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Abstract – One of the complex issues in developing architectural models of software systems is the 
capturing of architectures dynamics, i.e., systems for which composition of interacting components, 
changes at run time. In this paper, we argue that it is possible and valuable to provide a Dynamic Software 
Architecture Meta-model (DySAM) that accounts for interactions between architectural components and their 
reconfiguration. The key to the proposed approach is to use a graphical notation, according to MDA 
approach, and a Maude semantic basis using the K framework for both dynamic software architecture 
elements reconfiguration and steady-state behavior. 
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1. INTRODUCTION

Dynamic software architectures (DSA) are those 
architectures that modify their structure and 
behavior and enact the modifications during the 
system’s execution without stopping the 
application. This behavior, commonly known as 
run-time evolution or dynamism (reconfiguration), 
is widely considered one of the most crucial 
features of modern software systems. It needs a 
flexible development strategy so that the 
underlying systems preserve their well-
functioning over time by managing themselves 
their evolution [1]. 

In a previous work [2], we proposed a solution to 
address the above challenges in the meta-
modelling context according to the MDA 
approach. It is an alternative definition of 
Software architecture in terms of a complete 
meta-model called DySAM (Dynamic Software 
Architecture Meta-model) that promotes the use 
of interfaces as the primary artefact to be 
specified and maintained. It offers to architects 
familiar modelling concepts and notations to 
define their applications’ structure, behavior and 
dynamism. Indeed, it defines the interactions 
between architectural elements in terms of data 
transactions as well as their evolution strategies 

in terms of evolution rules. However, despite its 
completeness to cover all DSA aspects, DySAM 
model, like any other meta-model, is not self-
sufficient to support its behavioral semantics 
(usually called operational semantics). Indeed, 
this meta-model supports an observational 
(structural and static) semantics only (via 
associations’ multiplicities, constraints) and lacks 
a built-in support for defining semantics of both 
behavior and evolutionary changes. 

On the other hand, integrations between formal 
and visual (graphical) modelling specifications 
are attracting increasing interest due to their 
benefits. Combining these two approaches, may 
show how the advantages of one approach can 
be exploited to cover or weaken the 
disadvantages of the other. In fact, combined 
models can make formal methods easier to apply 
and informal ones more precise [3].  

In this paper, we aim to define DySAM 
operational semantics by integrating the meta-
model in K framework |4]. This later is a semantic 
framework in which, programming languages, 
calculi, as well as type systems or formal 
analysis tools can be defined. It is based on 
Maude [5], a rewriting logic based language, 
dedicated to specify concurrent state changes. 
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The main advantages of our approach are: 

 It provides lightweight and more intuitive 
graphical notations, which are more familiar 
and user-friendly. 

 It gives formal specification and verification 
tools, which are easy to use in the 
development lifecycle of the software 
architecture. 

 It provides DSA models with formal and 
rigorous semantics thanks to K framework 
use. This important advantage defines a 
meta-transformation closely conform to the 
MDA model transformation principle. 

 It allows transparent execution of DSA 
models in Maude, so that model validation 
and verification can be performed using 
transparently its tools such as Model-
Checker. 

The remainder of the paper is organized as 
follow: In section 2, we position our approach 
among existing ones. Section 3 presents an 
overview of our meta-model DySAM for DSA 
description and basic concepts of K framework. 
In section 4, we explain how we integrate 
DySAM in K and define its operational 
semantics. The paper is then concluded in 
section 5 by drawing some comments and 
outlining some perspectives for future work. 

2. Related Work 

Some recent research efforts have adapted 
existing modeling notations and formal 
specification techniques (Process algebra, Petri 
nets, etc.) to specify dynamic software 
architecture of a given system, while others have 
developed new languages specifically for the 
purpose new architecture description languages. 
In this section, we divide the existing work into 
modelling/meta-modelling approaches, and 
those merely based on formal methods. 
The first ones specify DSA, as a model of 
software systems or a set of features of the 
models themselves. They provide familiar and 
comprehensible notations (usually diagrams and 
graphical notations) to model all software 
architecture aspects (UML [6] and Palladio [7]). 
But, few interest is dedicated to model behavior 
and dynamics. 
 
The second class of existing formal specification 
techniques have also been applied to formalize 
SA elements and its behavior in a given logic (we 
cite here for instance, formal ADL) [8, 9]. They 

provide a basis for rigorous properties analysis of 
the software system at an architecture abstract 
level. However, they remain uncommon and they 
are not well appreciated by designers and 
engineers. 
 
Besides, a third class of hybrid approaches [10], 
to which our work belongs, may also be 
considered, they specify DSA as models having 
two possible forms, a graphical one intended to 
visualize SA elements and a theoretical form, 
usually used to allow reasoning and formal 
analysis of DSA. Thus, hybrid approaches take 
benefits of both models and formal methods.  

In the same thought, our contribution consists in 
defining DSA according to the MDA meta-
modeling approach and then, integrating this 
definition in the formal K framework. We define 
DySAM operational semantics with K-Maude 
tool, in order to facilitate execution and 
verification of the DSA by users not familiar with 
Maude language concepts. In fact, K allows a 
transparent passage from the SA description to 
its Maude based executable model. 

3. Prerequisites 

In this section, first, we present our developed 
meta-model for dynamic software architecture 
(DySAM) [2], based on interfaces as first class 
entity, then, we introduce some basic concepts of 
K system. 

3.1.  DySAM Model 

In all proposed SA definitions (namely those 
given by ADL or related to component based 
models); the interface concept is the key element 
characterizing or even identifying an architectural 
element [2]. In fact, components are composed 
only through their interfaces and connector 
interfaces specify participant roles in an 
interaction. Interfaces support a part of 
architectural elements semantics and behavior 
allowing the description of dynamic aspects as 
well as their constraints. 

In previous work [2], we have suggested a new 
definition of architectural description, primarily 
based on the interface concept (figure1). Thus, 
the DySAM model considers it as first class entity 
while leaving components and connectors as 
grey boxes. This will offer more flexibility and a 
loose coupling of architectural elements.  

DySAM maintains both structure and dynamic 
behavior of SA. The model elements are not only  
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Figure 1: DySAM model motivation. 

structure constructs, comparable to those of 
architecture description languages (ADL), but 
also: 

 The interfaces’ behavior as a state transition 
system. An interface may be either active or 
passive allowing shutting down a part of the 
system in order to perform some 
architectural changes without altering its 
consistency. 

 The interactions between the architectural 
elements in terms of information exchange, 
in order to analyze and verify the system 
behavior in the early phases of the software 
development cycle. 

 The architecture dynamic evolution as a set 
of strategy rules that allow adding, 
destroying, or even replacing architectural 
entities. An evolution manager is responsible 
of applying this rules and maintaining the 
coherence of the system. 
 

DySAM is an Ecore model based on EMF 
(Eclipse Modeling framework) [11], a 
sophisticated meta-modeling framework. Textual 
and graphical visualization or editors can be built 
on top of the meta-model thanks to GMF [12] 
and Xtext [13] tools.  

3.2. K framework 

K was initiated by Grigore Rosu in 2003 and 
completely developed in 2010 [4]. It is a semantic 
framework based on rewriting logic. It provides 
executable Maude specifications for 
programming languages and formal analysis 
tools using configurations, computations and 
rules. Its general objective is to demonstrate that 
a formal specification language for these 
systems can be simple, expressive, analyzable, 
and executable at the same time [14]. 

Figure 2 presents the K framework architecture. 
The gray arrows denote translator tools 
implemented as part of the K framework toolkit. 
The file “k-prelude.maude” contains several 

Maude [5] modules that are handy in most 
language definitions, such as ones for defining 
computations, configurations, environments, 
stores, etc. The “K-Maude” interface is what the 
user typically sees: besides usual Maude module 
(K-Maude fully extends Maude), one can also 
include K-modules containing syntax, semantics 
or configuration definitions using the K notation. 
A first component of K-Maude tool translates K-
modules to Maude modules. These later encode 
K-specific features as meta-data attributes and 
serve as an intermediate representation of K-
definitions. This intermediate representation can 
be further translated to various back-ends: 
executable/analyzable Maude modules, which 
can serve as a basis for formal analysis, or 
LATEX files for documentation reasons.  

Figure 2: The K-Maude architecture. 

K language definitions are given as K-modules, 
entirely inspired from Maude modules. Each K-
module includes two sub-modules: one for the 
syntax definition and another for the semantics 
one. This separation reduces ambiguities and 
allows parsing a large variety of programs.  

Syntax in K is defined using a variant of the 
familiar BNF (Backus Naur Form) notation [15], 
with terminals enclosed in quotes and non-
terminals starting with capital letters. The syntax 
is similar to that of standard Maude syntax (sorts, 
sub-sorts and mix fix operation declarations). 
However, in addition to Maude’s attributes (such 
as precedence and gathering), specific K-
attributes can be added, such as strict, which is 
used to specify that some arguments of a 
language construct must be evaluated first (and 
their effects on the global state are propagated) 
before giving a semantic to the construct itself.  

A language semantics specification in K consists 
of three parts: 
 Providing evaluation strategies, otherwise K 

strategies specify the evaluation order of the 
arguments. 

 Giving the structure of the configuration that 
holds the program state. Configurations are 
structured as nested labeled cells (using an 
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XML-like notation) containing various 
computation-based data structures.  

 Writing K-rules to describe transitions 
between configurations. 

The K-Maude tool is designed to well define 
operational semantics of programming 
languages. In our paper, we exploit it to define 
the operational semantics of DySAM model. 
Therefore, we use in a transparent manner the 
rewriting logic, recognized as a unified semantic 
framework, as a dynamic software architecture 
basis. 

4. DySAM MODEL INTEGRATION IN K 
FRAMEWORK 

To make formal methods more user-friendly 
(expand their use), we may combine them with 
informal design techniques. In this work, we 
integrate the DySAM model in K, while providing 
an intuitive modeling notation, supporting a 
graphical view, but still having a rigorous syntax 
and semantics.  

Thus, we follow the same steps as for the 
programming languages. Otherwise, we have to 
define its syntax under BNF notation.  Then, we 
define the syntactic K-rules for interpreting 
DySAM proposed syntax. On the other hand, we 
specify its operational semantics thanks to the 
common configurations and rules sets. K-rules 
define particularly, the architecture evolution 
strategies and interaction. 

4.1. Syntax Module 

In the K method application, we have to provide 
DySAM syntactic definition under BNF notation. 
This is integrated in K tool as a syntax module 
that represents a formal meta-model defining all 
concepts of DySAM. Table 1 describes a part of 
the DySAM syntax with an illustrative example. A 
system architecture description starts with the 
keyword SystemArchitecture and an identifier 
Id followed by a set of interfaces, attachments, 
an evolution manager and interactions between 
braces. Each interface may be a 
ComponentInterface, or ConnectorInterface.  

Table 1: A part of DySAM syntax in K 

Architecture Description Syntax K-Definition 
SystemArchitecture Arch{ 
 
 
 
PrimitiveComponentInterface A { 
 

Component is C1 ;  
 State is Active ; 

Port In AIn uses as1 ;  
 Port In AOut uses as2 ; }  
 
 
PrimitiveConnectorInterface C { 

Connector is RPC1 
 ConnectorType is RPC  
 State is Active ; 
 Role In CIn ;  
 Role Out COut ; } 
Attachments { 
 Attachment A.AIn to C.COut 
 Attachment B.Out to C.CIn } 
 
EvolutionManager manager{ 
EvolutionStrategy S1( X:A ,Y:C){ 
 
 
EvolutionRule R1{  
Actions{ AddComponentInterface X2;} 
 
Transitions{ 
 Set State Y to Passive; }  
 } 
Interactions{ 
Interaction "Msg" between B.BOut and 
A.AIn through C.CIn and C.COut ; 

SystemArchitecture ::= “SystemArchitecture" Id "{" Interfaces "Attachments{" 
Attachments "}" EvolutionManager "Interactions{" Interactions"}" 
Interfaces ::= Interface >Interfaces Interfaces[left] 
Interface ::= PrimitiveComponentInterface | PrimitiveConnectorInterface |… 
 
PrimitiveComponentInterface::= "PrimitiveComponentInterface" Id "{"Component State
 Ports  "}" 
Component ::= "Component is " Id ";" 
State ::= "State is" StateValue";" StateValue ::= "Active" | "Passive" 
Port ::= "Port" Mode PortId "uses" Id ";" 
Ports::= Port > Ports Ports [left] 
Mode ::= "In"| "Out"| "InOut" 
 
PrimitiveConnectorInterface::= "PrimitiveConnectorInterface" Id"{" Connector 
 ConnectorType State Roles  "}" 
Connector::="Connector is " Id ";" 
ConnectorType ::="ConnectorType is" Id ";" 
Role ::= "Role" Mode RoleId";" 
Roles ::= Role > Roles Roles [left] 
 
Attachment ::= "Attachment" Id.PortId "to" Id.RoleId 
Attachments ::= Attachment > Attachments Attachments [left] 
 
EvolutionManager ::= "EvolutionManager" Id "{" EvolutionStrategies "}" 
EvolutionStrategies ::= EvolutionStrategy 
>EvolutionStrategiesEvolutionStrategies [left] 
EvolutionStrategy ::= "EvolutionStrategy" Id "(" List ")" "{" Rules "}"  
Rules ::= Rule > Rules Rules [left] 
Rule ::="EvolutionRule" Id "{"Actions Conditions Events Transitions"}" 
Actions ::= Action > Actions Actions [left]  
Action ::= ActionName Id ";" ...  
ActionName := "AddComponentInterface" | "DeleteComponentInterface"... 
 
Interactions ::= Interaction > Interactions Interactions [left] 
Interaction::="Interaction" Data "between" PortId "and" PortsId "through" RolesId "and" 
RolesId ";" | ...       
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The basic definition of each interface is related 
to the associated primitive element (component 
or connector). The declaration of the first one 
(respectively second) contains a set of Ports 
(respectively roles). The keyword uses 
specifies provided or required services through a 
port. An Attachment relates ports and roles to 
build a given structure of SA. 

The interface abstract behavior is defined by a 
state transition system (State and StateValue 
keywords). The State attribute of an interface 
define its state at a given time. We consider two 
kinds of state: Active (e.g. sending or receiving 
a message or an event) and Passive (e.g. 
nothing happen). The Transition construct 
specifies the possible state changes by 
providing the new final state using the keywords 
Set State. 

The evolutionmanager contains a set of 
evolution Strategies (rules’ sets) to determine 
when and how architectural elements will 
change. A Rule is defined by a set of change 
Actions, resulting Events, Conditions and 
state’s Transitions.  

Interactions models data exchanges between 
interfaces that may be a message, an event, a 
session, or even a database access. It specifies 
the Source Port that initiates the interaction 
(output port); target Ports that designates one 
or more receiving ports (input port) and 
Source/Target Roles. Interactions allow also an 
interface state change according to the 
architecture behavior. 

We can elaborate a DySAM model of any 
system by instantiating all its architectural 
element. Figure 3 describes an application that 
contains: instances of A, B and C interfaces 
denoted by the key word New, 2 attachments 
instances and a notification to the evolution 
manager for adding a new interface instance A2 
of type A and attaching it to the connector 
interface instance C1.  

SystemSys1{ 
New A1 : A ; 
New B1 :B ; 
New  C1 : C ; 
Attachment instance A1. AIn to C1.COut ; 
Attachment instance B1.BOut to C1.CIn ; 
Notification S1( A2 : A , C1 : C ) from B1 to M;   } 

Figure 3: A simple example of a system 

 

4.2. Configuration Definition 

A configuration in K is a structure of the 
computations context. It is represented as nested 
cells containing standard items as environments, 
stores or other specific items (corresponding to 
the given semantics). The program state is 
typically represented as a configuration term [16]. 

The rewrite mechanism of K updates the given 
configuration repeatedly by using all possible K-
rules. The configuration abstraction process 
allows one to specify only the minimal context 
needed for applying a K-rule [16].  

Figure 4 presents a part of the initial 
configuration of DySAM. It contains three main 
cells. The <k> cell contains the whole description 
used by K tool to start the rewriting process. For 
instance, the cell <systemArchitecture> 
describes the software architecture elements, 
evolution strategies and interactions. The 
interfaces cell contains a set of (represented by a 
star) <primitiveComponentInterface> and 
<primitiveConnectorInterface> to represent the 
structure of each interface, while the 
<attachments> cell specifies attachments in a 
configuration. The value of the attributes is set to 
no name (i.e. undefined). 

The cells <ports> and <roles> store respectively 
ports and roles in a map. The <evolution> cell 
stores the evolution strategies and rules to be 
applied. Finally, the sources/targets ports and 
roles, in addition to the data type used in an 
interaction, are stored in <interaction> cells. 

The <system> cell stores the application 
configuration at a given time. It may be 
considered as an instance of the architecture. It 
contains cells to describe instances of interfaces 
and attachments, in addition to evolution 
notifications. 

4.3. Semantics Module 

The semantics of the DySAM model is defined in 
a separate module with rewriting rules. K-rules 
may be computational rules or structural rules. 
Structural rules capture the structural 
rearrangement of SA, so they allow to reorganize 
the configuration.  

Computational rules define semantics of the 
computational steps while executing the defined 
system, as the actual state transitions. These 
rules are represented (in a latex file for 
documentation purposes) by colored cells and a  
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Figure 4: The initial DySAM Configuration

black horizontal line separating the right from the 
left side of the rewriting rule.  

 
Figure 5: A structural K-rule 

The structural rule in figure 5 describes the 
semantics attributed to the declaration of a 
component-Interface. If component-interface I 
declaration is the next thing to be evaluated in 
the <k> cell then the rule replaces I declaration 
by the Variable PORTS (to be evaluated next), 

and creates a new 
<primitiveComponentInterface> and sets its 
internal structure described by name, 
component, state and the empty < port> cell.  

Once all the declarations are rearranged in the 
configuration, computational rules may be 
applied. In the next section, we explain some of 
these rules. For instance, Figure 6 describes how 
a new component interface instance I is added to 
the system’s configuration. I is added by running 
the action AddComponentInterface|->N. This 
action is given by the evolution rule R of the 
evolution strategy ES. It creates a new instance 
of interface A and sets its name to I, its state to 
passive and fills its ports map (if the name of this 
instance cannot be found in the names map).  

Figure 7 shows the K-rule that performs a state 
transition of an interface. This transition is 
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triggered by the evolution rule R. It will change 
the state of the interface (A) instance I, from the 
value SVN to SV. The interface state changing 
should block all incoming transactions to 
maintain the architecture in a coherent state, 
without intercepting the system too long. 

In the same way, the last rule (Figure 8) details a 
component and connector interfaces interaction. 

It transmits a message Msg from an output port 
P of the component interface I to the input role of 
the connector interface J. This rule is applied, 
only if an attachment instance is maintained 
between the port and the role, and the interaction 
is already defined in the configuration. The 
interaction cell specifies ports and roles evolved 
in this interaction and the transmitted data 
(message) type. 

 

 
Figure 6: A K-rule describing a new interface instance creation

 

Figure 7: A K-rule modeling state transition of an interface instance.  

Figure 8: A K-rule describing an interaction. 
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5. CONCLUSION 

K is a rewrite-based executable semantic 
framework designed for programming languages 
definition. In our paper, we have shown how it 
could also be used in the field of dynamic 
software architectures to fit with semantics, their 
description definition given in a previous work in 
terms of a general meta-model (DySAM). In fact, 
we have combined MDA development 
techniques with the formal K-method in order to 
provide the DySAM model with both an intuitive 
modeling notation, supporting a graphical view, 
and rigorous syntax and semantics. Any DySAM 
syntactical artifact (interface, attachments, ports, 
oles …), has a K-based semantic interpretation. 
This valuable conjunction has the advantage to 
make possible the execution and analysis of an 
architecture description in Maude system in a 
transparent manner. Moreover, any architecture 
dynamic evolution or interaction may also be well 
handled. Our approach could be easily exploited 
even by users not familiar with rewriting logic 
concepts. They have just to give a model 
conform to DySAM. Thus, in this context, K can 
be considered as a meta-transformation of 
friendly graphical and textual notations to 
unfriendly formal notations easy to exploit.  

Because the transparency is offered by K 
framework even for analysis and verification, as 
ongoing work, we aim to integrate and simplify 
the use of model-checker in system validation 
and verification in order to guarantee that the 
system model, built according to DySAM, 
satisfies global properties during its evolution. 
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