
Mop-ECATNets for Dynamic Web
Services Formal Modeling

FATEH LATRECHE
LIRE laboratory, Constantine 2 University

Constantine, Algeria
fateh_lat@yahoo.fr

 FAIZA BELALA
LIRE laboratory, Constantine 2 University

Constantine, Algeria
faiza.belala@univ-constantine2.dz

Abstract – Mop-ECATNets are a sound combination of Meta Petri Nets and OpenECATNets (Open
Extended Concurrent Algebraic Term Nets). They inherit fl exibility of control from Meta nets and
data structure, concurrency and composability from Open-ECATNets. Our aim in this work is to show
how Mop-ECATNet, a layered Petri nets based model, makes it possible the formal execution and
analysis of dynamic web services at design time. We argue that it is possible and valuable to provide a
real-time rewriting logic based model that accounts for failure events and recovery actions. In order to
illustrate its potential, we apply our approach through a detailed case study of a traveler map dynamic
service.

Keywords – Dynamic Web services, Open-ECATNets, Meta Petri nets, real-time rewriting logic

1. INTRODUCTION

Service Oriented Architecture (SOA) is a
development model aiming at raising integration
and interoperability of software components. In
SOA services are units of work, they are self-
describing modular applications that can be
published, localized and invoked across the web
thanks to a set of XML standards. In most cases
elementary services cannot carry out required
functionalities. Thus, we need invoking several
Web services and then composing them in order
to reach new personalized, rich and more
interesting functionalities.

Several efforts on web service modeling and
analysis have already been done by researchers
and industrial practitioners. But, mostly these
works pay less attention to dynamic features.
Also, current Web service standards and
languages provide limited constructs for
specifying exceptional behavior [1] [2], and they
are semi-formal requiring translation to generate
formal models that admit checking.

In this work, we propose using Mop-
ECATNets (Meta Open Extended Concurrent

Algebraic Term Nets) to enhance design and
analysis of dynamic Web services. Mop-
ECATNets are an extended version of Open-
ECATNets [3], allowing the formal specifi cation
of failure events and recovery actions.

Since their introduction, by Carl Adam Petri
[4] in the beginning of sixties, Petri nets have
been successfully applied through their
extensions as a foundation for software systems
addressing many challenging issues. In
particular, Meta Petri nets [5] as multi-level Petri
net model have been proposed for modeling
dynamic processes and their control. Also,
Open-ECATNets have been proposed to tackle
various aspects of Web service compositions,
such as semantic compatibility of exchanged
messages, functional compatibility and service
refi nement. Open-ECATNets benefi t from their
defi nition in term of rewriting logic.

Rewriting logic is a general framework, in
which not just applications, but entire formalisms
and computation models can be naturally
expressed. This logic allows correct reasoning on
concurrent systems behavior. Several practical
languages were invented on the basis of
rewriting logic, the most known is Maude (SRI

ICAASE'2014 Mop-ECATNets for Dynamic Web Services Formal Modeling

International Conference on Advanced Aspects of Software Engineering
ICAASE, November, 2-4, 2014, Constantine, Algeria. 27

mailto:fateh_lat@yahoo.fr
mailto:faiza.belala@univ-constantine2.dz

laboratory, United States)[6], a declarative
language where several concurrent applications
have been considered. Furthermore, various
extensions of rewriting logic and Maude were
made in order to provide additional
representation and reasoning abilities. Real-Time
Maude is one of these extensions [7], used for
specifying and analyzing real-time and dynamic
systems.

The remainder of this paper is organized as
follows. In section 2, we give an overview of
related works. Sections 3 and 4 introduce the
real-time rewriting logic and Open-ECATNets
model. In Section 5, we deal with the Mop-
ECATNets model for dynamic Web services. We
identify its integration in real-time rewriting logic
semantic framework, so both structural and
behavior aspects are considered. In section 6,
we illustrate our formalization approach by
means of a realistic case study, the traveller map
dynamic service. We also show how some
relevant properties are formally checked. The
paper is outlined by some concluding remarks
and perspectives.

2. RELATED WORK

Several attempts [08] [09] [10] have already
been conducted to formalize web services but,
without taking into account their dynamic
features such as, changes of user profile,
invocation context and quality of services. In this
section, we situate our work regarding some
theoretical and architectural models dealing with
dynamic issue of web services.

Authors of [11] have given a Petri net based
methodology for context aware services design.
Thus, context aware Web service is defi ned by a
Petri net, where places represent sensed/inferred
context concepts and transitions represent the
actions. The advantage of this work is the well
description of context aware applications and its
possible integration within dynamic environment
thanks to contextual information. But, this
approach makes only use of fi rst-order logic
predicate formalism to specify context concepts.
This makes dynamic web services models quite
restrictive.

In a similar work [12], Dmytro Zhovtobryukh
defi nes also a context aware Web service
framework composed of two stages: planning
and composition reconfi guration. According to
this work, a context aware Web service is
defi ned as a complex functional unit having an
explicit inputs and outputs; it is also able to
perform two or more mutually exclusive service

functions selected by a context function. In this
work a Meta transitional Petri net having two
layers is used. The lower layer contains the
service net and the control layer contains one or
more Meta control nets. This proposal is very
promising, but it suggests using ordinary Petri
nets in both basic and control layers. This
remains inappropriate for modeling real-time and
dynamic constraints. Also, the proposed
composition approach is lacking implementation
details.

Our approach for specifying and analyzing
dynamic Web services is quite different, since it
uses useful features of many Petri nets models
and it’s based on a unique semantic framework:
real-time rewriting logic. Mop-ECATNets are also
executable; they are able to reconfi gure
dynamically their structure. Thus, services
failures are conditions that trigger adaptation
actions. Besides, our developed model allows
formal checking of some inherent properties
related to dynamic Web services thanks to the
Real Time Maude model checker tool.

3. REAL-TIME REWRITING LOGIC

The objective of this section is to present
elementary concepts of real-time rewriting logic
for more details, reader can refer to [6] [7] [13].

Since its introduction, rewriting logic has
attracted the interest of both theorists and
practitioners. Its experimentation through many
applications has conducted to propose some
extensions of this logic. The most signifi cant one
is the real-time rewriting logic allowing
specifi cation of real-time systems. Basic
specifi cation elements of real-time rewriting logic
are real-time rewrite theories [14]. Rewriting rules
of a real-time rewrite theory are of two kinds: IR
and TR, IR is a set of instantaneous rewrite rules,
and TR is a set of tick rewrite rules.

Real-Time Maude is an extension of Maude.
It emphasizes ease and generality of
specifi cation, including support for distributed
real-time object based systems. Also, it provides
a large range of simulation and analysis
techniques. This tool complements other real-
time analysis tools not only by the full generality
of the specifi cation language and the range of
analysis techniques, but also by its simplicity and
clarity. Real-time and hybrid systems are
represented as real-time rewrite theories, where
equations are used to specify data types and
rewrite rules to mechanize dynamic and real-time
behavior.

ICAASE'2014 Mop-ECATNets for Dynamic Web Services Formal Modeling

International Conference on Advanced Aspects of Software Engineering
ICAASE, November, 2-4, 2014, Constantine, Algeria. 28

The main form of formal analysis consists in
simulating system behaviors by using the timed
rewriting commands. Besides, to gain more
assurance about a system, designer can use
timed search and timed linear temporal logic
model checking to explore many concurrent
behaviors of a system [14].

4. OPEN-ECATNets PRESENTATION

In addition to the use of rewriting logic in
specifi cation of concurrent and distributed
system semantics, it is also a promising logical
framework in which many logics and concurrency
models as ECATNets [15] may be naturally
represented and interrelated. ECATNets are high
level algebraic Petri nets initially proposed by
Bettaz and Maouche [15]. They combine
expression power of Petri nets and abstract data
types. By using ECATNets, we do not only gain
highly condensed system model, but we reach
also an attractive theoretical model according to
their simplicity and intrinsic concurrent nature. In
an ECATNet, transitions, places and arcs are
labeled by elements of the multi-set (noted as:
MTΣ /EUA(X)) of algebraic terms belonging to a
given algebra TΣ /EUA(X).

Definition 1. An ECATNet (see Fig. 1) is a
high level Petri net having the structure (P, T,
sort, IC, DT, CT, TC), where:

• P and T are respectively fi nite sets of places
and transitions (with P∩ T=ø);

• sort: P→ S is a function that associates to
each place an algebraic sort s of Σ ;

• IC (Input Condition):P×T→ MTΣ /EUA(X), is a
function that specifi es partial conditions on
input place markings;

• DT (Destroyed Tokens): P× T → MTΣ /EUA(X), is
another function that associates to each input
arc (p×t) of transition t, a multi-set of algebraic
terms to be consumed from input place;

• CT (Created Tokens): P× T→ MTΣ /EUA(X)
associates to each output place of P, a
multiset of algebraic terms which may be
added when a transition is fi red;

• TC (Transition Condition) is an additional
condition, when it is omitted, the default value
is the term true.

A distinctive characteristic of ECATNets is

their strength in modeling synchronization
constraints and complex system data structures.
They have been largely applied in modeling and
checking various kinds of systems [16] [17] [18].

Figure 1 Graphical representation of ECATNet

To make ECATNets able to model open
systems capable to interact with their
environment, we have, in a previous work [3],
enriched their model by additional structures,
inspired from the open net model [10]. In
particular, Open-ECATNets are endowed with
some open places representing the service
interaction points with environment. Formally
their defi nition is as follows:

Definition 2. An Open-ECATNet : {E, Mi, Mf} is
a particular marked ECATNet E : (P, T, sort, IC,
DT, CT, TC), such that:

• P = IO ∪ ST, where IO is a set of
(Input/Output) places having a well defi ned
sort and ST is a set of state places,

• Mi and Mf are respectively the set of initial and
the fi nal markings such that: ∀ p ∊ IO, Mi(p)=
Mf(p)=0.

In an Open-ECATNet, the set of interface
places (IO) are designed to defi ne external
interaction and the set of state places (ST) to
model services states.

Open-ECATNet (or ECATNet) behavior is
defi ned by way of concurrent computations in
rewriting logic. Each transition is materialized by
a local rewriting rule of a given rewrite theory
defi ning the distributed structure of ECATNet
states.

5. OPEN-ECATNets EXTENSION

Because of their size and complexity,
distributed and dynamic systems, as Web
services, may not be easily modeled. They
require using more tailored formalisms. Dynamic
web services are highly affected by time. A
rigorous approach to tackle failures is to fix a
maximal waiting time before launching
adaptation process. The objective of this section
is to present the Mop-ECATNets model,
designated to better specify and analyze
dynamic Web services.

To allow a flexible modeling of complex
dynamic Web service process, we enhance
Open-ECATNets with the Meta Petri nets
features [5]. In Meta Petri nets places,
transitions, links and tokens of a lower level are

ICAASE'2014 Mop-ECATNets for Dynamic Web Services Formal Modeling

International Conference on Advanced Aspects of Software Engineering
ICAASE, November, 2-4, 2014, Constantine, Algeria. 29

active (available), if and only if their meta place
contains at least one token.

The Mop-ECATNets model is based on an
extension of two level Meta transitional nets
where Meta places control lower level transitions.
More precisely, each transition (send or receive
action) of the lower level is active regarding
tokens of Mop-ECATNets lower level
(exchanged messages), if and only if the
transition meta place contains the same token.
Mop-ECATNets are also equipped with timing
constraints: On one hand, all lower level
transitions are forced to fi re when they are
enabled; fi ring in this case is an atomic action.
On the other hand, some state places are
constrained by timestamp. This allows specifying
the requests adaptation timers (i.e. modeling the
fact that requested functionalities may be failed if
elapsed time after the sending request action is
equal to a fi xed maximum delay). Formally, the
Mop-ECATNet defi nition is given by:

Defi nition 3. A Mop-ECATNet ME =< E, O,
Q, λ > is a two levels Meta transitional net having
as higher level net the marked ECATNet E and
as lower level the Open-ECATNet O. Q is the
incidence function mapping meta places of E to
transitions of O and λ : ST → N is a function that
maps each state place (belonging to ST) to its
reconfi guration timer.

Let’s recall that: E = (P’, T’, sort’, IC’, DT’, CT’,
TC’) and O = {(IO∪ST, T, sort, IC, DT, CT, TC),
Mi, Mf}. In Fig. 2, we give a Mop-ECATNet,
where places mpt and mpt’ are the meta places
relative to transitions t and t’ of the lower Open-
ECATNet. The Mop-ECATNet of this fi gure can
also be defi ned by the following sets: P’= {mpt,
mpt’ }, T’= {mt}, Q = {(mpt, t), (mpt’, t’)}, IO = {pi,
pi’ }, ST = {p1, p2, p3},Mi = {(1, 0, 0)} , Mf = {(0,
1, 0), (0, 0, 1)} and λ = {(p3, 3)}.

5.1. Mop-ECATNets Semantics

Our formalization of a Mop-ECATNet is based
on the following idea: a net marking is
considered as a multi-set of algebraic terms
modeling places and its transitions as a multi-set
of rewriting rules. In order to mechanize
instantaneous fi ring of transitions, we add a timer
for each transition t belonging to T U T’. This
timer has either the value 0 to denote forced to
fi re transitions, or the value INF (infi nity) for non
fi rable transitions.

Thus, Mop-ECATNets are defi ned in terms of
timed rewrite theories. Three timed Maude
modules TOKENS, MARKING-SPEC and

Figure 2 A Mop-ECATNet example

ACTIV-TRANS (Fig. 3 to Fig. 5) are designed to
implement our Mop-ECATNets model. The
Figure 3 shows a slightly modifi ed version of the
timed Maude module TOKENS that represent
tokens abstract data types. In this module, we
fi rstly import the predefi ned module NAT-TIME-
DOMAIN-WITH-INF defi ning the time domain to
be the natural numbers with the infi nity value.
Then, we declare a set of sort and subsort
relations useful to describe statically Mop-
ECATNet tokens (a multi-set of algebraic terms
having the form tkid, tkid[t], where tkid is the
token identifi er and t represent the container
place reconfi guration timer).

Mop-ECATNets Marking is then formalized by
the timed module MARKING-SPEC (Fig. 4).
According to our formalization, markings are
viewed as multi-sets of ordinary places, Meta
places, ordinary transitions and Meta transitions
(operations declared in lines 6, 7, 8 and 9 of Fig.
4). Let’s note that in the case of transition, its
algebraic term must have the form < t, r >, where
t is the name of transition and r is its timer value.

The third timed module ACTIV-TRANS (Fig.
5) defi nes, thanks to a set of equations, in which
case a given transition is active regarding a
particular token (the send or receive action is
enabled for a particular exchanged message).

For Mop-ECATNets model, it is worth noting
that formalized services may be extended to
model new Web service composition concepts,
and will make easy their interconnection with
services of other applications in the context of
heterogeneous systems. Also, time which is
currently an important aspect of Web services, is
straightforwardly modeled thanks to real-time
extension of Maude. Furthermore, checking

ICAASE'2014 Mop-ECATNets for Dynamic Web Services Formal Modeling

International Conference on Advanced Aspects of Software Engineering
ICAASE, November, 2-4, 2014, Constantine, Algeria. 30

Mop-ECATNets specifi cations is now possible
thanks to the Real Time Maude analysis tools.

Figure 3 Tokens of a Mop-ECATNet

Figure 4 Mop-ECATNets Marking as a timed
module

Figure 5 Active transitions in a Mop-ECATNet

5.2. Mop-ECATNets and Dynamic Web
Service

Dynamic behavior of Mop-ECATNets may be
defi ned independently of the specifi ed system,
but in this work we explain its motivation through
Web services components (see Fig. 6). In this
case, fi ve generic rewriting rules defi ne
instantaneous behavior of Mop-ECATNets.

These rules model fi ring of Mop-ECATNets
transitions when their timers have the value 0. As
results of fi ring, some tokens are removed from
defi nite places and added to other places,
transition timers are turned off (fi xed to the
infi nity value), and the function recomputeTimers
is applied to the entire resulting state to
recompute all transition timer values. Particularly,
this function tests if a transition is enabled, then
its timer is reinitialized to the value 0, otherwise
the timer is left unchanged. More precisely, for
each transition of a generic Mop-ECATNet (see
Fig. 6) we associate a rewriting rule having the
following interpretation:

• The rewriting rule associated to send-req
transition, models how to send requests. By
fi ring this rule a request token is added to the
interface place pi1 and the same token, but
constrained by a reconfi guration timer τ , is
added to the subsequent state place p12 of
the requester (The timer τ represent the
maximal waiting duration for a response),

• Rewriting rule that fi res the receiv-req
transition models how to receive requests.
When applying this rule, a request token is
consumed from the interface place pi1, the
initial marking of the place p21 (denoting the
maximum number of possible requests) is
decreased by one, and a token is added to
the subsequent state place p22 of the
requested service,

• The sending reply rewriting rule associated to
transition send-reply is executed when
treatment duration of a p22 tokens decreases
to the value 0, i.e. the request has been
treated, by executing this rule a reply token is
sent to the interface place pi2,

• A conditional rewriting rule is also associated
to the transition receiv-reply, it models how to
receive a response from a requested Web
service. This rule is applied when token
treatment duration is lower than
reconfi guration Timer value of the same
token,

• Adaptation process is handled by the Meta
transition reconf mechanized by a conditional
rewriting rule; this conditional rule is triggered
when token reconfi guration Timer expires and
there is no response token in the interface
place pi2. By triggering this rule, we get a new
marking of the higher net component.

Through the proposed defi nitions of this
section, we have achieved a modular and legible
specifi cation of dynamic Web service

tmod TOKENS is
including NAT-TIME-DOMAIN-WITH-INF.
sorts Token Token.
subsort Token Nat < Tokens.
subsort TkId < Token.
 op _`[_`] : TkId Time -> Token [ctor prec 21].
op __ : Tokens Tokens -> Tokens [ctor assoc comm prec 22
id: none].
op none : -> Tokens [ctor].
endtm

tmod MARKING-SPEC is
1 including TOKENS.
2 sorts OrdPlaceNm OrdTransitionNm MetPlaceNm
PlaceName TransitionName MetTransitionNm Marking .
4 subsorts OrdPlaceNm MetPlaceNm < PlaceName.
5 subsorts OrdTransitionNm MetTransitionNm <
TransitionName.
6 op <_,_>:OrdPlaceNm Tokens->Marking[ctor prec23].
7 op <_,_>:MetPlaceNm Tokens->Marking[ctor prec23].
8 op <_,_>:OrdTransitionNm TimeInf->Marking[ctor prec 23].
9 op <_,_>:MetTransitionNm TimeInf->Marking[ctor prec23].
10 op __:Marking Marking->Marking[ctor assoc comm
prec24 id:none].
11 op none:-> Marking [ctor].
12 op [_]:Marking-> System [ctor].
endtm

tmod ACTIV-TRANS is
including MARKING-SPEC .
op Active : OrdTransitionNm TkId Marking -> Bool .
var tk : TkId . var tks : Tokens . var
ti : TimeInf .
ops t1 … tn : -> OrdTransitionNm [ctor] .
 ops mpt1 …. Mptn : -> MetPlaceNm [ctor] .
eq Active(t1 , tk , < mpt1 , tk tks > M:Marking) = true .
...
eq Active(tn , tk , < mptn , tk tks > M:Marking) = true.
eq Active(t:OrdTransitionNm , tk , M:Marking) = false
[owise] .
endtm

ICAASE'2014 Mop-ECATNets for Dynamic Web Services Formal Modeling

International Conference on Advanced Aspects of Software Engineering
ICAASE, November, 2-4, 2014, Constantine, Algeria. 31

compositions. The expressiveness and
generality of real-time rewrite theories allow us
the declaration of both user defi ned operators
and real-time dynamic behavior. Another
important fact of the rewriting Mop-ECATNet
implementation is that each deduced Maude
module specifi es not just a theory, but a precise
high-level mathematical model. Hence, this
model will serve to the formal checking of any
dynamic web services based system. It is also
worth to mention that the MopECATNet defi nition
presented in this section can serve also in
modeling other systems with temporal
constraints and having dynamic and adaptive
behaviour.

Figure 6 Mop-ECATNets dynamic behavior

6. CASE STUDY

In order to illustrate our proposed model, we
consider in this section the traveller map web
service as case study (Fig. 7). This composite
service is initially composed of two services: a
mobile map requester and a primary map
provider service, and can be adapted at
reconfi guration time by integrating a secondary
map service provider in case of failure.

Figure 7 The traveller map web service

6.1. The specification step

We note that our proposed model is generic
enough, it remains valid for any Web service
example. So, in order to formalize the traveller
map composite web service on the basis of Mop-
ECATNets model, we need to declare a new
real-time Maude module extending MARKING-
SPEC and ACTIV-TRANS modules (presented in
section 3) by additional constant operators to
specify: the Traveller map dynamic service
components identifi ers, ordinary places names,
ordinary transitions name, meta-places name,
meta-transitions name and fi nally tokens
identifi er. Dynamic behavior of our case study is
automated by a set of rewriting rules and their
effects on the corresponding Mop-ECATNet
elements.

6.2. Analysis of the traveller map service

In order to check our traveller map dynamic
service we defi ne the module MODEL-CHECK-
TRAV-MAP-BEHAV (Fig. 8). In this module, we
import the traveler map dynamic behavior
module TRAV-MAP-BEHAV (not presented here
due to lack of space), as well as the prede fi ned
module TIMED-MODEL-CHECKER. Then, we
defi ne some useful atomic parameterized
propositions (equations of the module in Fig. 8):

ICAASE'2014 Mop-ECATNets for Dynamic Web Services Formal Modeling

International Conference on Advanced Aspects of Software Engineering
ICAASE, November, 2-4, 2014, Constantine, Algeria. 32

1. The atomic proposition delay-elapsed is used
to defi ne tokens reconfi guration timer
expiration;

2. reconf-start which checks triggering of
adaptation process for a request;

3. success that confi rms accomplishment of a
request.

For this paper, we restrict our self to verify
three compound properties (Fig. 9). The fi rst
timed command checks whether the delay
expiration in time less or equal to four time units
is possible. The second timed command checks
if delay expiration for the request appears, it will
be always followed by the triggering of
adaptation process. Finally, we check absence of
successful treatment in time less or equal to four
time units. The result of these commands is
showed in fig. 9.

Figure 8 The module MODEL-CHECK-TRAV-MAP-
BEHAV

Figure 9 Examples of the traveller map dynamic
service properties analysis

In this section, we have illustrated by using
the traveller map dynamic service how to use our
model. More precisely, we have showed how a
Mop-ECATNet based specifi cation may be
formally analyzed against dynamic system
requirements. Obtained results confi rm
usefulness of this model, it takes into account
many aspects of dynamic systems. In fact, Mop-
ECATNets have the ability to model systems
having concurrent, timed, dynamic and
reconfi gurable behavior also dataflow aspect is
considered. Rewriting logic is unifying logical and
semantic framework; this implies that Mop-
ECATNets can be linked easily with other
formalisms.

7. CONCLUSION

In this work, we have introduced Mop-
ECATNets as a new Petri net based model,
devoted to raise reliability of dynamic Web
services design and re alization. The proposed
model inherits a set of useful constructs from
other Petri net models and allows developer to
reason correctly about dynamic features at
design time thanks to its integration in timed
rewriting logic. We have shown how this logic
provides a flexible conceptual framework, where
Mop-ECATNets can be naturally seen as a timed
rewrite theory. A nice consequence of this
axiomatization is that relationship between the
two defi ned Petri net levels, Metalevel for
reconfi guration process and basic one for service
model, was formally established. In addition
dynamic properties of a Mop-ECATNet were
checked and deduced, in particular traveller map
dynamic service case study has been used to
illustrate our model and check some useful
properties.

In the proposed model, services are adapted
by substitution caused by the time expiration. As
future works, we will focus on modeling other
adaption triggering events like users’ profi le
changes and appearance of more adjusted
services.

8. References

[1] O. Ezenwoye, S. Busi, and S. M. Sadjadi,
“Dynamically reconfigurable data-intensive
service composition,” in WEBIST (1), pp.
125– 130, 2010.

[2] D.H. Xu, Y. Qi, D. Hou, Y. Chen, and L. Liu,
“A formal model for dynamic web services
composition mas-based and simple security
analysis using spi calculus,” in Proceedings
of the Third International Conference on
Next Generation Web Services Practices,

(tmod MODEL-CHECK-TRAV-MAP-BEHAV is
including TIMED-MODEL-CHECKER .
 protecting TRAV-MAP-BEHAV.
vars tks tks' tks'' : Tokens . var tk : TkId .
var SYSTEM : System . var REST : Marking .
op delay-elapsed : TkId -> Prop [ctor] .
op reconf-start : TkId -> Prop [ctor] .
op success : TkId -> Prop [ctor] .
eq {[< p2, tk [0] tks > REST]} |= delay-elapsed(tk) = true .
eq {[< mpt1', tk tks > < mpt2',tk tks' > < mtr, tk tks'' > REST]} |=
reconf-start(tk) = true .
eq {[< p3 , tk tks' > REST]} |= success(tk) = true . endtm)

Model check{TravMS} |=t <> delay-elapsed(tk:TkId) in
MODEL-CHECK-DYN-TRAVLER-SERV
 in time <= 4 with mode default time increase 1
Result[ModelCheckResult]:
counterexample({{[< mpt1,tk1 tk2 tk3 > ..in time 0,'t1}{{[<…in
time 0,'t3}{{[in time 0,
unlabeled}{{[… in time 0,'t1… in time 0,'t3}{{[… in time
0,unlabeled}{{[< ….]} in time 4,'tick})
===============
Model check{TravMS} |=t[](delay-elapsed(tk:TkId)=> <>
reconf-start(tk)) in
 MODEL-CHECK-DYN-TRAVLER-SERV in time <= 6 with mode
default time increase 1
Result Bool : true
=================
Model check{TravMS} |=t[]~ success(tk:TkId)in MODEL-
CHECK-DYN-TRAVLER-SERV
in time <= 4 with mode default time increase 1
Result[ModelCheckResult]:
counterexample({{[< mpt1,tk1 > < mpt1',(none).Tokens > <
mpt2,tk1 > < mpt2',(
 none).Tokens > … < tr,INF >]} in time 4, 'tick})

ICAASE'2014 Mop-ECATNets for Dynamic Web Services Formal Modeling

International Conference on Advanced Aspects of Software Engineering
ICAASE, November, 2-4, 2014, Constantine, Algeria. 33

NWESP ’07, (Washington, DC, USA), pp.
69– 72, IEEE Computer Society, 2007

[3] F. Latreche, H. Sebih, and F. Belala,
“Analyzing web service interaction using
open ecatnets,” in ACIT2011 International
Conference on Information and Technology,
2011.

[4] C. A. Petri, Kommunikation mit Automaten.
PhD thesis, Darmstadt University of
Technology,Germany, 1962.

[5] V. Savolainen and V. Terziyan,
“Metapetrinets for controlling complex and
dynamic processes,” 1999.

[6] J. Meseguer, “Conditional rewriting logic as
a unified model of concurrency,” Theor.
Comput.Sci., vol. 96, pp. 73– 155, Apr. 1992.

[7] P. C. Olveczky, Real-Time Maude 2.3
Manual, 2007.
http://www.ifi.uio.no//RealTimeMaude/.

[8] R.Hamadi, and B. Benatallah, “A Petri Net-
based Model for Web Service Composition”.
In: ADC, 17, pp. 191-200, 2003.

[9] N. Lohmann, P. Massuthe, C. Stahl and D.
Weinberg, “Analyzing Interacting WS-BPEL
Processes”, in Proc. Int. Conf. Business
Process Management, pp. 17– 32, 2006.

[10] W. M. van der Aalst, A. J. Mooil, C. Stahl
and K. Wolf, “Service Interaction: Patterns,
Formalization, and Analysis,” In: Formal
Methods for Web Services - 9th International
School on Formal Methods for the Design of
Computer, Communication and Software
Systems: Web Services, LNCS, vol. 5569,
2009.

[11] T. Lu and J. Bao, “A systematic approach to
context aware service design,” JCP, vol. 7,
no. 1,pp. 207– 217, 2012.

[12] D. Zhovtobryukh, Context-aware Web
Service Composition. Jyvaskyla studies in
computing,University of Jyvaskyla, 2006.

[13] . C. Olveczky and J. Meseguer, “Semantics
and pragmatics of real-time maude,” Higher
Order Symbol. Comput., vol. 20, pp. 161–
196, June 2007.

[14] K. Bae and P. C. Olveczky, “Extending the
real-time maude semantics of ptolemy to
hierarchical de models,” in RTRTS (P. C.
Ö lveczky, ed.), vol. 36 of EPTCS, pp. 46–
66, 2010.

[15] M. Bettaz and M. Maouche, “How to specify
non-determinism and true concurrency with
algebraic term nets,” in Selected papers
from the 8th Workshop on Specification of
Abstract Data Types Joint with the 3rd
COMPASS Workshop on Recent Trends in
Data Type Specification, (London, UK, UK),
pp. 164– 180, Springer-Verlag, 1993.

[16] M. Bettaz, M. Maouche, and K. Barkaoui,
“Formal specification of communication
protocols with object-based ecatnets.,” in
EUROMICRO, pp. 492– , IEEE Computer
Society, 1996.

[17] A. Hicheur, K. Barkaoui, and N. Boudiaf,
“Modeling workflows with recursive
ecatnets,” in Proceedings of the Eighth
International Symposium on Symbolic and
Numeric Algorithms for Scientific

Computing, SYNASC ’06, (Washington, DC,
USA), pp. 389– 398, IEEE Computer
Society, 2006.

[18] N. Boudiaf and A. Chaoui, “Double reduction
of ada-ecatnet representation using rewriting
logic,” Enformatika Journal (Transactions on
Engineering, Computing and Technology),
vol. 15, pp. 278– 284, October 2006.

ICAASE'2014 Mop-ECATNets for Dynamic Web Services Formal Modeling

International Conference on Advanced Aspects of Software Engineering
ICAASE, November, 2-4, 2014, Constantine, Algeria. 34

http://www.ifi.uio.no//RealTimeMaude/

