
K-Maude Definition of Dynamic Software
Architecture

Sahar Smaali, Aïcha Choutri, Faïza Belala
LIRE Laboratory, Constantine 2 University, Algeria

sahar.smaali@gmail.com, aichachoutri@gmail.com, belalafaiza@hotmail.com

Abstract – One of the complex issues in developing architectural models of software systems is the
capturing of architectures dynamics, i.e., systems for which composition of interacting components,
changes at run time. In this paper, we argue that it is possible and valuable to provide a Dynamic Software
Architecture Meta-model (DySAM) that accounts for interactions between architectural components and their
reconfiguration. The key to the proposed approach is to use a graphical notation, according to MDA
approach, and a Maude semantic basis using the K framework for both dynamic software architecture
elements reconfiguration and steady-state behavior.

Keywords –DySAM, Dynamic Software Architecture (DSA), Operational semantics, K framework

1. INTRODUCTION

Dynamic software architectures (DSA) are those
architectures that modify their structure and
behavior and enact the modifications during the
system’s execution without stopping the
application. This behavior, commonly known as
run-time evolution or dynamism (reconfiguration),
is widely considered one of the most crucial
features of modern software systems. It needs a
flexible development strategy so that the
underlying systems preserve their well-
functioning over time by managing themselves
their evolution [1].

In a previous work [2], we proposed a solution to
address the above challenges in the meta-
modelling context according to the MDA
approach. It is an alternative definition of
Software architecture in terms of a complete
meta-model called DySAM (Dynamic Software
Architecture Meta-model) that promotes the use
of interfaces as the primary artefact to be
specified and maintained. It offers to architects
familiar modelling concepts and notations to
define their applications’ structure, behavior and
dynamism. Indeed, it defines the interactions
between architectural elements in terms of data
transactions as well as their evolution strategies

in terms of evolution rules. However, despite its
completeness to cover all DSA aspects, DySAM
model, like any other meta-model, is not self-
sufficient to support its behavioral semantics
(usually called operational semantics). Indeed,
this meta-model supports an observational
(structural and static) semantics only (via
associations’ multiplicities, constraints) and lacks
a built-in support for defining semantics of both
behavior and evolutionary changes.

On the other hand, integrations between formal
and visual (graphical) modelling specifications
are attracting increasing interest due to their
benefits. Combining these two approaches, may
show how the advantages of one approach can
be exploited to cover or weaken the
disadvantages of the other. In fact, combined
models can make formal methods easier to apply
and informal ones more precise [3].

In this paper, we aim to define DySAM
operational semantics by integrating the meta-
model in K framework |4]. This later is a semantic
framework in which, programming languages,
calculi, as well as type systems or formal
analysis tools can be defined. It is based on
Maude [5], a rewriting logic based language,
dedicated to specify concurrent state changes.

ICAASE'2014 K-Maude Definition of Dynamic Software Architecture

International Conference on Advanced Aspects of Software Engineering
ICAASE, November, 2-4, 2014, Constantine, Algeria. 92

The main advantages of our approach are:

 It provides lightweight and more intuitive
graphical notations, which are more familiar
and user-friendly.

 It gives formal specification and verification
tools, which are easy to use in the
development lifecycle of the software
architecture.

 It provides DSA models with formal and
rigorous semantics thanks to K framework
use. This important advantage defines a
meta-transformation closely conform to the
MDA model transformation principle.

 It allows transparent execution of DSA
models in Maude, so that model validation
and verification can be performed using
transparently its tools such as Model-
Checker.

The remainder of the paper is organized as
follow: In section 2, we position our approach
among existing ones. Section 3 presents an
overview of our meta-model DySAM for DSA
description and basic concepts of K framework.
In section 4, we explain how we integrate
DySAM in K and define its operational
semantics. The paper is then concluded in
section 5 by drawing some comments and
outlining some perspectives for future work.

2. Related Work

Some recent research efforts have adapted
existing modeling notations and formal
specification techniques (Process algebra, Petri
nets, etc.) to specify dynamic software
architecture of a given system, while others have
developed new languages specifically for the
purpose new architecture description languages.
In this section, we divide the existing work into
modelling/meta-modelling approaches, and
those merely based on formal methods.
The first ones specify DSA, as a model of
software systems or a set of features of the
models themselves. They provide familiar and
comprehensible notations (usually diagrams and
graphical notations) to model all software
architecture aspects (UML [6] and Palladio [7]).
But, few interest is dedicated to model behavior
and dynamics.

The second class of existing formal specification
techniques have also been applied to formalize
SA elements and its behavior in a given logic (we
cite here for instance, formal ADL) [8, 9]. They

provide a basis for rigorous properties analysis of
the software system at an architecture abstract
level. However, they remain uncommon and they
are not well appreciated by designers and
engineers.

Besides, a third class of hybrid approaches [10],
to which our work belongs, may also be
considered, they specify DSA as models having
two possible forms, a graphical one intended to
visualize SA elements and a theoretical form,
usually used to allow reasoning and formal
analysis of DSA. Thus, hybrid approaches take
benefits of both models and formal methods.

In the same thought, our contribution consists in
defining DSA according to the MDA meta-
modeling approach and then, integrating this
definition in the formal K framework. We define
DySAM operational semantics with K-Maude
tool, in order to facilitate execution and
verification of the DSA by users not familiar with
Maude language concepts. In fact, K allows a
transparent passage from the SA description to
its Maude based executable model.

3. Prerequisites

In this section, first, we present our developed
meta-model for dynamic software architecture
(DySAM) [2], based on interfaces as first class
entity, then, we introduce some basic concepts of
K system.

3.1. DySAM Model

In all proposed SA definitions (namely those
given by ADL or related to component based
models); the interface concept is the key element
characterizing or even identifying an architectural
element [2]. In fact, components are composed
only through their interfaces and connector
interfaces specify participant roles in an
interaction. Interfaces support a part of
architectural elements semantics and behavior
allowing the description of dynamic aspects as
well as their constraints.

In previous work [2], we have suggested a new
definition of architectural description, primarily
based on the interface concept (figure1). Thus,
the DySAM model considers it as first class entity
while leaving components and connectors as
grey boxes. This will offer more flexibility and a
loose coupling of architectural elements.

DySAM maintains both structure and dynamic
behavior of SA. The model elements are not only

ICAASE'2014 K-Maude Definition of Dynamic Software Architecture

International Conference on Advanced Aspects of Software Engineering
ICAASE, November, 2-4, 2014, Constantine, Algeria. 93

Figure 1: DySAM model motivation.

structure constructs, comparable to those of
architecture description languages (ADL), but
also:

 The interfaces’ behavior as a state transition
system. An interface may be either active or
passive allowing shutting down a part of the
system in order to perform some
architectural changes without altering its
consistency.

 The interactions between the architectural
elements in terms of information exchange,
in order to analyze and verify the system
behavior in the early phases of the software
development cycle.

 The architecture dynamic evolution as a set
of strategy rules that allow adding,
destroying, or even replacing architectural
entities. An evolution manager is responsible
of applying this rules and maintaining the
coherence of the system.

DySAM is an Ecore model based on EMF
(Eclipse Modeling framework) [11], a
sophisticated meta-modeling framework. Textual
and graphical visualization or editors can be built
on top of the meta-model thanks to GMF [12]
and Xtext [13] tools.

3.2. K framework

K was initiated by Grigore Rosu in 2003 and
completely developed in 2010 [4]. It is a semantic
framework based on rewriting logic. It provides
executable Maude specifications for
programming languages and formal analysis
tools using configurations, computations and
rules. Its general objective is to demonstrate that
a formal specification language for these
systems can be simple, expressive, analyzable,
and executable at the same time [14].

Figure 2 presents the K framework architecture.
The gray arrows denote translator tools
implemented as part of the K framework toolkit.
The file “k-prelude.maude” contains several

Maude [5] modules that are handy in most
language definitions, such as ones for defining
computations, configurations, environments,
stores, etc. The “K-Maude” interface is what the
user typically sees: besides usual Maude module
(K-Maude fully extends Maude), one can also
include K-modules containing syntax, semantics
or configuration definitions using the K notation.
A first component of K-Maude tool translates K-
modules to Maude modules. These later encode
K-specific features as meta-data attributes and
serve as an intermediate representation of K-
definitions. This intermediate representation can
be further translated to various back-ends:
executable/analyzable Maude modules, which
can serve as a basis for formal analysis, or
LATEX files for documentation reasons.

Figure 2: The K-Maude architecture.

K language definitions are given as K-modules,
entirely inspired from Maude modules. Each K-
module includes two sub-modules: one for the
syntax definition and another for the semantics
one. This separation reduces ambiguities and
allows parsing a large variety of programs.

Syntax in K is defined using a variant of the
familiar BNF (Backus Naur Form) notation [15],
with terminals enclosed in quotes and non-
terminals starting with capital letters. The syntax
is similar to that of standard Maude syntax (sorts,
sub-sorts and mix fix operation declarations).
However, in addition to Maude’s attributes (such
as precedence and gathering), specific K-
attributes can be added, such as strict, which is
used to specify that some arguments of a
language construct must be evaluated first (and
their effects on the global state are propagated)
before giving a semantic to the construct itself.

A language semantics specification in K consists
of three parts:
 Providing evaluation strategies, otherwise K

strategies specify the evaluation order of the
arguments.

 Giving the structure of the configuration that
holds the program state. Configurations are
structured as nested labeled cells (using an

ICAASE'2014 K-Maude Definition of Dynamic Software Architecture

International Conference on Advanced Aspects of Software Engineering
ICAASE, November, 2-4, 2014, Constantine, Algeria. 94

XML-like notation) containing various
computation-based data structures.

 Writing K-rules to describe transitions
between configurations.

The K-Maude tool is designed to well define
operational semantics of programming
languages. In our paper, we exploit it to define
the operational semantics of DySAM model.
Therefore, we use in a transparent manner the
rewriting logic, recognized as a unified semantic
framework, as a dynamic software architecture
basis.

4. DySAM MODEL INTEGRATION IN K
FRAMEWORK

To make formal methods more user-friendly
(expand their use), we may combine them with
informal design techniques. In this work, we
integrate the DySAM model in K, while providing
an intuitive modeling notation, supporting a
graphical view, but still having a rigorous syntax
and semantics.

Thus, we follow the same steps as for the
programming languages. Otherwise, we have to
define its syntax under BNF notation. Then, we
define the syntactic K-rules for interpreting
DySAM proposed syntax. On the other hand, we
specify its operational semantics thanks to the
common configurations and rules sets. K-rules
define particularly, the architecture evolution
strategies and interaction.

4.1. Syntax Module

In the K method application, we have to provide
DySAM syntactic definition under BNF notation.
This is integrated in K tool as a syntax module
that represents a formal meta-model defining all
concepts of DySAM. Table 1 describes a part of
the DySAM syntax with an illustrative example. A
system architecture description starts with the
keyword SystemArchitecture and an identifier
Id followed by a set of interfaces, attachments,
an evolution manager and interactions between
braces. Each interface may be a
ComponentInterface, or ConnectorInterface.

Table 1: A part of DySAM syntax in K

Architecture Description Syntax K-Definition
SystemArchitecture Arch{

PrimitiveComponentInterface A {

Component is C1 ;
 State is Active ;

Port In AIn uses as1 ;
 Port In AOut uses as2 ; }

PrimitiveConnectorInterface C {

Connector is RPC1
 ConnectorType is RPC
 State is Active ;
 Role In CIn ;
 Role Out COut ; }
Attachments {
 Attachment A.AIn to C.COut
 Attachment B.Out to C.CIn }

EvolutionManager manager{
EvolutionStrategy S1(X:A ,Y:C){

EvolutionRule R1{
Actions{ AddComponentInterface X2;}

Transitions{
 Set State Y to Passive; }
 }
Interactions{
Interaction "Msg" between B.BOut and
A.AIn through C.CIn and C.COut ;

SystemArchitecture ::= “SystemArchitecture" Id "{" Interfaces "Attachments{"
Attachments "}" EvolutionManager "Interactions{" Interactions"}"
Interfaces ::= Interface >Interfaces Interfaces[left]
Interface ::= PrimitiveComponentInterface | PrimitiveConnectorInterface |…

PrimitiveComponentInterface::= "PrimitiveComponentInterface" Id "{"Component State
 Ports "}"
Component ::= "Component is " Id ";"
State ::= "State is" StateValue";" StateValue ::= "Active" | "Passive"
Port ::= "Port" Mode PortId "uses" Id ";"
Ports::= Port > Ports Ports [left]
Mode ::= "In"| "Out"| "InOut"

PrimitiveConnectorInterface::= "PrimitiveConnectorInterface" Id"{" Connector
 ConnectorType State Roles "}"
Connector::="Connector is " Id ";"
ConnectorType ::="ConnectorType is" Id ";"
Role ::= "Role" Mode RoleId";"
Roles ::= Role > Roles Roles [left]

Attachment ::= "Attachment" Id.PortId "to" Id.RoleId
Attachments ::= Attachment > Attachments Attachments [left]

EvolutionManager ::= "EvolutionManager" Id "{" EvolutionStrategies "}"
EvolutionStrategies ::= EvolutionStrategy
>EvolutionStrategiesEvolutionStrategies [left]
EvolutionStrategy ::= "EvolutionStrategy" Id "(" List ")" "{" Rules "}"
Rules ::= Rule > Rules Rules [left]
Rule ::="EvolutionRule" Id "{"Actions Conditions Events Transitions"}"
Actions ::= Action > Actions Actions [left]
Action ::= ActionName Id ";" ...
ActionName := "AddComponentInterface" | "DeleteComponentInterface"...

Interactions ::= Interaction > Interactions Interactions [left]
Interaction::="Interaction" Data "between" PortId "and" PortsId "through" RolesId "and"
RolesId ";" | ...

ICAASE'2014 K-Maude Definition of Dynamic Software Architecture

International Conference on Advanced Aspects of Software Engineering
ICAASE, November, 2-4, 2014, Constantine, Algeria. 95

The basic definition of each interface is related
to the associated primitive element (component
or connector). The declaration of the first one
(respectively second) contains a set of Ports
(respectively roles). The keyword uses
specifies provided or required services through a
port. An Attachment relates ports and roles to
build a given structure of SA.

The interface abstract behavior is defined by a
state transition system (State and StateValue
keywords). The State attribute of an interface
define its state at a given time. We consider two
kinds of state: Active (e.g. sending or receiving
a message or an event) and Passive (e.g.
nothing happen). The Transition construct
specifies the possible state changes by
providing the new final state using the keywords
Set State.

The evolutionmanager contains a set of
evolution Strategies (rules’ sets) to determine
when and how architectural elements will
change. A Rule is defined by a set of change
Actions, resulting Events, Conditions and
state’s Transitions.

Interactions models data exchanges between
interfaces that may be a message, an event, a
session, or even a database access. It specifies
the Source Port that initiates the interaction
(output port); target Ports that designates one
or more receiving ports (input port) and
Source/Target Roles. Interactions allow also an
interface state change according to the
architecture behavior.

We can elaborate a DySAM model of any
system by instantiating all its architectural
element. Figure 3 describes an application that
contains: instances of A, B and C interfaces
denoted by the key word New, 2 attachments
instances and a notification to the evolution
manager for adding a new interface instance A2
of type A and attaching it to the connector
interface instance C1.

SystemSys1{
New A1 : A ;
New B1 :B ;
New C1 : C ;
Attachment instance A1. AIn to C1.COut ;
Attachment instance B1.BOut to C1.CIn ;
Notification S1(A2 : A , C1 : C) from B1 to M; }

Figure 3: A simple example of a system

4.2. Configuration Definition

A configuration in K is a structure of the
computations context. It is represented as nested
cells containing standard items as environments,
stores or other specific items (corresponding to
the given semantics). The program state is
typically represented as a configuration term [16].

The rewrite mechanism of K updates the given
configuration repeatedly by using all possible K-
rules. The configuration abstraction process
allows one to specify only the minimal context
needed for applying a K-rule [16].

Figure 4 presents a part of the initial
configuration of DySAM. It contains three main
cells. The <k> cell contains the whole description
used by K tool to start the rewriting process. For
instance, the cell <systemArchitecture>
describes the software architecture elements,
evolution strategies and interactions. The
interfaces cell contains a set of (represented by a
star) <primitiveComponentInterface> and
<primitiveConnectorInterface> to represent the
structure of each interface, while the
<attachments> cell specifies attachments in a
configuration. The value of the attributes is set to
no name (i.e. undefined).

The cells <ports> and <roles> store respectively
ports and roles in a map. The <evolution> cell
stores the evolution strategies and rules to be
applied. Finally, the sources/targets ports and
roles, in addition to the data type used in an
interaction, are stored in <interaction> cells.

The <system> cell stores the application
configuration at a given time. It may be
considered as an instance of the architecture. It
contains cells to describe instances of interfaces
and attachments, in addition to evolution
notifications.

4.3. Semantics Module

The semantics of the DySAM model is defined in
a separate module with rewriting rules. K-rules
may be computational rules or structural rules.
Structural rules capture the structural
rearrangement of SA, so they allow to reorganize
the configuration.

Computational rules define semantics of the
computational steps while executing the defined
system, as the actual state transitions. These
rules are represented (in a latex file for
documentation purposes) by colored cells and a

ICAASE'2014 K-Maude Definition of Dynamic Software Architecture

International Conference on Advanced Aspects of Software Engineering
ICAASE, November, 2-4, 2014, Constantine, Algeria. 96

Figure 4: The initial DySAM Configuration

black horizontal line separating the right from the
left side of the rewriting rule.

Figure 5: A structural K-rule

The structural rule in figure 5 describes the
semantics attributed to the declaration of a
component-Interface. If component-interface I
declaration is the next thing to be evaluated in
the <k> cell then the rule replaces I declaration
by the Variable PORTS (to be evaluated next),

and creates a new
<primitiveComponentInterface> and sets its
internal structure described by name,
component, state and the empty < port> cell.

Once all the declarations are rearranged in the
configuration, computational rules may be
applied. In the next section, we explain some of
these rules. For instance, Figure 6 describes how
a new component interface instance I is added to
the system’s configuration. I is added by running
the action AddComponentInterface|->N. This
action is given by the evolution rule R of the
evolution strategy ES. It creates a new instance
of interface A and sets its name to I, its state to
passive and fills its ports map (if the name of this
instance cannot be found in the names map).

Figure 7 shows the K-rule that performs a state
transition of an interface. This transition is

ICAASE'2014 K-Maude Definition of Dynamic Software Architecture

International Conference on Advanced Aspects of Software Engineering
ICAASE, November, 2-4, 2014, Constantine, Algeria. 97

triggered by the evolution rule R. It will change
the state of the interface (A) instance I, from the
value SVN to SV. The interface state changing
should block all incoming transactions to
maintain the architecture in a coherent state,
without intercepting the system too long.

In the same way, the last rule (Figure 8) details a
component and connector interfaces interaction.

It transmits a message Msg from an output port
P of the component interface I to the input role of
the connector interface J. This rule is applied,
only if an attachment instance is maintained
between the port and the role, and the interaction
is already defined in the configuration. The
interaction cell specifies ports and roles evolved
in this interaction and the transmitted data
(message) type.

Figure 6: A K-rule describing a new interface instance creation

Figure 7: A K-rule modeling state transition of an interface instance.

Figure 8: A K-rule describing an interaction.

ICAASE'2014 K-Maude Definition of Dynamic Software Architecture

International Conference on Advanced Aspects of Software Engineering
ICAASE, November, 2-4, 2014, Constantine, Algeria. 98

5. CONCLUSION

K is a rewrite-based executable semantic
framework designed for programming languages
definition. In our paper, we have shown how it
could also be used in the field of dynamic
software architectures to fit with semantics, their
description definition given in a previous work in
terms of a general meta-model (DySAM). In fact,
we have combined MDA development
techniques with the formal K-method in order to
provide the DySAM model with both an intuitive
modeling notation, supporting a graphical view,
and rigorous syntax and semantics. Any DySAM
syntactical artifact (interface, attachments, ports,
oles …), has a K-based semantic interpretation.
This valuable conjunction has the advantage to
make possible the execution and analysis of an
architecture description in Maude system in a
transparent manner. Moreover, any architecture
dynamic evolution or interaction may also be well
handled. Our approach could be easily exploited
even by users not familiar with rewriting logic
concepts. They have just to give a model
conform to DySAM. Thus, in this context, K can
be considered as a meta-transformation of
friendly graphical and textual notations to
unfriendly formal notations easy to exploit.

Because the transparency is offered by K
framework even for analysis and verification, as
ongoing work, we aim to integrate and simplify
the use of model-checker in system validation
and verification in order to guarantee that the
system model, built according to DySAM,
satisfies global properties during its evolution.

6. REFERENCES

[1] T. Mens, S. Demeyer, Software Evolution,
ISBN 978-3-540-76440-3, Springer, 2008.

[2] S. Smaali, A. Choutri et F. Belala, “Towards
a Meta-Model for Dynamic Applications,” in
CBSE’14, Lille, France , 2014, in press.

[3] S.-K. Kim, D. Burger and D. Carringt, “An
MDA Approach Towards Integrating Formal
and Informal Modeling Languages,” J.S.
Fitzgerald, I.J. Hayes, and A. Tarlecki
(Eds.): FM 2005, LNCS 3582, pp. 448–464,
2005.

[4] K semantic framework website,
http://www.kframework.org/index.php/Main_
Page, 2014.

[5] Clavel M., Duràn F., Eker S., Lincoln P.,
Marti-Oliet N., Meseguer J., and Talcott C.
L. “All about Maude”, A High-Performance

Logical Framework, vol 4350 of lecture
Notes in Computer Science. Springer, 2007.

[6] OMG Unified Modeling LanguageTM (OMG
UML), Superstructure, 2011.
http://www.omg.org/spec/UML/2.4.1

[7] About Palladio, http://www.palladio-
simulator.com/about_palladio/, 2014.

[8] R. Allen and D. Garlan, “A Formal Basis
for Architectural Connection.” ACM
Transactions on Software Engineering
and Methodology, vol. 6, no. 3, pages.
213-249, 1997.

[9] J. Magee, N. Dulay, S. Eisenbach, and
J. Kramer. “Specifying Distributed
Software Architectures.” In Proceedings
of the Fifth European Software
Engineering Conference (ESEC’95),
Barcelona, September 1995.

[10] D. Regep, “LfP : Un Langage de
Spécification pour Supporter une
Démarche de Développement par
Prototypage pour les Systèmes
Répartis”, PhD thesis. , Paris VI
University, 2003 .

[11] Eclipse Modeling Framework, (emf).
http://www.eclipse.org/modeling/emf/, 2014

[12] Graphical Modeling Framework (gmf),
http://eclipse.org/gmf-tooling/, 2014.

[13] Xtext, http://www.eclipse.org/Xtext/, 2014.
[14] Serbanuta T., Rusoaie A., Lazar D.,

Ellison C., LucanuD., Rosu G., “The K
Primer (version 2.5)”, Technical Report,
January 2012.

[15] Garshol L. M., “BNF and EBNF: What
are they and how do they work?”
http://www.garshol.priv.no/download/text/bnf
.html#id2, 2008.

[16] A. Arusoaie and T. F. Serbanuta, “a
Contextual transformations in K
Framework”, K 2011: 2nd International
Workshop on the K Framework and its
Applications, 2011.

ICAASE'2014 K-Maude Definition of Dynamic Software Architecture

International Conference on Advanced Aspects of Software Engineering
ICAASE, November, 2-4, 2014, Constantine, Algeria. 99

http://www.omg.org/spec/UML/2.4.1
http://www.palladio-simulator.com/about_palladio/
http://www.palladio-simulator.com/about_palladio/
http://www.eclipse.org/modeling/emf/
http://eclipse.org/gmf-tooling/
http://www.eclipse.org/Xtext/

