ∪ logout). Now
suppose the system detects a number of violations, in a given LAN, that the security
manager judges as false positives. For instance, that LAN could be a lab where users log
in from different devices, or it could be a trustable section of the network. It is reasonable
that the security manager wants to maintain the security system, but also to relax the
formal property in order to include logins from the given LAN, and therefore avoid false
positives and improve efficiency. Reclassifying a trace means demoting the causality
relation between the observations and the actual output while promoting the relation
between observations and expected output: it is, in fact, a supervised learning task.

120

outin prvv1 v2

e1 e2 e3

v1 v2 [F] [S]

outin prvv1 v2

e1 e2 e3

v1 v2 [F] [S]

lan

e4
0.8 0.8 0.8 0.8 0.8 0.45

-0.51
0.8 0.42

Fig. 6: Simplified network for the consecutive logins example, representing the current
login (in), logout (out), the existence of a previous login (prv), the occurrence of a

login without a logout before (v1, corresponding to a violation of !login ∪ logout), the
occurrence of v1 when a previous login occurred (v2, corresponding to !φ) and, finally,

flags for global violation ([F] for failure) and success ([S]).

The security manager tells the system to accept the consecutive logins occurring in
LAN. A new input neuron, lan is added to the system. The learning task is performed
as training of two perceptrons: P1 maps {e1, e2, e3, e4} onto [F], while P2 maps the
same hidden neurons onto [S]. The perceptrons are conceptually isolated by the rest of
the network as follows: the output is the flag to be modified, and the inputs are all hidden
neurons in the network. Note that, even if all hidden neurons are used as inputs for a
perceptron and its learning algorithm, only the weights of the connections from active
neurons can be modified, thus limiting the algorithm to the relevant (currently active)
hidden neurons. P1 is trained to accept only traces where e3, !e4 occurs, while for P2
the positive examples involve e3, e4. Both perceptrons are trained with the standard
perceptron learning rule: Figure 6 shows the results when applying the learning rule
with η = 0.2 and thresholds = 0.5. Relevant connections are labeled with their weights;
connections with weight close to 0 are omitted. For P1, the weights from e1, e2, e3 are
only slightly modified by the learning; the connection from e4, on the contrary, goes
from being 0 to a negative value. For P2, since the network is trained to associate the
co-occurence of the violation v2 =!φ and lan, the weights from e3 and e4 towards
[S] are increased. As a result, when lan is not active the network displays the nominal
behaviour and signals a violation ([F]); on the contrary, when both lan and v2 are active,
the negative weight from e4 prevents [F] from being activated, while the sum of the
signals from e3 and e4 activates [S].

6 Conclusions and Future Work

Firstly, we developed a runtime monitoring system, RuleRunner, to monitor FLTL
properties on finite traces. Secondly, we discussed the encoding, partially based on
CILP’s Translation Algorithm, of a RuleRunner rule system in a standard feedforward
neural network with recurrent connections and one hidden layer. Thirdly, we showed
how matrix-based optimisations allows for major improvements in terms of performance,
either concerning actual speed (matrices in sparse form) or scaling factor (GPU computation).
Finally, we pointed out how in our framework learning corresponds to property adaptation.
A first direction for future work is to adopt and compare more advanced techniques for

121

parallel monitoring, such as the MapReduce framework (recently applied to Runtime
Verification in [1]) and the parallel algorithms in [5]. A second direction for future work
is the development of ad-hoc learning strategies, mostly based on the Backpropagation
algorithm [11], for specific classes of adaptation problems, such as soft norms in
BPM [19] and false positives in Security [6].

References

1. B. Barre, M. Klein, M. Soucy-Boivin, P.-A. Ollivier, and S. Hall. Mapreduce for parallel trace
validation of ltl properties. In Procs. of Runtime Verification 2012, pages 184–198.

2. H. Barringer, D. E. Rydeheard, and K. Havelund. Rule systems for run-time monitoring: from
eagle to ruler. Journal of Logic and Computation, volume 20:pages 675–706, 2010.

3. A. Bauer, M. Leucker, and C. Schallhart. The good, the bad, and the ugly, but how ugly is
ugly? In Procs. of Runtime Verification 2007, pages 126–138.

4. A. Bauer, M. Leucker, and C. Schallhart. Monitoring of real-time properties. In Procs. of
Foundations of Software Technology and Theoretical Computer Science 2006, pages 260–272.

5. S. Berkovich, B. Bonakdarpour, and S. Fischmeister. Gpu-based runtime verification. In
Procs. of the IEEE International Symposium on Parallel and Distributed Processing 2013,
pages 1025–1036.

6. D. Breitgand, M. Goldstein, and E. H. Shehory. Efficient control of false negative and false
positive errors with separate adaptive thresholds. Network and Service Management, IEEE
Transactions on, 8:128–140, 2011.

7. A. Coates, B. Huval, T. Wang, D. J. Wu, B. C. Catanzaro, and A. Y. Ng. Deep learning with
cots hpc systems. In Procs. of International Conference on Machine Learning 2013, pages
1337–1345.

8. A. S. d’Avila Garcez and G. Zaverucha. The connectionist inductive learning and logic
programming system. Applied Intelligence, volume 11:pages 59–77, 1999.

9. D. Drusinsky. The temporal rover and the atg rover. In Procs. of the International Workshop
on SPIN Model Checking and Software Verification 2000, pages 323–330.

10. C. Eisner, D. Fisman, J. Havlicek, Y. Lustig, A. McIsaac, and D. V. Campenhout. Reasoning
with temporal logic on truncated paths. In Procs. of Computer-Aided Verification 2003, pages
27–39.

11. S. Haykin. Neural Networks: A Comprehensive Foundation (3rd Edition). 2007.
12. P. Heimann, G. Joeris, C.-A. Krapp, and B. Westfechtel. Dynamite: Dynamic task nets for

software process management. In Procs of International Conference on Software Engineering
1996, pages 331–341.

13. Q. V. Le, M. Ranzato, R. Monga, M. Devin, G. Corrado, K. Chen, J. Dean, and A. Y. Ng.
Building high-level features using large scale unsupervised learning. In Procs. of International
Conference on Machine Learning 2012.

14. M. Leucker and C. Schallhart. A brief account of runtime verification. Journal of Logic and
Algebraic Programming, volume 78:pages 293–303, 2009.

15. O. Lichtenstein, A. Pnueli, and L. D. Zuck. The glory of the past. In in Procs. of Logic of
Programs 1985, pages 196–218.

16. J. Lukasiewicz. O logice trjwartosciowej (On Three-Valued Logic). 1920.
17. A. Pnueli. The temporal logic of programs. In Procs. of the Annual Symposium on Foundations

of Computer Science 1977, pages 46–57.
18. G. G. Towell and J. W. Shavlik. Knowledge-based artificial neural networks. Artificial

Intelligence, volume 70:pages 119–165, 1994.
19. W. M. P. van der Aalst et.al. Process mining manifesto. In Procs of Business Process

Management Workshops 2011, pages 169–194.

122

Using Monotonicity to find Optimal Process
Configurations Faster

D.M.M. Schunselaar1?, H.M.W. Verbeek1?, H.A. Reijers1,2?, and W.M.P. van
der Aalst1?

1 Eindhoven University of Technology,
P.O. Box 513, 5600 MB, Eindhoven, The Netherlands

{d.m.m.schunselaar, h.m.w.verbeek, w.m.p.v.d.aalst, h.a.reijers}@tue.nl
2 VU University Amsterdam,

De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands
h.a.reijers@vu.nl

Abstract. Configurable process models can be used to encode a mul-
titude of (different) process models. After configuration, they can be
used to support the execution of a particular process. A configurable
process model represents a space of instantiations (configured process
variants). Such an instantiation space can be used by an organisation
to select the best instantiation(s) according to some Key Performance
Indicators (KPIs), e.g., cost, throughput time, etc. Computing KPIs for
all the instantiations in the space is time consuming, as it might require
the analysis (e.g., simulation) of thousands (or more) of instantiations.
Therefore, we would like to exploit structural characteristics to reduce
the amount of instantiations which need to be analysed. This reduction
only removes those instantiations which do not need to be considered by
an organisation. This yields the same result (a collection of best config-
urations), but in a faster way.

Keywords: Configurable Process Model, Business Process Performance,
Analysis, Monotonicity, Petra

1 Introduction

To go abroad, travellers typically need to have a passport. To obtain a new
passport, a traveller needs to go to his own municipality. For example, Fry has
to go to the New New York municipality, while Homer has to go to the Springfield
municipality. Although the New New York municipality will create a passport
for Fry, they will not do so for Homer, as he is not living in New New York,
but in Springfield. As such, the municipalities all offer the service to create a

? This research has been carried out as part of the Configurable Services for Local
Governments (CoSeLoG) project (http://www.win.tue.nl/coselog/).

123

new passport, but they are not competing with each other as they only offer
this service for their own inhabitants. As a result of the latter, municipalities
are quite eager to share their processes with other municipalities, and to learn
from each other. Although all municipalities offer the service to create a new
passport, they do not all use the exact same process. Some “couleur locale”
may exist between different municipalities. For example, the New New York
municipality may create the passport first and have Fry pay when he collects his
passport, while the Springfield municipality, being smaller, may require Homer
to pay when he requests for it, that is, before they create it. Even though the
steps in the process may be the same (request for a passport, pay for it, create
it, and collect it), the process may still differ to some extent.

The combination of this “couleur locale” and the openness mentioned earlier
makes municipalities natural candidates to benefit from co-called configurable
process models. A configurable process model contains variation points which
can be set to tailor the configurable process model to the preferences of an
organisation. Setting preferences for the variation points is called a configuration.
If all variation points are set by a configuration, the resulting process model
is called an instantiation. Please note that a configurable process model that
contains a multitude of variation points allows for an exponential amount of
possible configurations and instantiations.

A configurable process model may contain instantiations that are not used
by any of the municipalities. An interesting question now is, whether some in-
stantiations score better for a given municipality than the instantiation they are
now using. Given a set of Key Performance Indicators (KPIs), we could check
how every instantiation scores on these KPIs, and return the corresponding best
configurations. In [1], we have introduced Petra, a generic framework that au-
tomatically analyses KPIs on all instantiations of a configurable process model
for instance by simulating all the instantiations. By exhaustively searching all
instantiations, Petra returns a Pareto front [2] of the best instantiations to the
municipality, which can then select the configuration they like best.

As mentioned earlier, a configurable process model may allow for many vari-
ation points and, as a result, very many configurations and instantiations. As
a result, the amount of instantiations may be too large to analyse, or it may
simply take too much time to analyse them all. Therefore, in this paper, we aim
to reduce the amount of instantiations which need to be analysed by exploiting
the fact that they all stem from the same configurable process model. For ex-
ample, if we take the passport example as introduced earlier, it is clear that the
Springfield instantiation allows for less financial risks than the New New York
one. For this reason, if financial risk would be the KPI at hand, it would make
no sense to analyse the New New York instantiation, as it will be dominated
anyways by the Springfield instantiation.

To achieve this reduction in the amount of instantiations to analyse, we pro-
pose to exploit structural properties of the configurable process model by means
of a monotonicity notion. This paper introduces this monotonicity framework,
applies it for a concrete KPI, and evaluates the application empirically on an

124

artificial configurable process model. The monotonicity framework creates, per
KPI, an ordering of the instantiations. This ordering starts with the instantia-
tion most probably to have a high score on that KPI. Using these orderings, the
monotonicity framework starts analysing the most promising instantiations. It
keeps on analysing until no more instantiations can be found which score higher
on a KPI than the already analysed models.

For our concrete KPI, we have selected throughput time and we show how
the monotonicity can be computed between two instantiations. We apply this
monotonicity notion on a running example to order the instantiations. After-
wards, we use simulation to obtain concrete values for the KPI. Using these
values, we can conclude that we achieve a reduction of more than 90% on the
amount of instantiations which need to be analysed for this particular model.

The remainder of this paper is organised as follows. In Sect. 2, we elaborate
on related work. Afterwards, we present some preliminaries in Sect. 3. Sections 4
and 5 contain our monotonicity framework and concrete results for the concrete
throughput time KPI. We finish the paper with an empirical evaluation and the
conclusions and future work in Sect. 6 and Sect. 7.

2 Related Work

Our research builds on three existing lines of research: configurable process mod-
els, performance analysis, and business process reengineering.

2.1 Configurable Process Models

Configurable process models (see Sect. 3.1 for an example configurable process
model) have been developed by extending existing modelling languages, e.g.,
C-EPC (Configurable Event-driven Process Chain) [3], C-BPEL (Configurable
Business Process Execution Language), and C-YAWL (Configurable Yet Another
Workflow Language) [4]. A more complete overview of variability support is pro-
vided in [5]. All these approaches are mainly focussed on supporting variability
and not so much on the analysis of the resulting instantiations.

2.2 Performance Analysis

Within the field of queueing theory, work has been conducted in defining mono-
tonicity notions between queueing networks and between queueing stations.
In [6], the author defines a notion between queueing stations and between queue-
ing networks for closed queueing networks. The definition of monotonicity em-
ployed is similar to our notion of monotonicity. However, this paper is mainly
focussed on the parameters of the network (number of jobs, processing speed of
networks) and not on the relation between two topologically different networks.

The authors in [7] consider performance monotonicity on continuous Petri
nets. Similar to the work in [6], the authors consider monotonicity in terms of
the parameters of the Petri net and not in terms of the structure of the Petri

125

net. However, since our used formalism can be translated to Petri nets, this is
an interesting approach to consider for future work.

Although the papers consider monotonicity in a similar way as us, they focus
on the parameters instead of the topology of the network. However, one of our
future directions is to take the parameters also into account in which this work
might be applicable.

2.3 Business Process Reengineering

In [8], the author presents a tool KOPeR (Knowledgebased Organizational Pro-
cess Redesign) for identifying redesign possibilities. These redesign possibilities
are simulated to obtain performance characteristics such that they can be com-
pared. The analysis of process models focusses mainly on the analysis of a single
model and not on various instantiations. An approach evaluating when certain
changes to the structure of the process model are appropriate is presented in [9].
The paper starts from a number of commonalities in reengineered business pro-
cesses and deduces, based on queueing theory models, under which circumstances
a change to the structure of the process model is beneficial. Some ideas of their
paper can be applied to our setting but the majority of ideas is not tailored
towards throughput time.

In [10], so-called Knock-Out systems are discussed and heuristics are defined
for optimising these. Similar to [9], heuristics are defined and formally shown if it
is beneficial to apply a certain heuristic in a particular setting. Their approach
allows for more flexibility in defining the processes than configurable process
models, i.e., in the paper only a precedence relation is defined between tasks. At
the same time, the processes considered are less flexible as they do not include
choices, i.e., every task has to be executed. As with the previous approach, some
ideas can be used in our approach.

The approach closest to our approach is presented in [11]. In their approach,
various process alternatives are analysed. These alternatives are obtained by ap-
plying redesign principles instead of starting from a configurable process model.
Their approach can benefit of the work presented here as it might remove the
need to analyse some instantiations due to monotonicity.

3 Preliminaries

Before introducing the monotonicity framework, this section introduces the con-
figurable process models used by the framework and the Petra framework.

3.1 Configurable Process Models

Configurable process models contain predefined variation points. By configuring
these variation points, that is, by selecting appropriate values for these points,
the configurable process model can be tailored to an organisation (like a mu-
nicipality). If all variation points have been configured properly, that is, if the

126

Fig. 1: Running example of a configurable process model in BPMN notation.

Fig. 2: Running example from Fig. 1 in Process Tree notation.

configuration is complete, the configurable process model is instantiated into a
process model ready that is ready for enactment (an instantiation).

As an example, Fig. 1 shows the control-flow of a configurable process model
using a BPMN (Business Process Model and Notation) notation augmented with
curved arrows and no-entry signs. A curved arrow on an incoming edge indicates
a variation point that allows the following part of the configurable process model
to be hidden. For example, the curved arrow on the incoming edge of the task
labelled “B” indicates that this activity can be hidden. Note that if this curved
arrow would have been positioned on the outgoing edge of this task, that then
the entire following choice part, including the tasks labelled “C” and “D”, would
then have the option be hidden. Likewise, the no-entry sign indicates a variation
point that allows the following part of the configurable process model to be
blocked.

If a part of the configurable process model is hidden, this results in this part
being substituted by an automatic task. If a part of the configurable process
model is blocked, this results in removing this part in total. As a result, if a part
of a sequential execution of tasks is blocked, then the entire sequence is blocked,
as we would run into a deadlock otherwise.

For our configurable process model formalism, we use so-called Process Trees [1].
Figure 2 shows the Process Tree representation of the process model as shown in
Fig. 1. A Process Tree is a block-structured process modelling formalism and is
specifically developed in the CoSeLoG project. The main advantage of Process
Trees over other formalisms is that it ensures soundness, e.g., there cannot be
any deadlocks [12]. The various node types in the Process Tree and their seman-
tics in BPMN are depicted in Fig. 3. Nodes come in three flavours; tasks, blocks,
and events. Tasks form the units of work and can be either automatic (without

127

A A

Manual

Automatic

A Z

A Z

seq

and

A Z

xor
[gz][ga]

[ga]

[¬ga]

A Z

[gz][ga]
or

D R E

[gr]
loopxor

do redo exit

A

Z

A Z

A Z

def
A

Z

[ga]

[gz ∨ ¬ga]

A

Z

D R E

loopdef

do redo exit

D

R

E

[gr]
[¬gr]

A

Z

D

R

E

Fig. 3: The various nodes of a Process Tree and their BPMN semantics. For
choices we have a default option being the last child. This means that if all
expressions evaluate to false the last branch is chosen. For the xor, this is
encoded by annotating the last branch with the negation of the other branch.
Note that we have shown the case with two children. It is trivial to extend this
to more children.

a resource) or manual (with a resource). Blocks indicate the causal dependency
of the children, i.e., the nodes directly underneath the block. Events indicate a
point in the process where input from the environment is required. Only events
that match the actual input will be executed, the other events will be dropped.
In principle a block can have any number of children except for the loop nodes
(loopxor and loopdef), which always have 3 children, and the event nodes,
which have a single child. At the top of the Process Tree we have a root node.

Next to hiding and blocking, a Process Tree allows for a third type of variation
points, called placeholder nodes. Where hiding and blocking can be configured by
selecting either “yes” or “no”, a placeholder node can be configured by selecting
one of its child nodes. As a result, the placeholder node will be replaced in an
instantiation by its selected child node. For instance, in a configurable process
model, there may be the possibility to select a payment method from a set of
known payment methods (credit card, bank transfer, or cash). The Process Tree
formalism is richer than just the control-flow perspective [1], but here we limit
ourselves to the control-flow perspective, i.e., we assume the other perspectives
remain unchanged.

128

3.2 Petra

Petra [13] (Process model based Extensible Toolset for Redesign and Analysis)
is a framework for analysing configurable process models. Petra employs an
iterative brute force approach in traversing the instantiations of a configurable
process model. In each iteration, Petra chooses an instantiation and applies
various analysis tools to this. As a result, the values for the required KPIs become
known for this instantiation, and this instantiation can be added at the specific
point in the Pareto front [2]. As the Pareto front only keeps track of the best (non-
dominated) points, instantiations that may have been added may be removed at
some point in time. In the end, only those instantiations that are not dominated
by some other instantiation will survive on the Pareto front. The sets of tools
and KPIs within Petra are extensible with new tools and KPIs. As a result, we
prefer not to limit the monotonicity notion to a predetermined set of KPIs.

4 Monotonicity Framework

The monotonicity framework stems from the observation that it may be possible
to check whether an instantiation dominates another instantiation by comparing
the structure, control flows in or case, instead of the behaviour. This means that
we want to compare two models with respect to a KPI without computing the
actual values for that KPI. Consider, for example, two instantiations from the
running example (see Fig 2), and assume that for the first instantiation nothing
has been blocked or hidden, and that for the second nothing has been blocked
and only the task labelled “B” has been hidden. Clearly, the throughput time of
the second instantiation is always better than the throughput time of the first,
as the only difference is that the first has to execute “B”, which we assume takes
some time, where the second does not. Based on structure, we could claim that
the second instantiation is better as the first w.r.t. the throughput KPI under all
circumstances. As a result, when looking only at the throughput KPI, the first
cannot be better than the latter (assuming independence between the duration
of an activity and the occurrence of another).

For this reason, the monotonicity framework introduces an acyclic (partial)
order on the possible instantiations. Throughout the paper, we use the term “at-
least-as-good” to denote the monotonicity ordering between instantiations/nodes
for a particular KPI. We define this relation formally as:

Definition 1 (At-least-as-good). A node n is at-least-as-good as another node
n′ (denoted n ≥ n′) w.r.t. KPI K if ∀cP [K(n) ≤ c] ≤ P [K(n′) ≤ c], i.e., the cu-
mulative distribution function (CDF) of the distribution K(n) is for every point
c at most the CDF of the distribution of K(n′) in that point. An instantiation
M is at-least-as-good as another instantiation M ′ w.r.t. KPI K if and only if
the root node of M is at-least-as-good as the root node of M ′ w.r.t. K.

Note that it is possible that individual values of K(n′) are better than K(n),
but overall the values for n are better than n′.

129

Fig. 4: Using monotonicity, we can transform the set of possible instantiations
to a partial order indicating the most promising order of analysing the instanti-
ations for various KPIs.

If we have that a model M is at-least-as-good as a model M ′ for all (relevant)
KPIs, then clearly M should dominate (or at least equal) M ′ and as a result it
only makes sense to analyse M ′ if M needs to be analysed. Later on, we will see
how we can derive this at-least-as-good relation. First, however, we will show
how Petra uses this relation.

Graphically, the monotonicity transforms the collection of possible instan-
tiations to a collection of possible related instantiations. Since there might be
multiple KPIs in the framework, we obtain (different) relations for each of the
KPIs (Fig. 4). The dots are the instantiations and an arrow between two dots
indicates that the instantiation at the tail of the arrow is at-least-as-good as the
instantiation at its head. The open dots indicate the most promising instanti-
ations. By transitivity, if there exists a directed path from one instantiation to
another instantiation, then the former instantiation is at-least-as-good as the
latter w.r.t. the corresponding KPI.

With the monotonicity framework added, Petra analyses the possible instan-
tiations in a specific order. If M is at-least-as-good as M ′ on all KPIs, then M
will be analysed by Petra before M ′ will be analysed. If M ′ is to be analysed
by Petra and if at that point in time M has been dominated by some other
model M ′′, then M ′ cannot dominate M ′′ and there is no use in analysing it.
Otherwise, if M is not dominated, M ′ is analysed by Petra.

When an instantiation is dominated by other models, it creates a cut-off
point along the partial orders for the various KPIs, as this instantiation is at-
least-as-good (w.r.t. the KPI at hand) as every instantiation that can be reached
by a directed path. As a result, if an instantiation is below the cut-off points for
all KPIs, it is dominated by the previously analysed models and there is no use
in analysing it.

To determine whether an instantiation is at-least-as-good as another instan-
tiation, we need to check whether its root node is at-least-as-good-as the other
root node. To determine this, we use a bottom-up approach, which uses the fact
that both are instantiations of the same configurable process model. As a result
of this, we can relate two nodes in both instantiations in a straightforward way
by determining whether they stem from the same node in the configurable pro-
cess model: They are related if and only if they stem from the same node. Note
that hiding a part of the configurable process model results in an automatic task

130

with duration 0 in the instantiation. As a result, such an automatic task can
be related to any other node. Furthermore, note that if a placeholder node is
configured as a node of one type (like seq) in one instantiation, and as a node
of another type (like and) in another instantiation, it is possible that a node of
one type is related to another node of another type.

For a task node, it is usually quite straightforward to check whether or not
they are at-least-as-good as their related nodes: As both stem from the same
node, they are equal, and hence at-least-as-good. For a block node, we need to
look whether all relevant child nodes are at-least-as-good as their related nodes,
which is where the bottom-up approach comes in. Based on the structures of
both instantiations and using the fact which child nodes are at-least-as-good as
their related nodes, we determine whether a give node in one instantiation is at-
least-as-good as its related node in the other instantiation. With this approach,
we decompose the problem into smaller problems and basically use patterns to
identify which of the elements is better. If we can conclude that the one root
node is at-least-as-good as the second root node, then we can conclude that the
one process model is at-least-as-good as the second process model.

In our monotonicity framework, we assume there is a correspondence between
node types and the effects on the value of a KPI. This stems from the observation
that some KPIs behave monotone in two flavours, i.e., more is better (monitoring
activities in the process for compliance) or less is better (costs). KPIs which do
not behave monotone in that respect, e.g., wait time which can increase and
decrease with the addition/removal of activities, cannot be captured in this
framework.

Because we only take the structure of the instantiations into account, we
restrict ourselves to the control-flow perspective in this paper. However, to be
able to compare choice nodes (xor, def, or), we assume there is a probability
associated with the outgoing edges of the choice node. This probability indicates
the (relative) probability that the flow of control follows that path. Likewise,
to be able to compare loop nodes (loopxor and loopdef), we assume that
there is a probability associated with the outgoing edges to the redo and exit
blocks. In the next section, we demonstrate the applicability of our approach by
focussing on a single KPI.

5 Throughput Time

The example KPI to be used in our monotonicity framework is the throughput
time (sometimes also called sojourn time or lead time). The throughput time is
the time it takes a case from start to end. We have chosen the throughput time
since this KPI is well-studied and often considered for analysing process models.
Using our monotonicity framework, we need to be able to take two instantiations
(two Process Trees) and decide which instantiation is at-least-as-good (if any).
As mentioned, we focus on the control-flow perspective. Therefore, we assume
the other perspectives do not change between different instantiations. However,
we do not disregard the other perspectives as this might lead to counter-intuitive

131

≥

≥

≥

b b′

τ

Fig. 5: The general constraints for comparing two block nodes. Note that if the
child of b is a silent task (black square with white τ), it does not need to be
related to a child of b′.

results, e.g., if we have a choice between a fast and a slow branch, then reducing
the amount of work for the slow branch and increasing the amount of work for
the fast branch might actually increase the throughput time since the fast branch
cannot handle more work. Therefore, we focus on reducing the amount of work
for branches without increasing the amount of work for other branches. We go
through the collection of nodes and present when a node is at-least-as-good as
the related node (w.r.t. throughput time).

5.1 Tasks

A silent task (an automatic task with duration 0) is always at-least-as-good as
any node, and can be ignored (when not related) in a seq or and block. Any
other automatic task can be compared according Def. 1 with another automatic
task. In all other cases, we cannot say whether an automatic task is at-least-as-
good as the other node.

A manual task is at-least-as-good as the same manual task. In all other cases,
we cannot say whether a manual task is at-least-as-good as the other node. Please
note that, as mentioned earlier, we only take the control-flow perspective into
account. If we would take the resource perspective into account, then we could
check whether the same manual task would be performed by generally faster or
less overloaded employees.

5.2 Blocks

In Fig. 5, the general case is depicted where every comparison between block
nodes has to adhere to. A block node b is at-least-as-good as a related block
node b′ if every child node c of b (except for silent tasks) is related to a child
node c′ of b′ such that node c is at-least-as-good as node c′.

The general case is sufficient for the seq, and, and event nodes which are
related to nodes of the same type. Next to this, if b is an and node and b′

is a seq node and the general case holds, then we can also conclude that b is
at-least-as-good as b′ since doing things is parallel is at-least-as-good as doing
things in sequence for the throughput time. Finally, if b is a seq or and node and

132

≥

≥

≥

b b′

P1 P2

P3 P′
1 P′

2

P′
3

τ

Fig. 6: The general case but now the edges are annotated with probabilities.

b′ is a loop node (loopxor, loopdef) and the do and the exit are the only
children related of the loop, then b is at-least-as-good as b′. This comparison to
the loop stems from the fact that do is executed at least once and is eventually
followed by exit. Thus they are in a sequence.

For choices, we need more information, i.e., we need to know the probabil-
ity of executing a particular child. Therefore, we extend the general case with
probabilities yielding Fig. 6. Note that implicitly the general case also contains
probabilities but these are all 1, e.g., in a sequence there is no option to not
execute a particular child.

Comparing two xor/def nodes with each other requires that, apart from the
comparison of the general case, the probabilities for the related nodes are the
same. Note that in the general case, unrelated children of b are only allowed to be
silent tasks, which means that these have a throughput time of 0 making them
at-least-as-good as any unmapped child of b′. From this, with the requirement of
equal probability between the related nodes, we know the same fraction of cases
goes to unrelated nodes in both b and b′. For this fraction of cases, we know
the unrelated children in b are at-least-as-good as the unrelated children in b′.
Comparing two or nodes is similar to two xor/def nodes, only the probabilities
of the children in b have to be at most the probabilities of the related children
of b′. Note that the sum of the probabilities on the outgoing edges of an or
is at least 1. The reasoning behind this at most is that more cases having to
be executed by a particular node (i.e., a higher probability) does not lower the
throughput time and thus is that node at-least-as-good as the related node. This
also holds when comparing a xor/def with an or, i.e., the probabilities of the
children of the xor/def have to be at most the probabilities of the related
children in or whilst adhering to the general case.

Next to comparing choices with each other, we can also compare choices to
seq and and using the earlier observation that the children of the seq and and
have implicitly a probability of 1. The rules are the same as for the comparison
with the or, i.e., the probabilities are at most the probabilities of the seq and
and, and the general case is adhered to.

We can also compare choices to loop nodes. For this it is sufficient to adhere
to the general case and the probability of the child of b related to the redo
should be at most the probability of the redo in b′. The intuition behind this is
that the probability of the do and exit are both 1, i.e., they both are executed at

133

Table 1: The rules the combinations of nodes have to adhere to in order to deduce
that b is at-least-as-good as b′. An explanation of the used numbers can be found
at the bottom.
HHH

HHb
b′

seq and event loop xor/def or

seq 0 - - 1 - -

and 0 0 - 1 - -

event - - 0 - - -

loop - - - 4 - -

xor/def 0 0 - 4 2 3

or 0 0 - 4 - 3

0: general case

1: general case and only the do and exit are mapped.

2: general case and the probabilities of mapped nodes are equal.

3: general case and the probabilities are at most the probability of the mapped node.

4: general case and the probability for the redo is at most the probability of the
mapped node

-: not (yet) supported.

least once. Thus we have to make sure the child related to the redo is executed
at most as often as the redo, i.e., the probability of the node related to the
redo is at most the probability of the redo.

Finally, in order to compare two loop nodes, we need to have the general
case. On top of this, we need that the probability of executing the redo of b
is at most the probability of executing the redo of b′. The idea behind this is
that the higher the probability of the redo, the more often the loop will be
executed yielding a higher throughput time.

The requirements on the relation between two blocks are summarised in Table
1. The numbers indicate which requirements are to be adhered to in order for b
to be at-least-as-good as b′. An explanation of the numbers is at the bottom of
Table 1.

6 Empirical Evaluation

We have chosen an empirical evaluation over an asymptotic analysis since worst-
case we still have to analyse all the possible instantiations. This comes from the
fact that some models are incomparable (due to choices), and that, although
some are at-least-as-good, the models have values for a KPI which are too close
to each other making none of the models strictly better than another model.

For our empirical evaluation, we use the configurable process model from
Fig. 2. We want to show that we can prune a significant part of the instantiation
space prior to analysis. To analyse an instantiation, we simulate it at least 30

134

Fig. 7: The various rounds of analysis with the instantiations which were analysed
and their 95% confidence intervals. We started in round 1 with the 4 most
promising instantiations. In round 2, we continued with the 5 most promising
instantiations from the only model that survived the first round. Finally, in
round 3, we could conclude that all other instantiations are dominated.

times using L-SIM: a simulation tool developed by Lanner3. To enable simula-
tion, we have extended our configurable process model with resource and timing
information.

There are 144 possible instantiations from our running example (Fig. 2). Thus
the collection of possible instantiations in Fig. 4 contains 144 dots. In Fig. 7, the
various analysis rounds of our approach are depicted. Each round corresponds
to analysing a group of instantiations which do not share an at-least-as-good
relation and for which all instantiations that are at-least-as-good have already
been analysed and are not dominated (yet) by another model. In the first round,
we start with 4 instantiations (depicted by the 4 ovals at the top) which were
most promising, i.e., there was no instantiation which was at-least-as-good as
one of these 4 instantiations.

After simulating the most promising instantiations (the 95% confidence in-
tervals of the throughput times are depicted in the ovals), only 1 of these instan-
tiations was significantly better than the other instantiations and was kept as
one of the best models. For the second round, we obtained 5 other models which
were most promising (and not yet analysed) from our monotonicity. Simulating
each of these models resulted in 1 model being better than the other models
in the second round. This model was added to the set of best models. In the
third round, again 5 models were most promising and not yet analysed. By our
monotonicity notion, we knew 4 of them did not need to be analysed as non-best
models from the second round were at-least-as-good as these 4. The remaining

3 http://www.lanner.com/en/l-sim.cfm

135

model was simulated and was significantly worse than the best models. Since
none of the models from the third round made it to the set of best models,
we could conclude that all other 130 instantiations were dominated. Therefore,
there was no need to analyse the other models.

From the 144 instantiations, we only had to analyse 10, which means that
only 6.9% of the possible instantiations had to be analysed. Analysing all models
took a bit more than 50 minutes on a single core of 2.80 GHz (including some
I/O handling). The average time per model is a little bit more than 20 seconds.
Computing the monotonicity of the 144 models took a bit more than 2 seconds.
Only analysing the 10 models, took around 3 minutes. Note that, in Def. 1, we
used the CDF for determining whether one model is at-least-as-good as another
model. Since with simulation we cannot determine the CDF, we have used the
confidence intervals as an approximation of this CDF.

7 Conclusions and Future Work

Within Petra, we analyse large amounts of instantiations from a configurable
process model. These analysed instantiations are projected on a Pareto front to
only keep the instantiations that are most promising, according to some Key
Performance Indicators (KPIs), for an organisation. Due to the possible large
amount of variation point in a configurable process model, and the resulting very
large amount of possible instantiations, analysing each and every instantiation
is very time consuming and unnecessary as most will never be considered by an
organisation.

To prevent having to analyse all possible instantiations, using the fact that
most instantiations will never be considered, we sort them according to their
likelihood of appearing on the Pareto front. The sorting of the instantiations
happens using our monotonicity framework. This framework can be extended to
work with a multitude of KPIs.

We have applied our framework with a concrete KPI (throughput time) on
the configurable process model that was used as running example, and have
shown that we can achieve a significant decrease in the amount of instantia-
tions which need to be analysed (exceeding 90%). But these results are highly
dependent on the model and on the characteristics of the KPIs.

This work shows promising results and we plan to extend this into a multitude
of directions. We briefly sketch a panorama of future extensions. Currently, we
still need to traverse the entire instantiation space to compute the ordering
between models. In the ideal case, we can constructively create the configuration
for the instantiations most promising for a particular KPI. Next to this, we
also want to incorporate more KPIs into the framework. Furthermore, we want
to generalise this work to also be able to compute monotonicity between two
process models which are not necessarily instantiations from a single configurable
process model. Finally, we want to leverage some of the related work which
defines monotonicity on the parameters of the configurable process model to our
framework.

136

References

1. Schunselaar, D.M.M., Verbeek, H.M.W., Aalst, W.M.P. van der, Reijers, H.A.: Pe-
tra: Process model based Extensible Toolset for Redesign and Analysis. Technical
Report BPM Center Report BPM-14-01, BPMcenter.org (2014)

2. Kung, H.T., Luccio, F., Preparata, F.P.: On finding the maxima of a set of vectors.
J. ACM 22(4) (1975) 469–476

3. Rosemann, M., Aalst, W.M.P. van der: A Configurable Reference Modelling Lan-
guage. Information Systems 32(1) (2007) 1–23

4. Gottschalk, F., van der Aalst, W.M.P., Jansen-Vullers, M., Rosa, M.L.: Config-
urable workflow models. International Journal on Cooperative Information Sys-
tems 17(2) (2008) 177–221

5. Ayora, C., Torres, V., Weber, B., Reichert, M., Pelechano, V.: Vivace: A framework
for the systematic evaluation of variability support in process-aware information
systems. Information and Software Technology (0) (2014) –

6. Suri, R.: A concept of monotonicity and its characterization for closed queueing
networks. Operations Research 33(3) (1985) pp. 606–624

7. Mahulea, C., Recalde, L., Silva, M.: Basic server semantics and performance mono-
tonicity of continuous petri nets. Discrete Event Dynamic Systems 19(2) (2009)
189–212

8. Nissen, M.E.: Redesigning reengineering through measurement-driven inference.
MIS Quarterly 22(4) (1998) 509–534

9. Buzacott, J.A.: Commonalities in reengineered business processes: Models and
issues. Manage. Sci. 42(5) (May 1996) 768–782

10. van der Aalst, W.M.P.: Re-engineering knock-out processes. Decision Support
Systems 30(4) (2001) 451–468

11. Netjes, M.: Process Improvement: The Creation and Evaluation of Process. PhD
thesis, Eindhoven University of Technology (2010)

12. van der Aalst, W.M.P., van Hee, K.M., ter Hofstede, A.H.M., Sidorova, N., Verbeek,
H.M.W., Voorhoeve, M., Wynn, M.T.: Soundness of workflow nets: classification,
decidability, and analysis. Formal Asp. Comput. 23(3) (2011) 333–363

13. Schunselaar, D.M.M., Verbeek, H.M.W., van der Aalst, W.M.P., Reijers, H.A.:
Petra: A tool for analysing a process family. In Moldt, D., Rölke, H., eds.: Inter-
national Workshop on Petri Nets and Software Engineering (PNSE’14). Number
1160 in CEUR Workshop Proceedings, Aachen, CEUR-WS.org (2014) 269–288
http://ceur-ws.org/Vol-1160/.

137

Tracking Hot Topics for the

Monitoring of Open-world Processes

Remo Pareschi¹, Marco Rossetti², Fabio Stella²

¹ Department of Bioscience and Territory, University of Molise, Pesche (IS), Italy

remo.pareschi@unimol.it

² Department of Informatics, Systems and Communication, University of Milano-Bicocca,

Milan, Italy

{rossetti,stella}@disco.unimib.it

Abstract. We introduce the notion of open-world process to refer to processes

that generally require flexible execution and are influenced by external factors.

Among such processes we focus on those that fit also with the notion of “busi-

ness process”. We then introduce “hot topics” to capture contextual information

flows that, by flowing into the context of execution of open-world business

processes, may affect their definitions. Hot topics are discovered using unsu-

pervised learning techniques based on Probabilistic Topic Modeling and by

tracking variations of the information flows into topics over time. We illustrate

an application of this methodology to the tracking of recent innovations in labor

laws that affect a variety of open-world business processes, from labor sourcing

to merge-and-acquisition. Finally, we define a number of future directions for

research.

Keywords: open-world, business process management, probabilistic topic

modeling, process monitoring

1 Introducing open-world processes

When talking about processes in computer science and in artificial intelligence we

generally refer to computational objects that, once defined, have clear-cut and pre-

dictable behaviors. The background from which such processes arise may be itself

characterized by formal clarity, as is the case of the goals of a robot that through the

verification offered by logical reasoning are synthesized into a process corresponding

to an executable plan. Conversely, it may be of an initially murkier kind, as is the case

of sequences of logs of actions or tasks performed by people with diverse roles within

an organization, which can be mined and combined into explicitly defined work pro-

cesses. However, in either case, the result is an object with fixed formal and computa-

tional properties, corresponding to a repeatable sequence of actions that may allow

diverse degrees of flexibility, which are however known and planned for in advance.

Compare this situation with the following quote from the book War, a best-selling

in-depth report on the current Afghan war (written by the journalist Sebastian Junger,

who witnessed first-hand all the dramatic episodes described there): “the war also

138

diverged from the textbooks because it was fought in such axle-breaking, helicopter-

crashing, spirit-killing, mind-bending terrain that few military plans survive intact

even for an hour.” Without reaching such extremes, even in far more peaceful and

less tragic states of affairs, there are lots of work and business processes that diverge

substantially upon execution from the way they were planned, and that consequently

redefine themselves dynamically according to circumstances. Such dynamic redefini-

tions may, more often than not, be quite radical, and hence go beyond the boundary of

mere adaptation.

Clearly, these processes include all those that require real-time interactions be-

tween the agents involved and are heavily entangled with the physical world, for in-

stance, in addition to military activities, those relating to geographical and geological

exploration, logistics, energy planning. However, they include also processes where

the role of the physical world is less immediate and the interaction among the partici-

pating agents is more asynchronous. This is the case with the execution of different

aspects of corporate strategy (like market expansion, go-to-market plans, technology

transfer, protection of intellectual property, merge-and-acquisition), the running of

electoral and advertisement campaigns and financial placements.

We shall refer to processes of this kind as “open-world” by borrowing a terminolo-

gy that was used in [1] to refer to the evolution of software development from a

“closed-world” process to an “open-world” one. A more general way to look at these

processes comes from observing that they are subject to flexible execution and are

strongly influenced by external factors [2]. It should be noticed that in no way we are

implying that “open-world” processes are to be considered better, or even just more

relevant, than “closed-world” ones. As a matter of fact, closed-world processes are

certainly easier to deal with both from the point of view of organizational models and

of methods of computer support. On the other hand, open-world processes do exist.

Furthermore, in a time when the traditional boundaries between organizations, institu-

tions and countries are getting more and more friable, they are likely to increase.

Hence there is room and need to increase also the support that can be derived for them

from information technology.

We take the following properties to be characteristic of an open-world process:

1. First of all, it is, indeed, a process: namely it is defined as a number of steps that

can be executed in a sequence in order to achieve a certain type of objective, with

possible choice points subject to pre-conditions determined by its context of execu-

tion; taking a business-oriented definition, it can also be viewed as “a set of linked

activities that take an input and transform it to create an output. Ideally, the trans-

formation that occurs in the process should add value to the input and create an

output that is more useful and effective to the recipient either upstream or down-

stream.” [3].

2. However, the process definition is open to the possibility of continuous revision,

refinement, and re-interpretation due to the interaction with external agents during

its execution; similarly, roles and resources in the process may need to be revised,

for instance in consequence of the encounter of hitherto unknown stakeholders, or

139

of the impossibility to access resources that turn out to be unavailable at execution

time.

3. Open-world processes of this kind are most often mission-critical for their originat-

ing organizations or institutions, that thus generally create explicit or implicit roles

for decision-makers of last resort, who have the powers to redefine the process and

reset roles and resources; hence the need of identifying clearly such decision mak-

ers and of extracting the decisions that they have made in order to get a grasp on

the status of definition of the process and on how much it has eventually stabilized.

Point 3 defines the scope of this article, and of the future developments that can fol-

low from it.

Our approach hinges on the tracking of increased information flows, what we call

hot topics, around the execution of open-world processes, thus detecting situations

where the current process execution is stressed by external factors, and an evolution-

ary change of its definition is therefore likely to take place. Hot topic tracking derives

from the application of Probabilistic Topic Modeling (PTM) [4], a framework for the

unsupervised learning of topics in collections of textual contents that has proved ro-

bust and effective in a variety of contexts. We shall illustrate an application of our

approach to a specific type of external factors. In fact, we shall show how the imple-

mentation of legislation, and in particular of labor law, may affect a number of busi-

ness processes where employees are among the key stakeholders, either directly, as in

the case of hiring and dismissal, or indirectly, as in the case of business transfers.

The remainder of this paper is therefore structured as follows:; in Section 2 we il-

lustrate the general principles underlying our application of PTM to the tracking of

hot topics; Section 3 is the core of the paper, where we apply hot topic tracking to the

monitoring of the evolution of open-world processes in the context of implementation

of labor law, a very dynamic and socially “hot” sector of civil law; Section 4 outlines

directions for future work and concludes the article.

2 Topic Modeling for Hot Topic Tracking

Text mining approaches based on Probabilistic Topic Modeling (PTM) are recently

gaining considerable value as they allow the discovery of high-level dependencies

between contents of a document corpus. Probabilistic Topic Models are statistical

methods capable to handle, through unsupervised learning techniques, large volumes

of unstructured data. The main purpose of these algorithms is the analysis of words in

natural language texts in order to discover themes represented by sorted lists of

words. For instance, Figure 1 shows 4 out of 300 topics extracted from the TASA

corpus [5]. It is easy to see that words in the four topics are related to each other and

can be considered as consistent themes. Furthermore, PTM is also able to provide

topic proportions for each document, which is very useful to understand which themes

a document is about. PTM-based text mining approaches aim to get the best of both

worlds, by providing richly structured representations of the knowledge derived from

the empirical validation of "Big Data" processing. Hence they improve both on tradi-

140

tional symbolic approaches, that lack data validation, and on connectionist approach-

es, that lack capability to represent knowledge [6].

Fig. 1. Example of topics extracted from the TASA corpus [5].

More technically, PTM, exploits LDA (Latent Dirichlet Allocation) [7] to automati-

cally extract topics (concepts) from document corpora. Each topic is associated with a

list of words and each document is associated with a mixture of topics. The process

of topic extraction returns the probability distribution �� of the words of the docu-

ment corpora for each topic � and the probability distribution �� of the topics for each

document �. By exploiting techniques of statistical inference and sampling, these

probability distributions are inferred by observing the frequency of words within doc-

uments. Figure 2 illustrates the probabilistic generative process and the statistical

inference process for topic extraction.

The idea behind the use of PTM for monitoring open-world processes is to exploit

the flow of information that accompanies the different steps of the process to identify

situations where topics that are most closely associated with contents exchanged dur-

ing process execution become densely populated. We take this as a signal that the

process is going through a critical phase and that the information that accumulates

around it during that period of time can contain key indicators of possible changes

and re-adaptations.

To give an example on which we will return with further details later on, an inter-

company process of the highest relevance is the one that governs the transfer of a

business from one ownership to another. Clearly, this is an open-world business pro-

cess in the sense meant in Section 1, in fact:

1. It is a set of linked activities that take an input and transform it to create an output.

In this case the input is the existing ownership of a business or of a business unit,

and the output is a new ownership, with a downstream recipient corresponding to

the new owner, to whom the business is transferred, and an upstream recipient cor-

responding to the former owner, who gets the proceeds of the transaction;

141

2. It is open-world, since its control does not reside within the boundary of a single

organization and its execution is contextually influenced by a number of factors

and stakeholders which may vary and change over time.

Fig. 2. From the generative process to the statistical inference [5].

For companies that operate in countries that adhere to the European Union such con-

textual factors and stakeholders include, respectively, the "Transfers of Undertakings

Directive" of the European Union, that protects the contracts of employment of peo-

ple working in transferred businesses, and the decision-makers with powers on the

interpretation and application of this law. Each member state is responsible for the

implementation of the Directive with respect to transfer operations of its pertinence

and the rules of implementation have been generally clarified through the intervention

of decision-makers of last resort, who have arbitrated conflicting interpretations dur-

ing the run-in period and thus have defined the standards of implementation from then

on. Considering the time generally required for a European law to stabilize within the

legislative framework of the member states, and the fact that this legislation replaces

since the beginning of the 2000s a previous European law in force during the last 25

years of the previous century, we can say that the Directive is reaching just now the

final stage of its running-in. As we shall see, this situation is clearly reflected by the

high heat of the topic most directly associated with the Directive in relatively recent

times, when the Italian Court of Cassation, which is the decision-maker of last resort

on this subject in Italy, made a number of judgments that interpret and define the

criteria for its implementation. These documents are clustered within the topic during

that interval of time, causing its heating up. After that the process of business transfer

in Italy appears, as regards the Directive of Undertakings, to have reached a stable

state, and this is reflected in the corresponding cooling down of the topic, as shown by

the fact that in the successive time intervals the amount of content clustered within it

drops very sharply.

Thus, spotting when a topic becomes “hot” and, conversely, when it “cools down”,

requires plotting the content carried by the topic through time. This will be illustrated

in the next section.

142

3 Methodology

In order to substantiate the relationship between open-world business processes and

hot topics we have employed LDA to classify 20.600 rulings issued by the Italian

Court of Cassation in matters pertaining labor law between 2009 and 2014. This peri-

od saw several innovations of the Italian labor law, some of which attributable to the

implementation of European directives in the field. In the Italian civil law system the

Court of Cassation is called upon to address and validate the work of the lower courts

as well as to fix the interpretation of the legislation. We can therefore expect that

processes, which typically involve businesses, trade unions and workers as stakehold-

ers, made possible by these innovations have gone through a period of adjustment

solved through the deliberating activity of the Court of Cassation; such activity can in

turn be reconstructed by tracking hot topics within the corpus. To achieve this, we

need to plot the evolution of the measured probability of each topic against time. Let

us define � as the time frame considered, �	
|�� as the probability of topic
 given the
judgment �, �	�|�� as the probability of judgment � given the time frame � and
� as a
function that associates the judgment � with the corresponding time frame. The empir-

ical probability that an arbitrary judgment � issued at time period � was about topic

is indicated with �	
|�� and it is defined in Equation 1:

�	
|�� = � �	
|���	�|��
�:����

= 1
� � �	
|��
�:����

	 		1�

Since �	�|�� is the probability that the judgment is assigned to the time frame �, that
term can be substituted with

�
�, where � is the number of judgments in the time frame

�. The function T can be parameterized to yield time intervals corresponding to one

month, two months, four months, six months and one year periods.

We ran LDA setting the number of topics to extract equal to 10, 20, 50, 100 and 200

in order to find the best granularity of topics. The standard LDA model assumes that

the topic structure is flat, and tries to assign a unique theme to each topic. However, if

the number of topics is too big themes are split across many topics, while if the num-

ber is too little more themes can be aggregated in a single topic. While selecting the

correct number of topics is still an open issue [8], an empirical analysis can be con-

ducted to assess the topic quality. In our case domain experts, namely labor lawyers,

chose the 50 topics experiment as the best candidate and specifically reviewed and

graded the 50 topics set. In all 18 topics turned out to be good performers, 14 were

considered noise with remaining ones being somewhat uncertain. Of the 18 good

performers a further selection can be made by taking out 4 topics that are so close to

other ones to correspond substantially to clones. Best performing topics have been

manually labelled on the basis of the domain specific sense of topic words (Table 1).

The characteristics of a good performer, in the eyes of domain experts, can be

summarily characterized in the ability to identify concepts specifically attributable to

a particular legislative and / or decision-making context, e.g. “collective dismissal /

143

union agreement / selection criteria” or “rotation / redundancy funds / Fiat agree-

ment”.

Table 1. Best performing topics from the 50 topics extracted.

Best performing topics Relevant words

Transfer of business judge (giudice), convinction (convincimento), evidence (prova), irre-

gularity (irregolarità), company (azienda)

Collective contract collective (collettivo), contract (contratto), agreement (accordo)

Collective dismissal employees (dipendenti), union (sindacali), criteria (criteri), mobility

(mobilità), collective (collettivo)

Work injury injury (infortunio), liability (responsabilità), damage (danno), insuran-

ce (assicurazione)

Dismissal for just cause contestation (contestazione), sanction (sanzione), just_cause (giusta

causa), conduct (condotta), justified (giustificato)

Overtime work compensatory_rest (riposo compensativo), damage (danno), availabi-

lity (reperibilità)

Journalistic job provision provision (prestazione), activities (attività), journalists (giornalisti),

nature (natura), guarantee (garanzia)

Nature of the enterprise cooperative (cooperativa), family (familiare), tax (tributario), admin-

istration (gestione), protection (tutela), shareholder (socio)

Fixed-term employment

contracts at the Italian Post

contract (contratto), fixed-term (termine), Italian Post (Poste Ital-

iane), damage (danno)

Impact on severance indem-

nities of overtime work

overtime_work (lavoro_straordinario), indemnities (trattamento),

compensation (compenso), national_collective_labor_contract

(CCNL)

Notice and indemnity in the

agency contracts

contract (contratto), agent (agente), indemnity (indennità), notice

(preavviso)

Criteria of rotation in the

extraordinary wages guaran-

tee fund

extraodinary_wages_guarantee_fund (CIGS), criteria (criteri), rota-

tion (rotazione), agreement (accordo), Fiat

European directive on trans-

fer of undertakings

transferee (cessionario), European (europea), court_of_justice (corte

di giustizia), directive (direttiva), transfer (trasferimento), seniority

(anzianità)

Duties and qualifications of

company directors

national_collective_labor_contract (CCNL), qualifications (mansioni),

category (categoria), speriore (higher), director (dirigente)

Conversely, the characteristics of a bad performers may be multiple, some of which

amendable through an improved morpho-syntactic analysis of the text, but the most

frequent and endemic one resides in a composition of the topic in terms of elements

too general to lead to significant identification, such as “law”, “burden”, “responsibil-

144

ity” and so on.We have then applied Formula [1] to monitor the trends in the topics.

Topic Dismissal for just cause (the fifth from the top of Table 1) makes for an inter-

esting and a relevant case. The theme of the topic has been in fact substantially re-

vised by the most recent labor reform in Italy, which entered in force in June 2012,

among other things by introducing relevant modifications in the open-world process

related to the retaining of workers by businesses, in particular regarding so called

small and medium enterprises (SMEs). We can therefore expect that immediately

after that the topic would heat up. This could not be related much to the possibility to

open and finalize new legal procedures on the basis of the recent legislation, which

would not be possible in such a short period of time, but rather on the ability to make

decisions on extant procedures by also taking into account the new norms. So it turns

out to be the case: the graphic in Figure 3 shows a peak in the topic trend (probability

evolution) during the second half of 2012, that on a bimonthly split can be exactly

located in September 2012. After this peaking the topic progressively cools down, an

indicator that the corresponding process has for the time being readjusted and stabi-

lized.

Fig. 3. “Dismissal for just cause” topic evolution.

As representative of the typical development of a hot topic, and an associated open

world process, as Dismissal for just cause is, it is far from being the hottest topic

among those that we have identified. In fact at the top of the “hit parade” of hot topics

we find the second last item from Table 1, namely European directive on undertak-

ings. We can compare how far hotter it is with respect to Dismissal for just cause by

plotting the trends of the two topics one against the other as in the graphic in Figure 4,

where we can also notice that the latter topic peaks up at its highest probability value

during the second half of 2011 and then resurges sharply yet again, even if without

reaching the previous heights, for a longer period encompassing most of the second

half of 2012 and of the first half of 2013. Indeed, it is in this period that the Italian

145

Court of Cassation issues a number of rulings that have become fundamental bench-

marks for the implementation in the Italian context of the European directive on trans-

fer of a business (or of a business unit). We can also ask ourselves why European

directive on undertakings is so much hotter as a topic than Dismissal for just cause.

This may find a plausible answer in the fact that the scope of European directive on

undertakings, that concerns companies of all sizes, and touches an issue of foremost

importance (sometimes decisive for the fate of thousands of workers), is so much

wider than the changes affecting the scope of Dismissal for just cause, where the ac-

tors mostly concerned are SMEs and the dealt cases are about individual workers. As

an example of a mid-flyer we can find topic Overtime work, dealing with theme of

compensation for overtime work, a subjects that is well-known and established, but

given its numerous interpretations and social relevance, is bound to heat up from time

to time, with the Court of Cassation acting an actor of arbitration and regulation for

the diverse options open in the execution of the processes.

Finally, we can see in Figure 4 these three topics against two topics that have been

deemed as non-performing by the domain experts. As can be expected, the topics

develop in a very flat way, by spreading evenly among all processes, and thus lack the

capability of highlighting major turning points in their definition and implementation.

As a note on related work, a somewhat similar equation has been applied in [9]

with a different purpose, namely the statistical and quantitative reconstruction of the

history of ideas in a variety of scientific areas. Indeed, the focus of [9] is a case study

on the evolution of research directions in computational linguistics through the topic-

based analysis of 12,500 articles published in major international conferences in the

field between 1980 and 2005. It is interesting to note that the trends reported in this

work show characteristics significantly different from those reported here. In fact, the

graphics contain mostly gentle slopes as opposed to the abrupt peaks with steep as-

cents and descents characterizing, albeit with varying levels of abruptness, our

graphics. This difference has a variety of reasons, the most obvious and paramount of

which is that the analyzed documents are, in this case, typically relevant for the ad-

vancement of a scientific discipline, a phenomenon that is indeed distributed over

time, but with none of the characteristics of processes aimed at attaining specific

goals, with which the documents analyzed in our case are associated. Thus, the gradu-

al emerging and waning of ideas, caught by such softer uphills and downhills, is pre-

cisely what we expect, in contrast to the sharp phases of adjustment, as required by

the practical needs of the moment, that characterize our topics. [10] do address the

notion of hot topic in a vein very similar to ours, but their formal and computational

treatment falls completely outside PTM and LDA, and in fact is term-oriented rather

than topic-oriented. Thus, it does not appear suitable for the spotting of hot topics

from large content corpora which is our purpose here, while it may be particularly

suitable for their identification in the context of short texts, such as the twits or the

threads of social networks.

146

Fig. 4. Topic evolution of significant topics compared to non-performing topics (NP).

4 Conclusions

We have introduced the notion of open-world process in order to capture large pro-

cesses that involve multiple organizations, and are influenced by a number of contex-

tual factors and stakeholders. Furthermore, we have introduced the notion of hot topic

so as to provide a computationally effective way to track context evolution around

open-world processes in terms of the information that flows into such processes at

various degrees of density over time. Hot topics are themselves an application of sta-

tistical inference in the form of PTM, and thus are firmly rooted into empirical evi-

dence, without sacrificing high level representations of the inferred meanings. Hence

they show promise to be effectively combined with existing high-level representations

of business processes. There are a number of research directions that can and, in order

to obtain useful and concrete results, must be pursued to evolve this initial contribu-

tion. A most immediate one is to carve out a framework for Open-world Business

Process Management within the wider field of Business Process Management [11],

the discipline that encompasses the established computational framework for the

147

management of closed-world processes, namely Workflow Management. One clear

direction to achieve this is to combine our statistical approach to the monitoring of

information flows in open-world processes with a general framework for the monitor-

ing of events over time in global systems, like, for instance, the reactive version of the

Event Calculus proposed in [12]. Once verified the heating up of a topic over a de-

fined interval of time such a calculus may then trigger the inspection of the pertinent

contents, and the consequent retuning of the closed-world processes in the participat-

ing organizations that are synchronized around the relevant open-world process,

through adaptive technologies like adaptive workflow management [13], [14] and

case handling management [15].

Another crucial step is to survey and consequently map the existing open-world

processes from the informal sources through which they are currently documented

into a more rigorous notation. Given the inherent definitional fluidity of open-world

processes, in place of the formal notations commonly used for closed-world process-

es, like Petri Nets and Workflow Nets, it may be preferable to use one aimed at han-

dling incomplete information and soft constraints, such as the Generalized Process

Structure Grammars (GPSGs) presented in [16]. GPSGs that encode open-world pro-

cesses could in fact include rules containing symbols as names for topics generated

through LDA/PTM, thus acting as interfaces between process definitions and contex-

tual information flows. Another approach that could be similarly adopted, being itself

based on a declarative formalism for the definition of flexible processes, is the one

presented in [2].

As far as the topics are concerned, there are further possible constructions that can

help us to gain insight about the processes they are associated with. In particular, one

possibility we plan to explore is the generation of links among semantically related

content objects clustered within the topics, following the methodology presented in

[17]. In the context of the specific case study presented here, based on the implemen-

tation of labor law, this would allow us to rate the relevance of judgments on the basis

of how many other judgments make reference to it, this being a clear case of semantic

proximity. However, given that semantic proximity between content objects is itself

probabilistically computed, other less obvious relationships would emerge. In this

way, we could gain access not just to hot topics, but also to hot objects.

5 Bibliography

1. L. Baresi, E. Di Nitto e C. Ghezzi, «Toward Open-World Software: Issues and Challeng-

es,» IEEE Computer 39(10), pp. 36-43, 2006.

2. M. Pesic e W. M. van der Aalst, «A Declarative Approach for Flexible Business Processes

Management,» in Business Process Management Workshops, 2006.

3. H. J. Johansson, P. McHugh, J. Pendlebury e W. A. Wheeler, Business Process Reengi-

neering: Breakpoint Strategies for Market Dominance, John Wiley & Sons, 1993.

4. D. M. Blei, «Probabilistic Topic Models,» Commun. ACM 55(4), pp. 77-84, 2012.

5. M. Steyvers e T. Griffiths, «Probabilistic Topic Models,» in Handbook of Latent Semantic

Analysis, 2007, pp. 424--440.

148

6. J. B. Tenenbaum, C. Kemp, T. L. Griffiths e N. D. Goodman, «How to grow a mind: sta-

tistics, structure, and abstraction,» Science 331 (6022), pp. 1279-1285, 2011.

7. D. M. Blei, A. Y. Ng e M. Jordan, «Latent Dirichlet Allocation,» The Journal of Machine

Learning Research, pp. 993--1022, 2003.

8. E. H. Ramirez, R. Brena, D. Magatti e F. Stella, «Topic Model Validation,» Neurocompu-

ting, pp. 125-133, 2012.

9. D. Hall, D. Jurafsky e C. D. Manning, «Studying the History of Ideas Using Topic Mod-

els,» in EMNLP, 2008.

10. K.-Y. Chen, L. Luesukprasert e S.-c. T. Chou, «Hot Topic Extraction Based on Timeline

Analysis and Multidimensional Sentence Modeling,» IEEE Trans. Knowl. Data Eng.

19(8), pp. 1016-1025, 2007.

11. W. M. P. van der Aalst, A. H. M. ter Hofstede e M. Weske, «Business Process Manage-

ment: A Survey.,» in Business Process Management, 2003.

12. S. Bragaglia, F. Chesani, P. Mello, M. Montali e P. Torroni, «Reactive Event Calculus for

Monitoring Global Computing Applications,» in Logic Programs, Norms and Action,

2012.

13. U. Borghoff, P. Bottoni, P. Mussio e R. Pareschi, «Reflective Agents for Adaptive Work-

flows,» in Second International Conference on the Practical Application of Intelligent

Agents and Multiagent Technology, London, 1997.

14. M. Leitner, S. Rinderle-Ma e J. Mangler, «AW-RBAC: Access Control in Adaptive Work-

flow Systems,» in ARES, 2011.

15. W. M. P. van der Aalst, M. Weske e D. Grünbauer, «Case handling: a new paradigm for

business process support,» Data & Knowledge Engineering 53 , pp. 129-162, 2005.

16. N. S. Glance, D. Pagani e R. Pareschi, «Generalized Process Structure Grammars for Flex-

ible Representations of Work,» in CSCW, 1996.

17. M. Rossetti, R. Pareschi, F. Stella e F. Arcelli , «Integrating Concepts and Knowledge in

Large Content Networks,» New Generation Comput. 32(3-4), pp. 309-330, 2014.

18. T. L. Griffiths e M. Steyvers, «Finding scientific topics,» Proceedings of the National

academy of Sciences of the United States of America, pp. 5228-5235, 2004.

149

Using Semantic Lifting for Improving Educational
Process Models Discovery and Analysis

Awatef Hicheur Cairns1, Joseph Assu Ondo1, Billel Gueni1, Mehdi Fhima1, Marcel
Schwarcfeld1, Christian Joubert1, Nasser Khelifa2,

1ALTRAN Research, 2 ALTRAN Institute
Vélizy-Villacoublay, France

{awatef.hicheurcairns, joseph.assu, billel.gueni,

mehdi.fhima, marcel.schwarcfeld, christian.joubert,

nasser.khelifa}@altran.com

Abstract. Educational process mining is an emerging field in the educational
data mining (EDM) discipline, concerned with discovering, analyzing, and
improving educational processes based on information hidden in datasets and
logs. These data are recorded by educational systems in different forms and at
different levels of granularity. Often, process discovery and analysis techniques
applied in the educational field have relied exclusively on the syntax of labels
in databases. Such techniques are very sensitive to data heterogeneity, label-
name variation and their frequent changes. Consequently, large educational
process models are discovered without any hierarchy or structuring. In this
paper we show how by linking labels in event logs to their underlying
semantics, we can bring educational processes discovery to the conceptual
level. In this way, more accurate and compact educational processes can be
mined and analyzed at different levels of abstraction. We have tested this
approach using the process mining Framework ProM 5.2.

Keywords: Semantic Process Mining, Educational Process Mining, Ontology,
Semantic Matching, ProM.

1 Introduction

Nowadays, education and training centers promote personalized curriculums where
students are free to choose the skills they want to develop (from beginner to specialist),
the way they want to learn (theoretical or practical aspects) and the time they want to
spend. This tendency is reinforced by the emergence of "e-learning” which represents
an increasing proportion of the in-company trainings. Educational systems support a
large volume of data, coming from multiple sources and stored in various formats and
at different granularity levels [6], [16]. These data can be exploited by instructors to
understand students’ learning habits, the factors influencing their performance and
their target skills. To answer these questions, there is an increasing research interest in
using process mining in education [6],[10], [15], [16]. The idea of process mining [1]

150

is to discover, monitor and improve real processes (i.e., not assumed processes) by
extracting knowledge from event logs (recorded by an information system). However,
the proposed approaches for process models extraction in the education field are
somewhat limited because they rely on classical process mining techniques which are
purely syntax oriented i.e. based on the labels in event logs [2]. For instance, we have
encountered a massive professional training dataset of a worldwide consulting
company where depending on the country and the region involved different names
were used for the same training. So, the actual semantics behind the trainings’ labels
remain in the head of education management people (e.g. teachers, carrier advisors,
etc.) who have to interpret them. To handle this question, semantic annotations on
event logs could be used to prevent such interpretation efforts [2], [3]. To benefit
from the actual semantics behind these labels, semantic process mining techniques
were introduced in [2], [3], [4], leveraging mining and analysis techniques to the
conceptual level. In this paper, we show how semantic process mining ideas may help
to discover simplified educational process models and to extract more knowledge
about their properties. For the first time, to our knowledge, a professional training
dataset of a consulting company is taken as a case study to extract and analyze
training paths annotated with semantic information. Also, we propose a
(semi)automatic procedure used to associate semantics to training labels. The
remainder of this paper is organized as follows. Section 2 summaries educational
process mining techniques. Section 3 presents the semantic process mining core idea.
Section 4 explains our approach to extract educational process models annotated with
semantic information. Finally, section 5 concludes the paper.

2 Process Mining in the Educational Field

Process mining is a relatively new technology which emerged from the information
technology and management science [1]. It focuses on the development of automated
techniques to extract process-related knowledge from event logs. An event log
corresponds to a set of process instances (i.e. traces) following a business process.
Each recorded event refers to an activity and is related to a particular process instance.
An event can have a timestamp and a performer (i.e. a person or a device executing or
initiating an activity). Educational Process Mining (EPM) refers to the application of
process mining techniques in the education domain [16]. Educational event logs may
include students’ registration procedures, student’s examination traces or activity logs
in e-learning environments. The three major types of process mining techniques are
(cf. Fig. 1): Process model discovery takes an event log and produces a complete
process model able to reproduce the behavior observed in this log. Conformance
checking aims at monitoring deviations between observed behaviors in event logs and
process models or predefined business rules and constraints. Process model extension
aims to improve a given process model based on information (e.g., time, performance,
case attributes, decision rules…etc.) extracted from an event log related to the same
process. Regarding available process mining tools, the ProM Framework is the most
complete and powerful one aimed at process analysis and discovery from all
perspectives (process, organizational and case perspective) [8]. It is implemented as
an open-source Java application with an extendable pluggable architecture.

151

Fig 1. Process mining concepts

ProM supports a wide range of techniques for process discovery, conformance
analysis and model extension, as well as many other tools like conversion, import and
export plug-ins. The de facto standard for storing and exchanging events logs are the
MXML (Mining eXtensible Markup Language) format or more recently the XES
(eXtensible Event Stream) format. In practice, however, ProM presents certain issues
of flexibility and scalability which limit its effectiveness in handling large logs from
complex industrial applications [13]. We may get over these limitations by using the
service oriented architecture of the ProM 6 framework. Theoretically, such
architecture may allow the distribution of ProM’s plugins over multiple computers
(e.g., grid computing). We are recently testing such a construction in the development
of an interactive and distributed platform tailored for educational process discovery
and analysis. Let us note that, lately, educational process mining has emerged as a
promising and active research field [6], [15], [16]. However, the application of
process discovery techniques presents some challenges given the huge volume and the
traces’ heterogeneity often encountered in educational datasets. In fact, when
analyzing event logs containing a lot of distinct traces, traditional process discovery
techniques generate highly complex models (i.e. spaghetti models) [13]. In this case,
the adoption of filtering, abstraction or clustering techniques may help reduce the
complexity of the discovered process models [14], [17]. For instance, a clustering
technique was proposed in [6] to improve both the performance and readability of the
mined students’ behavior models in the context of e-learning. In our previous work
[10], we proposed a two-step clustering approach for partitioning training processes
depending on an employability indicator. We think that semantic process mining
techniques seem to be a promising area to explore in order to handle the issue of
traces’ heterogeneity and so to extract simplified process models.

3 Semantic Process Mining

The semantic process mining techniques, introduced in [2], [3] aim to analyze and
extract process-related knowledge from event logs, at the conceptual (semantic) level

152

[4]. The challenges for mining and monitoring processes from a semantics perspective
have been studied in the context of the European project SUPER [9]. The concept of
semantic log purging was proposed in [12], taking a case study in the higher education
domain. In [5], the authors proposed a combination of standard process mining
techniques with semantic lifting procedures on the event logs in order to mine more
precise process models. The core idea of semantic process mining is to explicitly
annotate elements in event logs with the concepts that they represent. These concepts
are formalized in generic or domain specific ontologies. Hence, semantic process
mining techniques are built on the following three basic elements: ontologies, ontology
reasoners, and references from elements in logs/models to concepts in ontologies [2].
First, ontologies define and formalize a set of concepts shared by (a group of) people to
refer to things in the world and the relationships among these concepts. Second, the
reasoner provides reasoning over the ontologies in order to derive new knowledge,
e.g., subsumption, equivalence, etc. Finally, the references associate meanings to labels
(i.e., strings) in event logs and/or models by pointing to concepts defined in ontologies.
The discovery, conformance checking, and extension techniques rely on subsumption
relations induced by these ontologies to raise the level of abstraction from the
syntactical level to the semantical level. Thus, these techniques can be applied without
requiring any modification of models or logs if the elements in different logs and
models link to the same concepts (or super/sub concepts of these concepts). Let us note
that all semantic plug-ins developed in ProM are based on the following concrete
formats for the basic building blocks: Event logs are in the SA-MXML (i.e. Semantic
Annotated Mining eXtensible Markup Language) file format. SA-MXML is a
semantically annotated version of the MXML format which incorporates the model
references (between elements in logs and concepts in ontologies). Ontologies are
defined in WSML (Web Service Modeling Language) [7], [11]. The WSML 2
Reasoner Framework [18] is used to perform all the necessary reasoning over the
ontologies.

4 Case Study: Leveraging Educational Process Mining
Techniques at the Semantic Level

Our motivating example is based on real-world training databases from a
worldwide consulting company. This company has around 6 000 employees that are
free, during their careers, to take different trainings aligned with their profiles. These
trainings are provided by internal or external organizations. The data collected for
analysis includes the employees’ profiles (demographics data), their careers (i.e. the
jobs/missions they did) and their training paths (the set of trainings taken during the
past three years) (cf. Table 1). In what follows, we apply a process model discovery
algorithm (e.g. the heuristic miner [8]) on a fragment of the training event log (cf.
table 1), containing 1000 traces, 2419 events and 280 originators. We can see that the
obtained result is an unreadable spaghetti like process model (cf. Fig. 2). This result
can be explained by the heterogeneity in employees’ training paths and the great
number of different trainings’ labels. Let us note that depending on the organization,
the country and the region involved, different labels (i.e. string) were used for the
same training. Moreover, some training courses can be seen as special cases of other
trainings. For instance, the trainings “Collective English”, “Collective Face to Face

153

English”, “English In Group” are in fact the same training which is given different
names following data sources. Moreover “Collective Face to Face English” is a
variant of “Face to Face English”, which is a special type of the “English” training.

Table 1. Example of an educational event log

Fig 2. Fragment of a spaghetti process describing all trainings followed by the consulting
company’s employees during the last three years. The process model was extracted using the

Heuristic Miner plug-in of ProM.

To handle this issue, we need to link different trainings which are variants or
synonyms of the same training to a unique concept in a training ontology. Usually,
there are two ways to achieve this. We can manually create all the necessary
ontologies and annotate the necessary elements in educational event logs with
ontologies’ concepts. It is also possible to use tools to (semi)automatically discover
ontologies based on the elements in these logs [4]. The discovered ontologies can be
manually improved in a second step. Let us note that semantic process mining tools
can also play a role in ontologies’ extraction and enhancement from event logs. The
ontology depicted in Fig. 3 is used to formalize the concepts for trainings in our
example. It contains 42 concepts and 129 instances. We built this ontology manually
taking as starting point the semantic description of trainings provided in training
organizations’ catalogues. We distinguished five super-concepts related to the training
domain: Communication, Staff Management, Project Management, Audit and
Control, Information Technologies.

154

Fig 3. Fragment of the “Training ontology”: only some instances (i.e. training labels) are represented

155

These concepts are subdivided into sub-concepts which are in their turn subdivided
into lower sub-concepts (cf. Fig 3). Trainings’ labels are the instances of this ontology
and each label is associated to one concept or sub-concept. To simplify the ontology
depicted in Fig 3, we only represented one instance (training label) per concept. We
used the tool WSMT (Web Service Modeling Toolkit) to implement the training
ontology in the WSML format since it is supported by the ProM 5.2 framework.
Moreover, the semantic process mining plug-ins existing in ProM 5.2 expect log
elements to be connected with process ontologies (i.e., to be in the SA-MXML
logging format). So to enrich the educational log of our example with semantic
annotations from the Training Ontology, we implement a conversion plug-in in ProM
5.2. The latter takes as input the original educational log (in MXML format) and the
Training Ontology (in WSML format) and produces the corresponding semantically
annotated event log (in SA-MXML format).

4.1 Semantic Matching Between Training Labels and Concepts

In order to help end users in the comprehension of the underlying semantics of
training courses, we develop a (semi)automatic procedure, which can be used to
associate a concept (of the training ontology) to a training label. The association used
is based on the importance of the words in a label or in a concept. We assume that
each word of a label L plays the same semantic role and hence has the same
importance as well as the other words constituting L. We also suppose that at least
one of the words characterizing a concept, or one of their synonyms, appears in all the
labels associated to it. Therefore, there is an intersection between the set of the words
of a label and the set of the words characterizing its associated concept. To build our
technique we develop the following modelling: consider W = {w1,…,wn} a set of
words, we consider a training label TLi as succession of wj, noted TLi= w1ҍ+… ҍ+ wm,
where wj∈W and the symbol ҍ represents blanks and all articles, pronouns, etc. For
instance the label “Introduction to Information Systems” contains the set of words W
= { Introduction, Information, Systems, Management} separated with three blanks and
the preposition ‘to’. We consider Li the set of the words that contains TLi, so Li =
{ w1,…,wm} and in our case we assume that card(Li) represents the length of the label
TLi (we note Len(TLi)), for example Len(Introduction to Information Systems) = 3.
We also consider Cj = {w′1,…,w′k} as the set of the words characterizing a concept Cj.

Word importance: is a metric, or a weight, reflecting the importance of a word in a
label according to our hypothesis given below. As each word plays the same role in a
label we compute its importance wp as follow: wp(w) = 1/ Len(TL) where w ∈ L. for
the label TL = “Management in Information Systems”, Len(TL)=3 and
wp(Management)=1/3. This wp reflects clearly the relation between the length of a
label and the importance of its word. A small label, like ones using only one or two
words, gives a great semantic importance to its word that are considered like keys,
whereas long labels use lot of words for their description giving its words a small
semantic role.

Word concept weight: the weight of a word w in a concept C, noted cw(w),
corresponds to the sum of all word importance of w, or one of its synonyms, in all the
labels associated to the concept C: cw(w)= ∑ wpTLi(x), where i∈{1,…,h} and TLi is
associated to C. For instance, consider the concept characterized by the following

156

words (“management”, “ project”). If “management” appears three times in the labels
with the following wp: ½, ½ and ⅓ therefore cw(“management”)= ½+½+⅓ =1.3.
This metric establishes a monotone relation between the frequency of the word in the
labels and its importance, and it is clear that more a word is used, more it is important
and more it will be used to characterize a concept.

Concept matching: to generate automatically the concept C associated to a label TL
we create first a word weight table as follow:

1. We compute the set of all the words of all the labels contained in the
training catalogue. We note this set as LW.

2. We create a matrix M = (ai,j 1≤i≤n, 1≤i≤m) ai,j is the wp(i) in the label j,
n = card(LW) and m is the number of all training Labels.

3. For each word w in LW, we sum its wp(w) computed in the previous step
and we store the result in the returned table.

After constructing this table, for a label TL we compute the semantic intersection
between L and C as follow: L ∩ C = {wj, wj ∈ L ∧ wj∈! C}. wj∈! C means that wj or a
synonym of it is included in C. Then we compute the score of matching between L
and C, noted SC(L,C) as the sum of the concept weight of each element of L ∩ C. We
repeat this operation for all the concepts we have and then we associate L with the
concept having the high score. If we have the concepts C1,…,Cn then L will be
associated to C if SC(L,C) = Max(SC(L, Cn)). The semantic importance we use in our
matching is simplified compared with approaches doing deep semantic analysis using
sophisticated techniques because we do a significant human effort to define the
Ontology with different level, and we stress on the concepts of the level 2 to enrich
them with words that are generally and mostly used to define the labels associated to
each concept of this level. We remark that if we have two or more concepts having
the same Max(SC(L, Cn)) we infer a conflict and in this case we need a user’s
intervention to choose what concept to associate to the label. We have tested this
matching technique on Altran catalogue containing 128 labels and 35 concepts. Fig 4
depicts the obtained results. Let us note that in these tests we have identified some
cases where we have not identified matching between labels and concepts.

Fig 4. The number of labels (ordinate) associated to each one of the 35 concepts (absciss) of our
case study

This is due to the use of some abbreviations that are hard to decrypt. In these tests,
concepts contain only words that we find in labels and we do not need in this case to

157

search synonyms. We plan in the future to use a dictionary in order to enhance the
identification of synonyms.

4.2 Educational Process Models Mining at the Conceptual Level

 After constructing a semantically annotated educational log, we specify the level
of abstraction (i.e. concepts in the training ontology) used as a base for the mining and
the analysis of training processes. To achieve this, we use the filter plug-in “Ontology
Abstract Filter” implemented in Prom 5.2, which allows us to choose the required
level of abstraction [8]. The Ontology Abstract Filter plug-in takes as input a
semantically annotated event log (in SA-MXML format) and produces as output
another event log where the names of tasks (i.e. trainings) are replaced by the names
of the chosen concepts. The produced log can also be exported as an SA-MXML log.
After this step, we may apply a control-flow mining algorithm (e.g. the Heuristic
Miner plug-in) to extract the educational process model relaying on the concepts
chosen in the previous step. We may choose concepts at different level of
abstractions. When we use only the concepts at level 2 of the Training Ontology tree
(i.e., the concepts “Communication”, “Language”, “Testing”, “Audit_And_Control”,
“IT_Service_Management”…etc.”), a process model like the one in Fig. 5 could be
discovered.

Fig 5. Training process model mined using the heuristic miner plug-in where only the concepts at
the level 2 of the tree for the ontology “TrainingOntology” (cf. Fig.3) are considered.

158

It contains 18 events (nodes) and 30 arcs which is more compact than the model
extracted before the semantic abstraction (cf. Fig 2). Let us note that during the
abstraction phase we deliberately replace the labels of the different kind of English
trainings by their concept at level 1 (i.e. English). We can see that the mined model in
this case is more compact (i.e., has a higher abstraction level) than the one in Fig 2. In
this model we can see that trainings associated to the concept “Management” are
taken 444 times. Also, there are seven trainees who took an “English” training after a
“Management” training. The frequency associated to this relation in the educational
log is 0,889.

4.3 Educational Process Analysis at the Conceptual Level

In our case study, process mining advantages are not limited to the discovery of
employees’ training processes. In fact, training advisors and directors of training
organizations often need to check (off-line or on-line) whether trainees’ paths
conform to established career paths, trainings’ prerequisites or business rules. The
semantic LTL checker plug-in of ProM 5.2 is the perfect tool for auditing educational
processes at the conceptual level [2]. This tool can be used to verify the same formula
(e.g. generic formula such as prerequisite) on a set of different event logs as long as
the arguments of this formula and the elements in these logs link the same concepts
(or super/sub concepts of these concepts). There is a set of predefined formulas in the
semantic LTL model checker plug-in. It is also possible to tailor the semantic LTL
checker plug-in to express specific types of constraints encountered in the educational
domain [16]. All these properties can be easily coded using the LTL language and
imported into the user interface of the plug-in. In what follows we want to check if the
rule “A Project Management training must be taken before a Project Management
Professional Certification (PMP) can be taken” was always respected (prerequisite
check). We define this property in a LTL file as follows:

formula c2_is_a_prerequisite_of_c1 (c1 : ate.WorkflowModelElement, c2 :
ate.WorkflowModelElement) :=
{ <h2> Is the training C2 a prerequisite for the training C1? </h2>}
 (<> (activity == c2) /\ (activity != c2 _U activity == c1)) ;

Fig 6. The results returned by the semantic LTL Checker plug-in while verifying the PMP
prerequisite

159

Fig 6 shows the result displayed when this property is checked. We can see that there
are 26 trainees who took the PMP training while they didn’t take the Project
Management training before (i.e., incorrect case instances). There are also 718 trainees
that satisfy this property (i.e. they took the “PMP” training after a “Project
Management” training).

5 Conclusion

In this paper we showed how by associating semantic annotations to educational
event logs, more accurate and compact educational processes can be extracted and
analyzed at different levels of abstraction. Also we developed a semantic matching
procedure allowing to link training labels to the right concepts of a training ontology,
in a (semi)automatic way. In future works, we will investigate how concepts from
ontologies can be associated to training providers. We can then benefit from these
semantic annotations in mining social networks and organizational models between
training providers [1], [10], at the conceptual level. We plan also to conduct a case
study in an on-line education setting that would illustrate the benefit of process
mining approaches, at the syntactic and semantic levels, to mine and understand
students’ behaviors. Another important step in our works is to develop new clustering
and classification techniques which take into account semantic annotations on event
logs [14], [17]. For instance, trace clustering techniques [14] can be extended to
partition event logs depending on trace similarities at the conceptual level. To
implement our approach, we are currently developing an interactive and distributed
platform tailored for educational process discovery and analysis. This platform will
allow different education centers and institutions to load their data and access
advanced data mining and process mining services [10]. Moreover, in order to
optimize and enhance platform response time, our platform will allow distributing
heavy analysis computations on many processing nodes.

Acknowledgments. This ongoing work is being carried out by Altran Research and
Altran Institute within the context of the PHIDIAS project.

References

1. Aalst, W. M. P., and al.: Process Mining Manifesto, In BPM 2011 Workshops Part I,
LNBIP 99, pp. 169-194 (2012).

2. Alves de Medeiros, A.K., van der Aalst, W.M.P., Pedrinaci, C: Semantic Process
Mining Tools: Core Building Blocks. In 16th European Conference on Information
Systems, pp. 1953-1964. Galway, Ireland (2008).

3. Alves de Medeiros, A. K., . van der Aalst, W. M. P: Process Mining towards
Semantics. Advances in Web Semantics I, LNCS 4891, pp 35-80 (2009).

4. Alves de Medeiros, A. K. and al: An Outlook on Semantic Business Process Mining
and Monitoring. In R. Meersman, Z. Tari & P. Herrero (Eds.), The Confederated

160

International Conferences On the Move to Meaningful Internet Systems, LNCS, vol.
4806, pp. 1244-1255, Springer-Verlag (2007).

5. Azzini, A., Braghin, C., Damiani, E., Zavatarelli, F: Using Semantic Lifting for
improving Process Mining: a Data Loss Prevention System case study. In the 3rd
International Symposium on Data-driven Process Discovery and Analysis, CEUR-
WS.org, pp. 62-73 (2013).

6. Bogarín, A., Romero, C., Cerezo, R., Sánchez-Santillán, M: Clustering for improving
educational process mining. In Proceedings of the Fourth International Conference on
Learning Analytics And Knowledge. ACM, New York, NY, USA, pp. 11-15 (2014).

7. de Bruijn, J., Lausen, H., Polleres, A., Fensel, D.: The Web Service Modeling
Language WSML: An Overview. In Y. Sure and J. Domingue, editors, ESWC,
LNCS, vol. 4011, pp. 590-604. Springer (2006).

8. van Dongen, B. F., de Medeiros, A. K. A., Verbeek, H. M. W., Weijters, A. van der
Aalst, W. M. P: The Prom Framework: a New Era in Process Mining Tool Support.
In ICATPN'05, Gianfranco Ciardo and Philippe Darondeau (Eds.). LNCS, vol. 3536,
pp. 444-454, Springer-Verlag, Heidelberg (2005).

9. European Project SUPER - Semantics Utilised for Process Management withing and
between Enterprises. http://www.ip-super.org/

10. Hicheur Cairns A. and al: Custom-Designed Professional Training Contents and
Curriculums through Educational Process Mining. In The Fourth International
Conference on Advances in Information Mining and Management, pp 53-58 (2014).

11. Lausen, H., de Bruijn, J., Polleres, A., Fensel, D: The WSML Rule Languages for the
Semantic Web. W3C Workshop on Rule Languages for Interoperability, W3C
(2005).

12. Ly, L.T, Indiono, C., Mangler, J., Rinderle-Ma, S.: Data transformation and semantic
log purging for process mining. In Proceedings of the 24th international conference
on Advanced Information Systems Engineering, J. Ralyté and al. (Eds.).LNCS, vol.
7328, Springer-Verlag (2012)

13. Reichert, M.: Visualizing Large Business Process Models: Challenges, Techniques,
Applications. In 1st Int’l Workshop on Theory and Applications of Process
Visualization Presented at the BPM 2012, LNBIP, vol. 132, pp. 725-736, Springer-
Verlag (2013).

14. Song, M., Günther, C.W., van der Aalst, W.M.P.: Trace Clustering in Process
Mining. In: Ardagna, D., Mecella, M., Yang, J. (eds.) BPM 2008. LNBIP, vol. 17,
Springer, Heidelberg, pp. 109–120 (2009).

15. Trcka, N., Pechenizkiy, M: From Local Patterns to Global Models: Towards Domain
Driven Educational Process Mining. In Proc. 9th International Conference on In
telligent Systems Design and Applications, pp. 1114-1119. IEEE Computer Society
(2009).

16. Trčka, N., Pechenizkiy, M., van der Aalst, W.: Process Mining from Educational
Data (Chapter 9). In Handbook of Educational Data Mining. pp. 123-142. CRC Press
(2010).

17. Veiga, G.M., Ferreira, D.R.: Understanding Spaghetti Models with Sequence
Clustering for ProM. In: Rinderle-Ma, S., Sadiq, S., Leymann, F. (eds.) BPM 2009.
LNBIP, vol. 43, pp. 92–103, Springer, Heidelberg (2010).

18. WSML 2 Reasoner Framework (WSML2Reasoner). http://tools.deri.org/

161

From Declarative Processes
to Imperative Models

Johannes Prescher, Claudio Di Ciccio, and Jan Mendling?

Vienna University of Economics and Business, Vienna, Austria
{johannes.prescher,claudio.di.ciccio,jan.mendling}@wu.ac.at

Abstract. Nowadays organizations support their creation of value by explicitly
defining the processes to be carried out. Processes are specifically discussed from
the angle of simplicity, i.e., how compact and easy to understand they can be
represented. In most cases, organizations rely on imperative models which, how-
ever, become complex and cluttered when it comes to flexibility and optionality.
As an alternative, declarative modeling reveals to be effective under such cir-
cumstances. While both approaches are well known for themselves, there is still
not a deep understanding of their semantic interoperability. With this work, we
examine the latter and show how to obtain an imperative model out of a set of
declarative constraints. To this aim, we devise an approach leading from a De-
clare model to a behaviorally equivalent Petri net. Furthermore, we demonstrate
that any declarative control flow can be represented by means of a Petri net for
which the property of safety always holds true.

1 Introduction

The definition of valid behavior is at the core of every organization in order to support
the creation of value. Such behavior is in most cases modeled using an imperative con-
cept, e.g., by means of notations such as Petri nets [1] or BPMN [18]. They explicitly
describe the options to continue at each state. However, while imperative approaches
are a strong concept when it comes to well-defined processes, they lack clarity once
an observed behavior allows for flexible execution. In this case, models following a
declarative approach are able to describe the behavior in a more compact way [4].

Recent research, however, acknowledges that hardly any of the available represen-
tations would be superior in all circumstances. For instance, it was pointed out that
imperative and declarative models are favoring different types of comprehension tasks
[19, 31]. Therefore, approaches have been proposed to represent a mined process partly
as an imperative model and partly as a declarative model [35]. A problem in this con-
text is, however, to choose which parts would better be shown in either way. In order
to allow for an informed decision, a preliminary question has to be answered: is there a
possibility to represent the same behavior regardless of the notation?

In this paper, we start answering this research question by describing how to derive
an imperative model from a declarative one. We build upon existing work on transfor-
mations from Transition Systems to Petri nets by extending the approach to a tool chain
? The research leading to these results has received funding from EU Seventh Framework Pro-

gramme (FP7) under grant agreement 318275 (GET Service).

162

that leads from a Declare model to a behaviorally equivalent Petri net. We implemented
and tested our approach using the logs of the BPI Challenge from 2013. Lastly, we show
that the imperative version always holds the property of safety.

The paper is structured as follows. Section 2 defines the background of our re-
search, namely preliminaries of different representations including automata, transition
systems, Petri nets, and Declare. Section 3 defines our transformation approach. Sec-
tion 4 demonstrates the feasibility of our approach using a prototypical implementation
applied to the BPI Challenge 2013. Section 5 discusses related work before Section 6
concludes the paper.

2 Background

In this section, we discuss Finite State Automata as generic, yet verbose representations
of behavior. Then, we revisit the essential concepts of Petri nets. Finally, we introduce
Declare as a representation based on behavioral constraints.

s0

s1

s2

a

c

b

d

Fig. 1: A process be-
havior as an FSA

p q r s t

a c

b d

Fig. 2: A Petri net P

p + t

q + r + t p + r + s

q + 2r + s

a

b

c

d

c
d

a
b

Fig. 3: The Reachability
Graph of P

2.1 Finite State Automata

In general, a process can be described as a stateful artifact characterized by its conver-
sational behavior, i.e., its potential evolutions resulting from the interaction with some
external system, such as a client service. The finite set of possible interactions consti-
tutes the so-called process alphabet. The conversational behavior can be represented
as a Finite State Automaton (FSA). Its transitions are labeled by process activities, un-
der the assumption that each legal run of the system corresponds to a conversation
supported by the process. A process behavior is represented by a finite deterministic
Transition System S = 〈A, S, s0, δ, Sf 〉, where: A is the process alphabet; S is the fi-
nite non-empty set of states; s0 ∈ S is the initial state; δ : S ×A → S is the transition
function (by s a−→ s′ we denote that, from state s, transition a leads to state s′); Sf ⊆ S
is the set of final states.

The initial and final states respectively correspond to a legal initialization and ter-
mination of the process lifecycle. W.l.o.g., we assume that every state is reachable by
traversing the automaton, starting from the initial state. Thus, in Figure 1, the process
would admit the instance to either (i) perform activity a and then b an arbitrary number
of times, and finally d, then terminate, or (ii) perform c once and terminate. We can
consider FSAs to be for process modeling what Assembly is for computer program-
ming. FSAs are simple and valuable in terms of expressive power, but have problems

163

modeling concurrency succinctly. Suppose that there are n parallel activities, i.e., all n
activities need to be executed but any order is allowed. There are n! possible execution
sequences. The FSA thus requires 2n states and n × 2n − 1 transitions. This is an ex-
ample of the well-known “state explosion” problem. Concurrency is known to be well
handled by Petri nets.

2.2 Petri nets

Petri nets (PNs) originate from the Ph.D. thesis of Carl Adam Petri [30]. A PN is a
directed bipartite graph. Its vertices can be divided into two disjoint finite sets consisting
of places and transitions. Every arc of a PN connects a place to a transition or vice versa,
but neither two places nor two transitions can be directly connected. Formally, a Petri
net is a tuple P = 〈P, T, F 〉, where:

– P is a finite set of places;
– T is a finite set of transitions;
– F ⊆ (P × T) ∪ (T × P) is the flow relation.

Places in a PN may contain a discrete number of marks called tokens. Any distribution
of tokens over the places represents a configuration of the net called marking. For-
mally, a marking of a PN is a multiset of its places, i.e., a mappingM : P → N. We
say the marking assigns a number of tokens (graphically represented as black dots) to
each place; it represents a state of the system and can be regarded as a vector of non-
negative integers of length P . We thus denote a marking M as a linear combination
of places, where the linear factor corresponds to the number of tokens in the place.
In the following, we will adopt either the vectorial or the polynomial notation (e.g.,
M0 = (1, 0, 0, 0, 1) for states p, q, r, s, t in Figure 2, which we also denote as p + t)
to this extent. A transition t ∈ T of a PN may fire whenever there are sufficient tokens
at the start of all input arcs; when it fires, it consumes these tokens, and puts tokens
at the end of all output arcs. Thus, t leads from a marking M1 ∈ M to a marking
M2 ∈ M (M1

t−→ M2). In other words, M2 is reachable from M1 by means of t.
Firings are atomic, i.e., single non-interruptible steps. PNs are always associated to an
initial marking M0, denoting the initial status of the described system. The set of all
markings reachable from M0 is called its reachability set. A PN with initial marking
M0 is k-bounded iff for every reachable marking M , no place contains more than k
tokens (k is the minimal number for which this holds). A 1-bounded net is called safe.
Figure 2 depicts a 2-bounded PN. A labeled Petri net is a PN with labeling function
λ : T → A, which puts into correspondence every transition of the net with a symbol
(called label) from the alphabet A. Henceforth, we will refer to labeled PNs simply as
PNs, for the sake of conciseness.

Thus, modeling a process in terms of a Petri net is rather straightforward: (i) activ-
ities are modeled by transitions; (ii) conditions are modeled by places; (iii) cases are
modeled by tokens. Figure 2 depicts the parallel evolution of two separate branches of
the execution, one involving a loop of c’s and d’s, the other involving loops of a’s and
b’s.

164

Constraint Regular expression Notation

Existence constraints

Participation(a) [ˆa]*(a[ˆa]*)+[ˆa]*

AtMostOne(a) [ˆa]*(a)?[ˆa]*

Init(a) a.*

End(a) .*a

Relation constraints

RespondedExistence(a, b) [ˆa]*((a.*b.*)|(b.*a.*))*[ˆa]*

Response(a, b) [ˆa]*(a.*b)*[ˆa]*

AlternateResponse(a, b) [ˆa]*(a[ˆa]*b[ˆa]*)*[ˆa]*

ChainResponse(a, b) [ˆa]*(ab[ˆa]*)*[ˆa]*

Precedence(a, b) [ˆb]*(a.*b)*[ˆb]*

AlternatePrecedence(a, b) [ˆb]*(a[ˆb]*b[ˆb]*)*[ˆb]*

ChainPrecedence(a, b) [ˆb]*(ab[ˆb]*)*[ˆb]*

Mutual relation
constraints

CoExistence(a, b) [ˆab]*((a.*b.*)|(b.*a.*))*[ˆab]*

Succession(a, b) [ˆab]*(a.*b)*[ˆab]*

AlternateSuccession(a, b) [ˆab]*(a[ˆab]*b[ˆab]*)*[ˆab]*

ChainSuccession(a, b) [ˆab]*(ab[ˆab]*)*[ˆab]*

Negative relation
constraints

NotChainSuccession(a, b) [ˆa]*(aa*[ˆab][ˆa]*)*([ˆa]*|a)

NotSuccession(a, b) [ˆa]*(a[ˆb]*)*[ˆab]*

NotCoExistence(a, b) [ˆab]*((a[ˆb]*)|(b[ˆa]*))?

Table 1: Semantics of Declare constraints as POSIX Regular Expressions [17]

Reachability Graph and Bisimulation The Reachability Graph (RG) of a PN is a
Transition System in which (i) the set of states is the reachability set (every state is
thus a reachable marking), (ii) the alphabet coincides with the one of the net, and
(iii) M1

t−→ M2 iff there exists a transition t in the net that leads from marking M1 to
M2. Figure 3 depicts the Reachability Graph for the PN of Figure 2. With a slight abuse
of terminology, we will thus refer to the bisimulation [27] of a Petri net and a Transi-
tion System, meaning that the Reachability Graph of the PN and the Transition System
(TS) are bisimilar. We recall here that bisimulation relation is a behavioral equivalence
relation, which entails the impossibility for an external user to distinguish the behavior
of the two systems. As a consequence, the two systems are trace-equivalent (see [22]).

2.3 Declare Constraints

The need for flexibility in the definition of some types of process has lead to an al-
ternative to the classical “imperative” approach: the “declarative” one. The classical
approach is called “imperative” (or also “procedural”) because it explicitly represents
every step allowed by the process model at hand, by means of transitions (the possible
actions to do) among places/states (the legal situations where the process can wait or
terminate). This leads to the likely increase of graphical objects as the process allows
more alternative executions. The size of the model, though, has undesirable effects on
understandability and likelihood of errors – see for instance work on process modeling

165

b, c

a

a, b, c

(a) Participation(a)

c
b

a, c

a

a, c

b

(b) Rspd.Exist.(a, b)

b

c

a

c, b

a
a, b

c

a, c, b

(c) CoExistence(a, c)

c

b

b, c

a

a, c

(d) NotCoExist.(a, b)

Fig. 4: FSAs accepting Declare constraints, on process alphabet A = {a, b, c}

guidelines [25]. In fact, larger models tend to be more difficult to understand [26], not to
mention the higher error probability from which they suffer, with respect to small mod-
els [24]. Rather than using a procedural language for expressing the allowed sequences
of activities, it is based on the description of workflows through the usage of constraints:
the idea is that every task can be performed, as long as its execution does not violate
any of the specified constraints [29]. Declare [4] is a language defining an extensible
set of templates for constraints. Declare constraint templates can be divided into two
main types: existence constraints CE , and relation constraints CR. The former consists
of constraint templates constraining single activities. As such, existence constraints can
be expressed as predicates over one variable (the constrained activity): CE(x). The lat-
ter comprises rules that are imposed on target activities, when activation tasks occur.
Relation constraints thus correspond to predicates of arity two: CR(x, y). Process al-
phabet A is the domain of interpretation for constraints. Given a (possibly empty) set
of existence constraints of size m > 0 (resp. relation constraints, of size n > 0) inter-
preted over alphabetA, each denoted as CAEi

(x) (resp. CARj
(x, y)), the declarative model

consists of their conjunction: CAE1
(x) ∧ . . . ∧ CAEm

(x) ∧ CAR1
(x, y) ∧ . . . ∧ CARn

(x, y).
Participation(a) is an existence constraint, which requires the execution of a at

least once in every process instance. AtMostOne(a) is its dual, as it specifies that
a is not executed more than once in a process instance. End(a) requires that a oc-
curs in every case as the last activity carried out. RespondedExistence(a, b) is a re-
lation constraint. It imposes that if a is performed at least once during the enact-
ment of the process, b must be executed at least once as well, either in the future
or in the past, with respect to the time in which a is carried out. Response(a, b) en-
forces RespondedExistence(a, b) by specifying that b must occur eventually after-
wards. AlternateResponse(a, b) adds to Response(a, b) the condition that no other
a’s occur between an execution of a and a subsequent b. Two specializations of the
relation constraints are mutual relation constraints and negative relation constraints.
Mutual relation constraints are such that both constrained activities are activation and
target. For instance, CoExistence(a, c) is a mutual relation constraint requiring that if
a is executed, then c must be performed as well, and vice versa, in any order. Neg-
ative relation constraints are such that both constrained activities are activation and
target as well. However, the occurrence of one activity excludes the occurrence of the
other. For instance, NotCoExistence(a, b) is a negative relation constraint imposing
that if a is executed, then b cannot be performed at all in the trace, and vice versa.

166

Decl. Constraints Reg. Expressions Automaton Petri net

Petri net
synthesis

Fig. 5: Obtaining imperative processes as Petri nets from declarative constraints.

NotSuccession(a, b) is a looser constraint, because it requires that no b’s occur after
a (and therefore no a’s before b). NotChainSuccession(a, b) requires that the next ac-
tivity after a cannot be b. An example of graphical representation for a simple Declare
process model is drawn in Figure 6a.

The semantics of Declare templates have been expressed as formulations of several
formal languages: as Linear Temporal Logic over Finite Traces (LTLf) formulas [14],
in [13]; as SCIFF integrity constraints [6], in [8]; as First Order Logic (FOL) formulas,
interpreted on finite traces, in [16], based on [14]; as Regular Expressions (REs) in
[17]. In particular, our work will build upon the last translation, as explained in the next
section. Table 1 reports the semantics of Declare constraints as REs. In the table, as
well as in the remainder of this paper, we adopt POSIX standard shortcuts for REs, for
the sake of brevity. Therefore, in addition to the known Kleene star (*), alternation (|)
and concatenation () operators, we make use here of (i) the . and [ˆx] shortcuts for
respectively matching any character in the alphabet, or any character but x, (ii) the +
and ? operators for respectively matching from one to any, or none to one, occurrences
of the preceding expression. We will also utilize the intersection operator & for REs.

3 Conceptual Framework

In this section, we show an approach that describes how to compute a Petri net corre-
sponding to a Declare process model. This approach serves as a conceptual framework
for proving that there always exists a Petri net which is bisimilar to a Declare process
model. Furthermore, the returned PN is proven to be safe. The computation consists of
three main steps, as sketched in Figure 5.

Declarative constraints to Regular Expressions. We represent all declarative con-
straints as REs. Each constraint maps to a single RE, i.e., the mapping is one-to-one (cf.
Table 1). REs apply to characters. Owing to this, our approach identifies each activity
in the process alphabet with a character.

Regular Expressions to Finite State Automaton. The allowed behavior is given by
the conjunction of all Declare constraints. Hence, it maps to the intersection of the lan-
guages accepted by corresponding REs, i.e., the language accepted by the conjunction
of the REs (which is in turn a RE itself, being Regular Expressions close w.r.t. the con-
junction operation [21]). For the sake of conciseness, though, single REs are thought to
directly refer to those activities (characters). They are constrained by the corresponding

167

(a) Declare

c

a

b

a, c

b

b, c

a

a, c, b

(b) FSA

a

a

a

a

b

bb

c

c

c
p3

p1

p2

p4

(c) PN

Fig. 6: A Declare model, consisting of constraints Participation(a),
RespondedExistence(a, b) and CoExistence(a, c), represented with the Declare
graphical notation, as a Finite State Automaton and as a Petri net

constraint, disregarding the rest of the process alphabet in their formulation. Consider,
for example, Participation(a), depicted in Table 1. The corresponding RE requires the
occurrence of a at least once, but also allows any other input beforehand and afterwards.
Therefore, we need to limit the set of allowed characters to those which identify activ-
ities in the process alphabet A (see Section 2). This is obtained by means of another
RE, which is put in conjunction with the constraint-related ones. This way, we can de-
fine the declarative process model described by N constraints by means of a Regular
Expression, derived from the conjunction of N + 1 REs.

As an example, we consider a process consisting of the following three constraints
and having process alphabet A = {a, b, c}:

– Participation(a), translating to [ˆa]*(a[ˆa]*)+[ˆa]*, referred to as
(re1),

– RespondedExistence(a, b), translating to [ˆa]*((a.*b.*)|(b.*a.*))*[ˆa]*,
referred to as (re2), and

– CoExistence(a, c), translating to [ˆaˆc]*((a.*c.*)|(c.*a.*))*[ˆaˆc]*,
referred to as (re3).

The mere conjunction of (re1), (re2) and (re3) would still allow not only
for the characters representing activities but also for any input character. In order to
limit input characters to those which identify activities in the process alphabet, we thus
conjunct the aforementioned three to the following: ([abc]*). As a result, the final
RE is: (re1) & (re2) & (re3) & ([abc]*).

Continuing with our computation, we transform the RE into the corresponding FSA.
We recall here indeed that regular grammars are recognizable through Regular Expres-
sions [9]. Figures 4a to 4c depict the FSAs accepting the languages of (re1), (re2)
and (re3), respectively. Figure 6b shows the FSA which results from the example
we provided. Aside of the transitions that do not change its state, the FSA allows two
different runs before reaching its final state, i.e. either 〈a, b〉 or 〈b, a〉.

168

Finite State Automaton to Petri net. In the last step of our approach, we derive a Petri
net from the FSA. For this purpose, we rely on the theory of regions described in [12],
adopted to synthesize PNs from state-based models, such as Transition Systems (and
thus, a fortiori, FSAs). The rationale behind the theory of regions is to conglomerate
sets of places that share the same input and output transitions in common regions. The
regions translate to places in the derived PN. Input transitions lead to them, and output
transitions start from them. In particular, we adopt the approach described in [11], which
is proven to return a safe Petri net from a Transition System, ensuring the bisimilarity
between the two systems (see Section 2.2).

Figure 6c shows the Petri net stemming from the application of the technique of
Cortadella et al. [11] to the FSA of our example. Just as the FSA, it contains four places
(p1, p2, p3, p4) and has the initial marking M = (1, 0, 1, 0), i.e., it contains a token
in p1 and p3. However, the places of the Petri net do not correspond directly to the
states of the FSA. Instead (again, without considering the firings that do not change
the marking), just as the FSA, the PN allows two different runs (〈a, b〉 and 〈b, a〉).
As the final state of the FSA allows for the execution of any activity in the process
alphabet (any character of the input alphabet), the PN also allows for this behavior
when its marking is M = (0, 1, 0, 1). Please note that such marking is reachable only
by means of the sequence of firings that replicate the sequence of characters leading to
the accepting state of the FSA.

The reader can notice that the returned net presents multiple transitions labeled the
same, i.e., representing the same activity. This is due to the fact that label-splitting
can be avoided for derived safe PNs only if the Transition System has the property
of excitation closure for its transitions, i.e., only if the intersection of those states from
which the transitions start can be grouped in one single activating region [11]. However,
such property is not guaranteed from the FSAs that Declare processes translate to. Later
work of Carmona et al. [7] shows how to balance the trade-off between k-boundedness
of the returned Petri net and the number of splitted labels.

To sum up, applying the steps mentioned above, we derive an imperative model
from declarative constraints. Note that the operations we perform are transformations
that do not alter the behavior. Thus, not only the declarative constraints but also the
Regular Expression, the FSA and the PN represent the same behavioral characteris-
tics of the process. Furthermore, we have demonstrated by construction the following
theorem.

Theorem 1. Given any Declare process model PD consisting of n > 0 existence
constraints and m > 0 relation constraints, expressed over process alphabet A,
PD =

∧m
i=1 CAEi

(x) ∧
∧n

j=1 CARj
(x, y), there always exist a safe Petri net model

PN = 〈P, T, F 〉 labeled by λ : T → A, which is bisimilar to PD and is safe.

4 Evaluation by Implementation

In this section, we present a feasibility evaluation of our proposed concepts based on
a prototypical implementation. We first describe the implementation. Then, we present
the results of its application on a Declare model generated from a log of the BPI Chal-
lenge 2013. Finally, we discuss insights from the case.

169

(a) Declare model

Completed

Accepted

Unmatched

Queued

Completed Queued

Accepted

Accepted

Completed

Accepted

Queued

Completed

Accepted

Completed

Accepted

Completed

Accepted

Queued

CompletedAccepted

AcceptedQueued

Completed

Accepted
Completed

Queued

Accepted
Queued

Completed

Completed

Queued

Accepted

(b) Finite State Automaton derived from the Declare model

Fig. 7: The process mined out of BPIC 2013 log [33], as Declare model and FSA

4.1 Implementation

In order to have the opportunity to analyze real-life declarative process models, we
have integrated our approach with a tool for the mining of declarative control flows
from event logs (see Figure 5), namely MINERful [15]. The MINERful framework
comes with an integrated support of a library called dk.bricks.automaton [28], for the
generation of FSAs out of Regular Expressions. We extended the integrated MINERful-
dk.bricks.automaton tool in order to make it capable of serializing FSAs into TSML-
encoded files. TSML (Transition System Markup Language) is indeed a format sup-
ported by ProM, the Process Mining Toolkit [3]. In this way, we have been able to ap-
ply the ProM plug-in by van Dongen (see [5]), capable of converting a TSML-encoded
Transition System into a Petri net, by using Petrify (see [10]).

4.2 Application to the BPI Challenge 2013

As a real-world data set for validating the approach, we selected the “BPI Challenge
2013, closed problems” log [33] as an application case. For the control-flow dis-
covery task, we have considered the activities’ names as their identifiers (Accepted,
Completed, Queued and Unmatched). We have set MINERful up in order to return
those constraints proven to be valid in every trace (support threshold equal to 1). The
discovered model consisted of the following 10 constraints:

Response(Queued,Accepted)
NotChainSuccession(Queued,Completed)
Response(Queued,Completed)
NotChainSuccession(Queued,Unmatched)
Response(Accepted,Completed)

End(Completed)
NotSuccession(Completed,Unmatched)
AtMostOne(Unmatched)
RespondedExistence(Unmatched,Accepted)
AlternateResponse(Unmatched,Completed)

The graphical representation of the model is depicted in Figure 7a. Figure 7b draws
the Finite State Automaton derived from the Declare model, and Figure 8 shows the
final outcome, as a Petri net. What we can observe from the comparison of the Declare
model and the behavior-equivalent Petri net is the multiplication of various activities.

170

q

q

q q

q q

q
q

c

c

c

c

c

c

c

c

c

c

a

a

a

a

a
a

a

a

a

a

a
u

Fig. 8: The Petri net derived from the Finite State Automaton representing the De-
clare model mined out of BPIC 2013 log [33]. Labels are abbreviated: a = “Accepted”,
c = “Completed”, u = “Unmatched”, q = “Queued”.

Although the Declare model seems to be more compact in terms of its nodes and edges,
it must be noted that the Petri net is presented as it was produced, i.e., it has not been
subject to any post-processing for reducing its complexity. However, the defined chain
of transformations provide us with the basis to study the trade-off between compactness
of the model and richness of the language in future experiments, conducted on behavior-
equivalent Petri nets and Declare models.

5 Related work

The stream of research on the comparison of declarative and imperative modeling ap-
proaches has been discussed considering different perspectives. In [32], Pichler et al.
investigate both imperative and declarative languages with respect to process model
understanding. The issue of maintainability for both languages is discussed in [20]. An
open problem for this experimental stream of research has been the question of what
a fair comparison is for declarative and imperative models. In this regard, the work of
[35] and [36] elaborates on mixed representations as a combination of both approaches
from a modeling perspective.

Furthermore, research on automatic process discovery techniques has been defined
based on different representations and different techniques of discovery beyond the
classical alpha miner [2]. Our selection is not meant to be exhaustive, but rather high-
lights those approaches that use constraints, automata or transition systems. Van der
Aalst et al. propose a two-step approach in [5] in order to discover transition systems
which are then synthesized to Petri nets using the “theory of regions”. As well as Van
der Aalst et al., Maruster et al. suggested an approach for process discovery in which
they deal with noise and imbalance in process logs ([23]). A tool manipulating concur-
rent specifications, synthesis and optimization of asynchronous controllers is presented
in [10]. In order to come up with a better understanding of the mutual strengths and
weaknesses of these approaches, De Weerdt et al. ([34]) provide an extensive, multi-
dimensional survey of existing process discovery algorithms using real-life event logs.
Different representations are, however, not discussed in this survey. In this way, our
work provides a basis for an extensive comparison in the future.

171

6 Conclusion

In this paper, we described an approach to derive imperative process models from
declarative process control-flows. To this extent, we utilize a sequence of steps, leading
from declarative constraints to Regular Expressions, then to a Finite State Automaton,
and finally to a Petri net. We implemented our integrative approach as part of the MIN-
ERful software package and evaluated it using the real world case of the BPI Challenge
2013. A remaining limitation is that we do not provide a sound solution for a transfor-
mation from an arbitrary imperative model into a declarative representation. In future
research, we will address this issue. Furthermore, we plan to utilize the transformation
in the design of experiments to study the mutual benefits of PNs and Declare models in
model comprehension tasks.

References

1. van der Aalst, W.M.P.: The application of petri nets to workflow management. Journal of
Circuits, Systems, and Computers 8(1), 21–66 (1998)

2. van der Aalst, W.M.P.: Process Mining: Discovery, Conformance and Enhancement of Busi-
ness Processes. Springer (2011)

3. van der Aalst, W.M.P., van Dongen, B.F., Günther, C.W., Rozinat, A., Verbeek, E., Weijters,
T.: ProM: The process mining toolkit. In: BPM (Demos) (2009)

4. van der Aalst, W.M.P., Pesic, M.: DecSerFlow: Towards a truly declarative service flow lan-
guage. In: WS-FM. pp. 1–23 (2006)

5. van der Aalst, W.M.P., Rubin, V., Verbeek, H.M.W., van Dongen, B.F., Kindler, E., Günther,
C.W.: Process mining: a two-step approach to balance between underfitting and overfitting.
Software and System Modeling 9(1), 87–111 (2010)

6. Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: Verifiable agent
interaction in abductive logic programming: The sciff framework. ACM Trans. Comput. Log.
9(4), 29:1–29:43 (2008)

7. Carmona, J., Cortadella, J., Kishinevsky, M.: New region-based algorithms for deriving
bounded petri nets. IEEE Trans. Computers 59(3), 371–384 (2010)

8. Chesani, F., Lamma, E., Mello, P., Montali, M., Riguzzi, F., Storari, S.: Exploiting induc-
tive logic programming techniques for declarative process mining. T. Petri Nets and Other
Models of Concurrency 2, 278–295 (2009)

9. Chomsky, N., Miller, G.A.: Finite state languages. Information and Control 1(2), 91–112
(1958)

10. Cortadella, J., Kishinevsky, M., Kondratyev, A., Lavagno, L., Yakovlev, A.: Petrify: a tool
for manipulating concurrent specifications and synthesis of asynchronous controllers. IEICE
Transactions 80(3), 315–325 (1997)

11. Cortadella, J., Kishinevsky, M., Lavagno, L., Yakovlev, A.: Deriving petri nets from finite
transition systems. IEEE Trans. Comput. 47(8), 859–882 (1998)

12. Cortadella, J., Kishinevsky, M., Lavagno, L., Yakovlev, A.: Synthesizing petri nets from
state-based models. In: Proc. of ICCAD’95. pp. 164–171 (November 1995)

13. De Giacomo, G., De Masellis, R., Montali, M.: Reasoning on ltl on finite traces: Insensitivity
to infiniteness. In: AAAI (2014)

14. De Giacomo, G., Vardi, M.Y.: Linear temporal logic and linear dynamic logic on finite traces.
In: IJCAI (2013)

15. Di Ciccio, C., Mecella, M.: A two-step fast algorithm for the automated discovery of declar-
ative workflows. In: Proc. of CIDM, Singapore 2013. pp. 135–142. IEEE (2013)

172

16. Di Ciccio, C., Mecella, M.: On the discovery of declarative control flows for artful processes.
ACM Transactions on Management Information Systems (2014)

17. Di Ciccio, C., Mecella, M., Scannapieco, M., Zardetto, D., Catarci, T.: MailOfMine – an-
alyzing mail messages for mining artful collaborative processes. In: Data-Driven Process
Discovery and Analysis, vol. 116, pp. 55–81. Springer (2012)

18. Dumas, M., La Rosa, M., Mendling, J., Reijers, H.A.: Fundamentals of Business Process
Management. Springer (2013)

19. Fahland, D., Lübke, D., Mendling, J., Reijers, H.A., Weber, B., Weidlich, M., Zugal, S.:
Declarative versus imperative process modeling languages: The issue of understandability.
In: BMMDS/EMMSAD. pp. 353–366 (2009)

20. Fahland, D., Mendling, J., Reijers, H.A., Weber, B., Weidlich, M., Zugal, S.: Declarative
versus imperative process modeling languages: The issue of maintainability. In: Business
Process Management Workshops. pp. 477–488 (2009)

21. Gisburg, S., Rose, G.F.: Preservation of languages by transducers. Information and Control
9(2), 153 – 176 (1966)

22. van Glabbeek, R.J., Weijland, W.P.: Branching time and abstraction in bisimulation seman-
tics. J. ACM 43(3), 555–600 (1996)

23. Maruster, L., Weijters, A.J.M.M., van der Aalst, W.M.P., van den Bosch, A.: A rule-based
approach for process discovery: Dealing with noise and imbalance in process logs. Data Min.
Knowl. Discov. 13(1), 67–87 (2006)

24. Mendling, J., Neumann, G., van der Aalst, W.M.P.: Understanding the occurrence of errors
in process models based on metrics. In: OTM Conferences (1). pp. 113–130 (2007)

25. Mendling, J., Reijers, H.A., van der Aalst, W.M.P.: Seven process modeling guidelines
(7PMG). Information & Software Technology 52(2), 127–136 (2010)

26. Mendling, J., Reijers, H.A., Cardoso, J.: What makes process models understandable? In:
BPM. pp. 48–63 (2007)

27. Milner, R.: An algebraic definition of simulation between programs. In: IJCAI. pp. 481–489
(1971)

28. Møller, A.: dk.bricks.automaton (2011)
29. Pesic, M., Schonenberg, M.H., Sidorova, N., van der Aalst, W.M.P.: Constraint-based work-

flow models: Change made easy. In: OTM Conferences (1). pp. 77–94 (2007)
30. Petri, C.A.: Kommunikation mit Automaten. Ph.D. thesis, Institut für instrumentelle Mathe-

matik, Bonn (1962)
31. Pichler, P., Weber, B., Zugal, S., Pinggera, J., Mendling, J., Reijers, H.A.: Imperative versus

declarative process modeling languages: An empirical investigation. In: Business Process
Management Workshops (1). pp. 383–394 (2011)

32. Pichler, P., Weber, B., Zugal, S., Pinggera, J., Mendling, J., Reijers, H.A.: Imperative versus
declarative process modeling languages: An empirical investigation. In: Business Process
Management Workshops (1). pp. 383–394 (2011)

33. Steeman, W.: Real-life event logs – an incident management process: closed problems. Third
International Business Process Intelligence Challenge (BPIC’13) (2013)

34. Weerdt, J.D., Backer, M.D., Vanthienen, J., Baesens, B.: A multi-dimensional quality as-
sessment of state-of-the-art process discovery algorithms using real-life event logs. Inf. Syst.
37(7), 654–676 (2012)

35. Westergaard, M., Slaats, T.: Cpn tools 4: A process modeling tool combining declarative and
imperative paradigms. In: BPM (Demos) (2013)

36. Westergaard, M., Slaats, T.: Mixing paradigms for more comprehensible models. In: BPM.
pp. 283–290 (2013)

173

Generating Artificial Event Logs with Sufficient
Discriminatory Power to Compare Process

Discovery Techniques

Toon Jouck1 and Benôıt Depaire1,2

1 Hasselt University, Faculty of Business Economics
Agoralaan Bldg D, 3590 Diepenbeek, Belgium

toon.jouck@uhasselt.be; benoit.depaire@uhasselt.be
2 Research Foundation - Flanders (FWO)
Egmontstraat 5, 1000 Brussels, Belgium

Abstract. Past research revealed issues with artificial event data used
for comparative analysis of process mining algorithms. The aim of this
research is to design, implement and validate a framework for produc-
ing artificial event logs which should increase discriminatory power of
artificial event logs when evaluating process discovery techniques.

Key words: Artificial Event Logs; Event Log Simulation; Performance
Measurement of Business Processes

1 Research Question

Literature on the comparative analysis of process discovery techniques has re-
vealed some problems with artificial data. The data lacked discriminatory power.
We argue that such problems arose due to the absence of a proper framework
to generate artificial data. This leads to our main research question: how can we
generate artificial event logs with sufficient discriminatory power for a compar-
ative evaluation of process discovery algorithms? To provide an answer to this
question several other questions need to be answered:

– What model characteristics can we identify which influence the generated
data?

– What is the impact of model language bias on the generated data?
– Which non-model characteristics exist which influence the generated data?
– What is a proper methodology for generating artificial data for comparative

analysis?
– Which tools exist for generating artificial data and to what extent are they

sufficient?

2 Background

This work focusses on artificial data used for the comparison of different process
discovery techniques, more specifically the comparison of control-flow techniques.

174

In past research on process mining many researchers used artificial data for the
development of and the verification of new algorithms (e.g. [1, 2]).

In a recent study De Weerdt et al. compare several process discovery tech-
niques on both artificial and real data [3]. The artificial data used in their ex-
periments was recovered from past research on the development of a process
discovery algorithm [2]. Remarkably, the performance of the algorithms did not
seem to be significantly different for the artificial data, while real data revealed
significant performance differences. These results indicate that the artificial test
data used in past research have insufficient discriminatory power.

A lot of process discovery techniques have been developed in the last decade.
Since the first algorithms, process discovery has matured remarkably. However,
it’s still not clear which algorithm will perform best in a certain situation. This
has led to an increasing importance of the research on comparing different pro-
cess discovery techniques [3, 4, 5].

3 Significance

The comparison of process discovery techniques can be based on both artificial
and real data. Real data, however, are at a disadvantage when performing such
a comparative analysis.

Two disadvantages stem from the nature of algorithm comparison and evalu-
ation. Typically research is performed on a sample of event logs, but conclusions
are preferably generalizable to other event logs. To achieve reliable conclusions,
statistics require sufficient observations and samples which are representative for
the considered population. Real data, however, have limited availability and are
typically convenience samples, rather than random samples.

Another disadvantage of real data is concerned with identifying causal re-
lationships between process or event log characteristics on the one hand and
algorithms performance on the other. This kind of research requires experimen-
tal data and not observational data (real data).

In contrast, these disadvantages are not present when using artificial data in
comparative analysis of process discovery techniques if a proper methodology is
used to generate the artificial data. Such a methodology should focus on creating
artificial data with sufficient discriminatory power to overcome the problems
encountered in past research (e.g. [3]). The main contribution of this research
will be drawing up and implementing a general methodology for the generation
of artificial event logs with sufficient discriminatory power in order to evaluate
process mining algorithms.

4 Research design and methods

Firstly, a structured literature review is performed to get insight into generating
artificial data and algorithm comparison. The primary sources used to perform

175

this review are: literature in the domain of process mining and literature from
other domains on (generating) synthetic data.

Secondly, the general methodology is built and implemented in a tool to
support this new methodology.

Finally the implemented methodology is tested and validated by repeating
experiments done in past research on comparing process discovery techniques.

One important limitation of this methodology will be its scope which is lim-
ited to generating artificial data for analysing control-flow discovery techniques.
Also the reader should be aware that such a general methodology for artificial
data will not replace the need for real (test) data. Real logs continue to be nec-
essary for making artificial event logs more realistic and as a final review for
process discovery techniques.

5 Research stage

5.1 A Preliminary Framework

The literature review of articles on the evaluation of process discovery techniques
based on artificial data (i.a. [1, 2, 3]) reveals that there are only some guidelines
or recurring elements for generating artificial logs. However, a sound and general
methodology is missing, which decreases the relevance of artificial logs.

To address this issue a preliminary framework is distilled from the literature
review which focusses on the crucial aspect of randomization. The methodology
can be divided into two stages: the generation of an artificial process model and
the generation of event logs from this model. Both stages allow the researcher to
define the characteristics of the population and produce a representative sample
(see table 1).

The first step is to define a population of process models, from which artifi-
cial models are sampled randomly and automatically. In past research this cru-
cial step in generating artificial event logs was never made explicit in a general
method or guideline. Mostly processes were drawn manually in an ad-hoc man-
ner without explicitly defining the population they were drawn from. However,
it is important that the researcher has insight into the process model population
and can influence the properties of that population. Therefore, ranges for the list
of controllable properties (see step 1 in table 1) must be set to define the popula-
tion. Next, values within these ranges are selected randomly and automatically
to define a single process model.

The second step concerns the generation of event logs for each process model
defined in the previous stage. Again, the researcher must set ranges for several
event log properties, from which exact values are sampled randomly to generate
event logs. The parameters which can be set are shown in step 2 in table 1.

5.2 Tools for Generating Artificial Event Logs

Different tools already exist which can help to automatically generate artificial
event logs. We evaluated two tools considered most appropriate to support the

176

Table 1. Preliminary Methodology for Generating Artificial Event Logs

Step Methodology Controllable Properties

1. Model Generation Number of activity types
Choice structural patterns
Choice nested structural patterns

2. Log Generation Number of generated process instances
Required completeness
Noise
Imbalance of execution properties

preliminary framework: the PLG tool [6] and the BeehiveZ tool [7]. At first sight
both tools seem appropriate because both support the two stages of the proposed
methodology. However, a more detailed evaluation revealed that both tools do
not completely support the proposed methodology and several limitations exist.
The results of the evaluation, summarized in table 2, show that the PLG tool
supports the preliminary framework the best.

Table 2. Tools for Generating Artificial Event Logs

Properties PLG BeehiveZ

Number of activity types NOK OK
Choice structural patterns OK NOK (indirectly by generator)
Choice nested structural patterns OK NOK (indirectly by generator)

Number of generated process instances OK NOK
Required completeness NOK NOK (only for simple models)
Noise OK OK
Imbalance of execution properties OK NOK

5.3 A First Step Towards Validation

Although the framework as presented in table 1 is still preliminary, it was used
in a first case study to assess if it was a step towards artificial data with more
discriminatory power.

For this case study we repeat part of the experiment of De Weerdt et al. [3]
in which they evaluated process discovery techniques on both artificial and real
event logs. Remarkably, the performance of the algorithms did not seem to be
significantly different for the artificial data, while real event logs revealed signif-
icant performance differences.

We hypothesize that our methodology can produce artificial data with more
discriminatory power. Therefore we repeat part of the experiment of De Weerdt

177

et al. [3] on artificial data generated with the proposed methodology to see if
our results are closer to the results on real data in De Weerdt et al., than their
own results on artificial data. If that is true, the case study will provide a first
support to our hypothesis.

We applied the preliminary methodology to generate 35 artificial event logs
out of two random populations using the PLG tool (with all its limitations). Then
four process discovery algorithms were evaluated in two conformance dimensions,
fitness and precision, using the method described in [3].

The results in the fitness dimension show that the performance of the tested
algorithms reflect better the results for fitness on real data in [3], and thus
supports the earlier stated hypothesis. However, the performance differences
with respect to fitness in our experiments were of a different order of magnitude
than the performance differences based on real data found by De Weerdt et
al. [3]. Moreover, the results from our experiments don’t show any significant
differences in terms of precision in contrast to the results in [3] based on real
data.

From these findings can be concluded that the preliminary methodology is
only a first step in the direction of increasing the discriminatory power of artificial
event logs.

References

1. van der Aalst, W., Weijters, T., Maruster, L.: Workflow mining: discovering process
models from event logs. Knowledge and Data Engineering, IEEE Transactions on
16(9) (September 2004) 1128 – 1142

2. de Medeiros, A.K.A.: Genetic process mining. PhD thesis, Technische Universiteit
Eindhoven (2006)

3. De Weerdt, J., De Backer, M., Vanthienen, J., Baesens, B.: A multi-dimensional
quality assessment of state-of-the-art process discovery algorithms using real-life
event logs. Information Systems 37(7) (November 2012) 654–676

4. Rozinat, A., de Medeiros, A.A., Gnther, C.W., Weijters, A., van der Aalst, W.M.:
Towards an evaluation framework for process mining algorithms. In: BPM Center
Report, BPMcenter.org (2007)

5. vanden Broucke, S.K., Delvaux, C., Freitas, J., Rogova, T., Vanthienen, J., Baesens,
B.: Uncovering the relationship between event log characteristics and process dis-
covery techniques. In: Business Process Management Workshops, Springer (2014)
41–53

6. Burattin, A., Sperduti, Alessandro, A.: PLG: a process log generator. Technical
report

7. Jin, T., Wang, J., Wen, L.: Efficiently querying business process models with Bee-
hiveZ. In: BPM (Demos), Clermont-Ferrand, France (2011)

178

Process Mining Extension to SCAMPI

Arthur Valle
1,2

, Eduardo Rocha Loures
1
, Eduardo Portela

1

1 Pontifical Catholic University of Parana, Industrial and Systems Engineering, Curitiba, Brazil

{arthur.maria, eduardo.loures, eduardo.portela}@pucpr.br
2 Wipro Technologies, Curitiba, Brazil

arthur.valle@wipro.com

Abstract. Existing process assessment methods, such as SCAMPI-Standard

CMMI Appraisal Method for Process Improvement, do not use contemporary

data collection and analysis techniques like processes mining, text mining or

data mining. On the contrary, they use traditional ones: questionnaires, docu-

ment review, interviews and demonstrations. Process mining is a technique that

can be used to aid process assessments, aiming to conduct them with greater

deepness and coverage, while keeping similar level of effort. The purpose of the

PhD work is to develop a framework (structure and content) to apply process

mining techniques in SCAMPI assessments.

1 Introduction

The present paper proposes the Process Mining Extension to SCAMPI, a frame-

work where process mining techniques are added to existing assessment techniques.

The paper is organized as follows. Section 2 presents the research question. Section 3

describes the background. Section 4 presents the significance of the work. Section 5

presents the research design and method. Section 6 provides the research stage.

2 Research Question

The research question can be stated as: “Comparatively with traditional SCAMPI

assessments, does the proposed method extension enable software process assess-

ments with more objectivity, accuracy, depth and coverage of aspects related to the

execution of processes, while maintaining similar levels of effort, cost and time?”.

3 Background

SCAMPI [1] is a method used to assess organizations that use CMMI as a refer-
ence for their operations (software development, service management, etc). The
fundamental idea behind the SCAMPI, as well as other similar assessments, is that the
conduction of an activity or process results in "footprints" called objective evidences,

179

mailto:arthur.valle@wipro.com

which are evaluated by experts to judge whether they satisfy best practices of a given
CMMI reference model [2].

According to Fig. 1, extracted from Process Mining Manifesto, Process Mining is

a set of techniques, tools, and methods to discover, monitor and improve real process-

es (i.e., not assumed processes) by extracting knowledge from event logs commonly

available in today's (information) systems [3].

Fig. 1. Process Mining Overview, reproduced from [3]

There are three main types of process mining techniques [3]: a) Process Discovery

(from an event log, a “as is” process model is identified); b) Conformance (or Com-

pliance) Checking (an existing process model is compared to an event log of the same

process); c) Enhancement (a process model is improved using information extracted

from a log).

In order to identify work that proposed the use of process mining in process as-

sessment, a systematic literature review was conducted. As a result of the application

of a defined criterion and procedure, in six renowned scientific databases, only 6 out

of 26 resulting papers were selected. Since none of them mentioned which process

assessment methods were used, an additional search on Google Scholar was conduct-

ed using the same terms, resulting in some relevant papers, as follows:

• PhD thesis of Samalik, entitled Process Mining Application in Software Pro-

cess Assessment [4]. The objective was to promote the use of process mining in soft-

ware process assessment and improvement. Her conclusion was that techniques for

collecting information derived from process mining can be applied to improve the

data collection on software process assessment. However, conclusion was reached by

qualitative judgment without objective criteria. In addition, process mining techniques

that should be used were not nominally listed.

• Master dissertation of Cruañas, entitled Process Mining Opportunities for

CMMI Assessments [5]. The objective was to investigate the literature concerning

support tools to find out if it is possible to use process mining to improve the assess-

ment of CMMI. His conclusion was that process mining can not only help improve

the current CMMI assessments, but can also be a useful tool to assist data collection.

180

However, conclusions were based on the generalization of processes mining tech-

niques and perspectives without using objective criteria. Moreover, no process mining

technique in particular was pointed out.

• A third paper found is [6] where different aspects of processes mining were

addressed, such as control perspective, information perspective and organizational

perspective. Some algorithms such as alpha algorithm, heuristics miner, genetic min-

er, social network miner, organizational miner and activity miner, which can be ap-

plied, were cited in the paper.

Although these papers demonstrate application of process mining in process as-

sessments, there is no formal guidance of how to conducting it, covering for instance,

how to capture business rules, how to compare models and logs, which process min-

ing algorithms to use, and when, etc.

4 Significance

According to [7], existing process assessment methods (such as SCAMPI) have

limitations: they are manual, time-consuming, inefficient, subjective and generally

require experienced appraisers. However, these days, detailed information about pro-

cesses is recorded in the form of event logs, transaction logs, databases, etc. In this

sense, in a process assessment is no longer justifiable that only a small set of process-

es are checked. Instead, the entire process and all its instances should be considered,

as long as this represents low costs, naturally. Additionally, in existing assessment

methods, the following techniques are used for gathering information about the run-

ning processes in an organization: questionnaires, document review, interviews and

demonstrations. It means that no contemporary data collection and analysis tech-

niques such as data mining, text mining or process mining is used.

Therefore, it is proposed the application of process mining techniques on the

SCAMPI. It means that event logs of software processes would be used to understand

past and current situation in a complete, economical, reliable and accurate manner,

thereby contributing to the collection and analysis of data, which are critical activities

in any software process assessment method.

The premise is that nowadays companies have been extremely efficient in collect-

ing, organizing, and storing a large amount of data obtained in their daily operations.

Most of these companies, however, do not use such data properly so as to transform

them into knowledge to be employed in assessment activities. The need of companies

to learn more about how their processes actually operate is a major driver behind the

development and increasing use of process-mining techniques.

The main objective of this work is to develop a framework for the application of

process mining techniques in SCAMPI-based assessments. This framework aims at

enable software process assessments with more objectivity, accuracy, depth and cov-

erage of aspects related to the execution of processes (such as duration and sequence

of activities, start and end dates and records of who were the real executors), while

maintaining similar levels of effort, cost and time.

181

5 Research design and methods

According to Fig 2, the proposed framework is a structure that serves as a guide

for applying process mining techniques in SCAMPI assessments. The intention is that

such guidance could be seen as an extension to SCAMPI method description. Analog

approaches already exist such as the SAFE extension to CMMI-DEV [8]. It means

that the Process Mining Extension to SCAMPI adds (or modifies) content to the cur-

rent SCAMPI method. Its content covers the application of process mining aspects in

SCAMPI method. Typically it comprises full or partial processes or activities, alt-

hough any element can be added or expanded, such as inputs, outputs, tools and tech-

niques.

Fig. 2. Process Mining Extension to SCAMPI

Process Mining Extension to SCAMPI is a document with the following chapters:

Executive Summary; Abstract; 1-Introduction; 1.1- Background and Acknowledge-

ments; 1.2-Purpose and Scope; 1.3-Relationships with CMMI and SCAMPI; 1.4-

Structure of the Process Mining Extension to SCAMPI; 1.5-Intended Audiences; 1.6-

Usage scenarios; 2-Content; Appendix A: References; Appendix B: Acronyms; Ap-

pendix C: Glossary; Appendix D: Contact.

In order to define which content would be added or modified in Process Mining

Extension to CMMI, some references were considered, beyond the SAFE extension to

CMMI-DEV. For instance, [9] have proposed process mining use cases – typical ap-

plications of process mining functionalities in practical situations – to be used for

detailed evaluation of process mining tools. Here, these use cases are used to identify

typical process mining situations that are pertinent and could be applied in SCAMPI

assessment. From the original list of 19 use cases, the following ones were taken in

consideration: from Discovery perspective, UC1-Structure of the process; from Con-

formance Checking perspective, UC6-The degree in which the rules are obeyed and

UC7-Compliance to the explicit model.

182

6 Research stage

The Process Mining Extension to SCAMPI is under development. Some chapters

of the document are more advanced than others, such as 1.4-Structure of the Process

Mining Extension to SCAMPI, 1.6-Usage scenarios and 2-Content.

In addition, the implementation of a running example to apply process mining

techniques in SCAMPI assessments was conducted. The approach seemed to be fea-

sible, as demonstrated using Disco and ProM process mining tools. Process mining

techniques are demanded in order to transform existing process assessment methods,

such as SCAMPI, into more productive and economically viable methods. Process

mining enables an easy comparison on how processes are performed in practice ver-

sus the way they are designed to operate.

As future work, it is intended to use the framework in real SCAMPI assessments

and to conduct statistical analysis and hypothesis thesis of performance parameters

such as effort, duration, coverage and quality of results to quantitatively evaluate the

benefits.

References

1. SCAMPI Upgrade Team.: Standard CMMI Appraisal Method for Process Improvement

(SCAMPI), Version 1.3a: Method Definition Document for SCAMPI A, B and C

(CMU/SEI-2013-HB-001). Pittsburgh, PA: Software Engineering Institute, Carnegie

Mellon University. http://cmmiinstitute.com/resource/standard-cmmi-appraisal-method-

process-improvement-scampi-b-c-version-1-3a-method-definition-document/

2. Chrissis, M. B., Konrad, M., & Shrum, S.: CMMI for Development: Guidelines for Pro-

cess Integration and Product Improvement. Addison-Wesley Professional (2011)

3. Van der Aalst, W. et al.: Process mining manifesto. In: Business process management

workshops p. 169-194. Springer Berlin Heidelberg. (2012)

4. Samalik, J.: Process mining application in software process assessment. Eindhoven: Tech-

nische Universiteit Eindhoven. ((Co-)promot.: prof.dr. R.J. Kusters, prof.dr.ir. P.W.P.J.

Grefen & dr.ir. J.J.M. Trienekens) (2012)

5. Cruañas, J. R.: Process Mining Opportunities for CMMI Assessments (2012)

6. Rubin, V. et al.: Process mining framework for software processes. In:Software Process

Dynamics and Agility. Springer Berlin Heidelberg. p. 169-181 (2007)

7. Rout, T. P., El Emam, K., Fusani, M., Goldenson, D., & Jung, H. W.: SPICE in retrospect:

Developing a standard for process assessment. Journal of Systems and Software, v. 80, n.

9, p. 1483-1493 (2007)

8. SAFE, V. 2: A Safety Extension to CMMI-DEV, V1. 2, Defence Materiel Organisation,

Australian Department of Defence, Software Engineering Institute, TECHNICAL NOTE

CMU. SEI-2007-TN-006http://www.sei.cmu.edu/pub/documents/07.reports/07tn006.pdf.

(2007)

9. Ailenei, I., Rozinat, A., Eckert, A. & van der Aalst , W.M.P.: Definition and Validation of

Process Mining Use Cases. In F. Daniel, K. Barkaoui, and S. Dustdar, editors, Business

Process Management Workshops, International Workshop on Business Process Intelli-

gence (BPI 2011), volume 99 of Lecture Notes in Business Information Processing, pages

75-86. Springer-Verlag, Berlin (2012)

183

http://cmmiinstitute.com/resource/standard-cmmi-appraisal-method-process-improvement-scampi-b-c-version-1-3a-method-definition-document/
http://cmmiinstitute.com/resource/standard-cmmi-appraisal-method-process-improvement-scampi-b-c-version-1-3a-method-definition-document/

	SIMPDA2014.pdf
	paper1
	paper3
	paper4
	paper5
	paper6
	1 Introduction
	2 Background
	3 Artifact Description: CoPrA2Go App
	Pre-Conditions
	Choose Table Design View Controller
	Group Setup View Controller
	Observation Screen View Controller
	Web View Controller

	4 Method
	5 Results of the User Acceptance Test
	6 Discussion and Limitations
	7 Conclusion
	Appendix
	References

	paper7
	paper9
	paper10
	paper11
	paper12
	paper13
	paper14

