
Specification and Verification of Timed
Semantic web Services

 Amel Boumaza
LIRE laboratory, Constantine 2 University

Constantine, Algeria
Spd_ing2006@yahoo.fr

Ramdane Maameri
LIRE laboratory, Constantine 2 University

Constantine, Algeria
ramdane.maamri@univ-constantine2.dz

Abstract – It is widely recognized that temporal aspects are indispensable for Web Service modeling.
Unfortunately, the current Semantic web Services description languages suffer from the lack of useful
concepts needed for timing description. For this purpose, we propose a global methodology for the
specification of timing behavior with an extended OWL-S ontology and verification of temporal properties
with UPPPAL tool. The applicability is illustrated through the multimodal transport use case.

Keywords –Web Services, OWL-s, Entry Sub-Ontology Of Time, Timed Automata, Uppaal Temporal
Properties

1. INTRODUCTION

Automatic composition is the capability to
automatically compose a set of services to fulfill
user requirements when a single service is not
available for fulfilling these requirements.
Composing services need an approach based
on semantic descriptions, as the requester
required functionally has to be expressed in a
high-level and abstract way to enable reasoning
procedures.
Efficiently, the semantic web community allows
reasoning about web resources by explicitly
declaring their preconditions and effects with
terms defined precisely in ontologies.
Furthermore, in Semantic Web Services, the
common need for temporal information is
satisfied by the use of the temporal ontologies to
allow using of temporal concepts. However, the
complexity comes usually with the growing
expressiveness; it becomes a challenging area
to ensure correctness. Hence, the verification of
Web Service flow becomes more and more
important.
Formal methods are particularly well appropriate
to address most of the aforementioned issues
(e.g. composition and correctness). The majority

of these are based on state-action models (e.g.
labeled transition systems, timed automata, and
Petri nets) or process models (e.g. π-calculus
and other calculi) [1].

2. Related works

Recently, a diversity of concrete proposals from
the formal methods community have emerged in
order to verify the correctness of the web service
composition which is based on state action
models or process models [2].
In [3], a case study is presented that shows how
descriptions of web services written in BPEL-
WSCDL (Web Services Choregraphy
Description Language) can be automatically
translated to timed automata and subsequently
be verified by Uppaal.
In [4] the authors provide an encoding of BPEL
processes into web service timed state transition
systems and discuss a framework in which
timed assumptions expressed in the duration
calculus [5] can be model checked.
In [6] a framework to automatically verify
systems that are modeled in Orc1 is proposed.

1 Home page: http://orc.csres.utexas.edu/

ICAASE'2014 Specification and Verification of Timed Semantic web Services

International Conference on Advanced Aspects of Software Engineering
ICAASE, November, 2-4, 2014, Constantine, Algeria. 83

Uppaal can be used to model check Orc models.
The approach is demonstrated through a small
case study.
In [7], the authors deal with the compatibility
problem. The proposed framework allows
applying model checker Uppaal to asynchronous
Web services composition analysis by using a
set of CTL formulas that characterize the
different choreography compatibility classes
defined and verifying deadlock free property.
In [8] was developed a method for verifying
temporal consistency in the Web Service flow.
Time ontology is added tothe OWL-S
specification, and then the annotated OWL-S is
transformed into formal model TCPN (Time
Constraint Petri Net), then temporal consistency
of Web Service flow is verified.
In [9], the authors use a WS-CDL (Web Services
Choreography Description Language)
description of composite Web services, and
define an operational semantics for a translation
of a subset of WS-CDL into a network of Timed
Automata. Uppaal tool is used for the validation
and verification of the generated timed
automata.
It can be seen that there is little work on timing
constraint satisfiability based on formal methods
and which can combine semantic web approach.
On the other hand and to our knowledge, there
is no research conducted on bounded liveness
property verification.
In this paper, we propose a global methodology
for specifying and verifying timed semantic web
services. First, we use OWL-S ontology to
specify the web services. The Time-Entry
ontology allows us to express temporal and
timed concepts. The resulting model is
transforming into a network of timed automata to
be verified with Uppaal tool.

3. TIMED SEMANTIC WEB SERVICES
SPECIFICATION

3.1. Owl-S Overview

OWL-S (Web Ontology Language for Services)
is a high level ontology-based language for
describing web service properties [10]. In this
language, each web service is specified in three
XML-based parts: service profile, which
describes what the service does? Service
model, which describes how does the service
work (behave); and service grounding, which
provides details on how to invoke a service
through messages.OWL-S allows the
description of the external behavior of a Web

service by using a semantic model, in which
each implicated atomic process is described
semantically in terms of inputs, preconditions,
outputs, and effects (IPOEs).
Composite processes are used to describe
collections of processes (either atomic or
composite) organized on the basis of following
control flow structure:

 Sequence: A list of components to be
done in order.

 If-then-else: the selection based on
some obviously defined conditions.

 Choice: any of the given components
may be chosen for execution.

 Repeat-while: the component is
performed repeatedly while certain
conditions are satisfied.

 Repeat-until: the component is
performed repeatedly until some
conditions hold.

 Any-Order: the components are
performed in some unspecified order but
not concurrently.

 Split: the components are activated and
performed concurrently.

 Split+Join: the parallel execution is
synchronizing with barrier
synchronization.

3.2. Timing Constraint Specification

Based on Semantic Web, OWL-S describes the
service semantic in different aspects.
Unfortunately, it still lacks the definition of time
constraints for Web Service which makes it
difficult to verify temporal properties of the Web
Service flow.
To provide support for describing temporal
properties for OWL-S, we use an (entry) sub-
ontology of time, which is much simpler than the
full ontology of DAML-Time2 which provides the
basic temporal concepts and relations that most
simple applications would need i.e. instants and,
intervals [11].
By adding timing constraints to OWL-S, the time
information related to the service can be defined
easily. The entry sub-ontology provides quick
access to the essential vocabulary in OWL for
the basic temporal concepts and relations. It
covers relations among instants and intervals
and instant-like and interval-like events such as
"before" and "overlaps". It includes measures for
durations, so that we can say a course will last 1

2DAML-Time Homepage:
http://www.cs.rochester.edu/~ferguson/daml/

ICAASE'2014 Specification and Verification of Timed Semantic web Services

International Conference on Advanced Aspects of Software Engineering
ICAASE, November, 2-4, 2014, Constantine, Algeria. 84

hour and 30 minutes, and it also includes a clock
and calendar terms so that we can say a course
starts at 10:00am on Monday, December 17,
2013.
These basic temporal constraint relations are:

 Before (d₁, d₂): d₁ ends before d₂ starts
and there is an interval between them.

 Meets (d₁, d₂): d₁ ends at the same
instant when d₂ starts to execute.

 Finishes (d₁, d₂): d₂ starts after d₁ starts
and before d₁ ends, and d₂ ends at the
same instant with d₁.

 Overlaps (d₁, d₂): d₂ starts after d₁ starts
and before d₁ ends, and d₂ ends after d₁
ends.

 Covers (d₁, d₂): d₁ execution interval
includes d₁ execution interval.

 Starts (d₁, d₂): d₂ starts at the same
instant with d₁, and d₂ ends after d₁
ends.

 Equals (d₁, d₂): d₂ starts and ends at the
same instant with d₁.

Notice that, an interval d may be also written as
[b, e] corresponding to beginning and ending
point, respectively.

4. Timed Model Checking

Model Checking [12] is one of the most
successful approaches for verifying temporal
specifications of hardware and software
systems. System properties are specified in
temporal logic for which various formalisms
exist. Classically two types of properties are
distinguished, safety and liveness. In practical
applications, safety properties are prevalent.
Consequently, very efficient algorithms and tools
have been developed for checking safety
properties. A model-checking tool accepts
system designs (called models) and properties
(called specification) that models are expected
to satisfy. The tool then outputs yes, if the given
model satisfies given specifications and
generates a counter example otherwise.

In this paper, we choose Timed Automata as
underlying model, and TCTL [13] logic to specify
the property to verify.

4.1. Timed automata

In this section we reply Timed Automata, which
were introduced by Alur and Dill [14]. Timed

Automata are extensions of finite state automata
with constraints on timing behavior. The
underlying finite state automata are augmented
with a set of real time variables.
Definition1.ܣ Timed Automaton ܣ is a six-
element tuple (ݏ,ܵ,ߑ,ܧ,ܪ, :where (ܫ

 Σis a finite set of actions,
 ܵ is a finite set of locations,
 ݏ ⊆ ܵ is an initial location,
 ܪ is a finite set of clocks,
 ܧ ⊆ ܵ × ܵ × ߑ × 2ு × is a (ܪ)ߔ

transition relation,
 ܫis a (location) invariant.

Each element e of ܧ is denoted by 〈ݏ, 〈߮,ߣ,ܽ,ᇱݏ
represents a transition from the location ݏ to the
location ݏ′, executing the action ܽ, with the set
ߣ ⊆ of clocks to be reset, and with the clock ܪ
constraint ߮ defining the enabling condition for
݁.

4.2. Bounded liveness

Temporal properties are conventionally
classified into safety and liveness properties. A
liveness property is a property, stating that
"something good will eventually happen", e.g.,
the program will terminate.
Nevertheless, this still insufficient to ensure
correctness in case real-time deadlines must be
observed. In reality, we need to establish that
the property in question will hold within a certain
upper time-bound. Thus, a bounded liveness
property is a liveness property that comes with a
maximal delay within which the "good thing"
must happen. Several versions are available.
We consider the more efficient one. Based on
the method proposed in [15] in which time-
bounded leads-to properties are reduced to
simple safety properties, first the model under
investigation is extended with a boolean variable
ܾ and an additional clock ݖ. The boolean
variable ܾ must be initialized to false. Whenever
߮ starts to hold, ܾ is set to true and the clock ݖ is
reset. When ߰ commences to hold, ܾ is set to
false. Thus the truth-value of b indicates whether
there is an obligation of ߰ to hold in the future
and ݖ measures the accumulated time since this
unfulfilled obligation started. The time-bounded
leads-to property ߮ ↝ஸ௧ ߰, ݐ ⊆ ℝ is simply

ICAASE'2014 Specification and Verification of Timed Semantic web Services

International Conference on Advanced Aspects of Software Engineering
ICAASE, November, 2-4, 2014, Constantine, Algeria. 85

obtained by verifying the safety property∀□(ܾ ⇒
ݖ ≤ .(ݐ

Example: Intuitively, the formulae ߮ ↝[ଶ,ଷ] ߰
express that for all the runs, always when ߮
holds, ߰ holds in 2 to 3 units of time. InFigure 1,
the formula ܾ ⇒ ݖ ≤ holds for all states of one ݐ
run. If this is true for all other runs, then the
formulae ߮ ↝[ଶ,ଷ] ߰ holds too.

Figure 1Example of TCTL Formulae

4.3. Generic timed OWL-S verification
approach

The paper describes how to model Web
Services and determine whether the
specification satisfies the bounded liveness
property. In the following we present the
different steps of the proposed approach:

 Step1: different web services are
modeled in extended OWL-S language,

 Step2: automated composition is
performed in respect of customer
requirements,

 Step3: transformation of the composed
service specification along with its
imposed timing constraints into Timed
Automata model,

 Step 4: specification of the formulae to
verify and augment Timed Automata
with a necessary variable as explained
in section 4.2,

 Step 5: automatically verify the formula
with Uppaal verifier,

 Step 6: If the property is not satisfied go
to Step 1 to correct the OWL-S
specification.

4.4. Timed OWL-S Timed Automata
Transformation Rules

Timed OWL-S is taken to specify logical
structures, more important, temporal aspects of
service processes with rich semantic
information. Transformed from the extended
OWL-S process model, Timed Automata model
is constructed to depict the structure and

behavior of the (composite) service specified
with service operation and time semantic
information. With Uppaal tool, verification of
temporal property can be conducted. In the
following, we describe both untimed and timed
transformation rules from Timed OWL-S to
Timed Automata.

Sequence (P₁, P₂) Initial location is marked by a
double circle.

If Cond then P₁ else P₂

Split (P₁, P₂) and Split-join (P₁, P₂) Network
(set) of Timed Automata allows expressing the
parallelism. Edges labeled with complementary
actions over the common channel Sync
synchronize.

Repeat P While Cond

We can also obtain Repeat-Until by replacing
 ݀݊ܿ ݐ݊ by ݀݊ܿ

Before (d₁, d₂) We use the clock ݔ to count time
for݀, ݅ ∈ {1,2}. The guard ݔ == ܾ₁
(respectively ݔ == ݁₁) marks the begin
(respectively the end) of ݀₁. The invariant
ݔ ≤ ܾ₁ (respectively ݔ ≤ ݁₁) forces the system
to leave once ݔ == ܾ₁ (respectivelyݔ == ݁₁).
Analogously for ݀₂.

ICAASE'2014 Specification and Verification of Timed Semantic web Services

International Conference on Advanced Aspects of Software Engineering
ICAASE, November, 2-4, 2014, Constantine, Algeria. 86

Meets (d₁, d₂)

Overlaps (d₁, d₂) Since ݀₁ is not finished when
݀₂ starts, we use another clock ݕ to count for ݀₂.
Thus, ݔ and ݕ allow to express parallelism.

Finishes (d₁, d₂)

Covers (d₁, d₂)

Starts (d₁, d₂)

Equals (d₁, d₂)

5. Case Study: Multimodal Transport

Multimodal transport is being used across a
wide range of government, it is generally
considered as the most efficient way of handling
an international door to door transport operation.
This is so because multimodal transport allows
combining in one voyage the specific
advantages of each mode, such as the flexibility
of road haulage, the larger capacity of railways
and the lower costs of water transport in the best
possible fashion. Multimodal transport also
offers the shipper the possibility to rely on a
single counterpart rather than having to deal
with each and every modal specialist of the
transport chain.

While multimodal transport seems to offer only
benefits to all parties, shippers and service
providers, it is also very difficult to achieve. It
requires a thorough control over all the steps
involved in international transport; this means
extensive use of information technologies that
can provide freedom to plan and operate to
carriers and reliable liability regimes to
customers.

In this case, we deal with the online shipment.
Track-Ship is a fictitious service that offers
online tracking and helps customers to take an
appropriate decision to change transport
strategy when it is necessary. For example, the
transport mode chosen may have to change
over time when delays happen. So let's consider
this hypothetical Scenario. The supposed
itinerary combines sea and railway transport.
The departure date is in 5 days from registration
and the arrival is in 10 days. On arrival, if there
is no administrative problem, the railway
transport is in 1day and take 2days to arrive at

ICAASE'2014 Specification and Verification of Timed Semantic web Services

International Conference on Advanced Aspects of Software Engineering
ICAASE, November, 2-4, 2014, Constantine, Algeria. 87

destination. The delay due to administrative
problem may take 2 days. In this case, customer
has the choice to change to air transport or keep
the previous plan, i.e.Sea-railway combined
transport. A confirmation must be done no later
than 1 to 2 days after shipment arrives in port,
confirmation interval must be finished at the
same instant as the interval corresponding to the
administrative problem processing is finished.
The airport departure is in 2 hours of
administrative problem solving and the air transit
time is not more than 1 hour. Finally, the goods
are in stock within 1 day of arrival.

5.1. Modeling Temporal Behavior

The Track-Ship is a composite service. It
contains three main services i.e. Sea, Railway
and Air Services, each of them allows us to
search information about available itineraries
corresponding to our preferred needs. For
example, the Air one is a service that makes it
easy to find flights that meet our needs and
planning travel. It includes a sequence of three
operations i.e. GetDesiredDetails,
SelectAvailableItinerary and Reservation. These
three services are performed in parallel from
which we use the control constraint "split" for the
composition.

The OWL-S specification remains insufficient to
describe adequately our scenario since the
timed aspects are not taking account. For this
purpose we add two output parameters:
WaitTime, that specifies the time between
reservation instant and departure instant, and
ProcessTime, that specifies the time between
departure instant and arrival instant.

 It makes easy with the use of the entry sub-
ontology of time; ProcessTime and WaitTime
are defined as Intervals. To schedule the three
itineraries we need to create ProcessTime and
WaitTime subclasses corresponding to sea,
railway and air information.

Also, two other classes of Interval type are
created to describe intervals corresponding to
administrative procedure (AdminProcedure) and
duration allowed to change transport strategy
(Change).

5.2. Service Composition

Now, it only remains for us the automated
composition based on customer needs.
Specifically, different timed schedules
betweenthese intervals are met. For example,
the temporal relation between ProcessTimeSea
and AdminProcedure is constructed by the use
of a restriction on the object property intMeets
i.e. the expression "intMeets only
AdminProcedure" to ProcessTimeSea class. We
apply the same logic to the rest of the intervals.

Figure 3 AdminProcedure OWL Code

Figure 3shows the entire description of the class
AdminProcedure.

ICAASE'2014 Specification and Verification of Timed Semantic web Services

International Conference on Advanced Aspects of Software Engineering
ICAASE, November, 2-4, 2014, Constantine, Algeria. 88

Now, we need to ensure the correctness of
the composed service i.e. goods are in
stock within a fixed period of time for this

case. In the following, we try to verify the
property: "Goods are in stock within 19 days
and 3 hours (i.e. 459 hours) from
registration".

5.3. From timed OWL-S to timed automata

By applying transformation rules presented in
Section 3.4, the Timed Automata is generated from
the OWL-S specification. The generated Timed
Automaton is presented in 4. We can easily
distinguish three main runs:

 In green, the succession of actions
corresponds to the sea-railway
combined transport case;

 In orange, it corresponds to the situation
where a customer chooses to change
the transport strategy, to sea-air
combined transport, in order to overtake
lost time due to an administrative
problem;

 In red, corresponds to the worst case
where a customer chooses to keep the
initial plan, i.e. sea-railway combined

transport in spite of delays.

5.4. Formal Verification

Corresponding to [16], to specify the property to
verify, the model under investigation must be
extended with a boolean variable b and an
additional clock Elapsed. The boolean variable b
must be initialized to false. Whenever
Registration is made, b is set to true and the
clock Elapsed is reset. When the goods arrive, b
is set to false. Thus the property “Goods are in
stock within 19 days and 3 hours (i.e.
459 hours) from registration” is obtained by
verifying the safety property
∀□(b⇒Elapsed≤459)

5.4.1. Uppaal verifier results

The verifier shows that the formula is not
satisfied Hence, the selected travels cannot be
accepted.

Figure 4 Generated Timed Automaton

ICAASE'2014 Specification and Verification of Timed Semantic web Services

International Conference on Advanced Aspects of Software Engineering
ICAASE, November, 2-4, 2014, Constantine, Algeria. 89

5.4.2. Uppaal simulator

The simulator allows us to views the counter
example. In our case, it indicates the run
corresponding to the situation when users
choose to keep the first plan in spite of the
delays.

Also, the simulator allows us to explore variable
valuations (Figure 6). For example, when goods
arrive by tracing the previous run, the clock
Elapsed is in [456;480] and violate the condition
Elapsed≤459. The lower bound of the interval
corresponds to the arrival time at the airport and
the upper bound corresponds to the time in
which goods are available in stock. Moreover,
the clock x counts time in which goods should
be in stock after arriving. Contrariwise, the clock
y is used to specify that the end of the
confirmation interval (i.e. [24,48]) must
correspond to the administrative problem
resolution (i.e. [0,48]). Formally expressed as
Finishes([0,48],[24,48]) used to the entry sub-
ontology of time.

6. Conclusion And Future Work

This paper proposes a verification methodology
for temporal properties of Semantic Web Service
by Uppaal model checker. Taking account of
time information, we use entry sub-ontology of
time in conjunction with OWL-S for describing
the temporal content of Web Services. Then we
transform the OWL-S specification into Timed
Automata, which is mandatory for an automated
verification of Web Services. Transformation
rules are projected and a case study is
presented to show the applicability of our
approach.

In future work, we aim to automate our proposed
approach with a use of Model-Driven
Engineering (MDE) tools for implementing
transformation rules from Timed OWL-S
ontology to Timed Automata model. In addition,
we will extend the applicability of our approach
to verify more properties. Finally, we also plan to
verify more ambitious applications.

7. REFERENCES

[1] ter Beek, Maurice and Bucchiarone, Antonio and
Gnesi, Stefania. A Survey on Service Composition
Approaches:From Industrial Standards to Formal
Methods. Technical Report 2006-TR-15. 2006

[2] Khadka, R., & Sapkota, B. An evaluation of dynamic
web service composition approaches. [ed.] SciTePres.
2010.

[3] Diaz, G., Pardo, J. J., Cambronero, M. E., Valero, V.,
& Cuartero, F. Automatic translation of ws-cdl
choreographies to timed automata . Formal
Techniques for Computer Systems and Business
Processes. 2005, pp. 230-242.

[4] Kazhamiakin, R., Pandya, P., et Pistore, M. Web
Service Compositions. Engineering Service
Compositions. 2005, p. 59.

[5] Chaochen, Z., Hoare, C. A. R., & Ravn, A. P. A
calculus of durations. [ed.] Elsevier. 5, 1991,
Information processing letters, Vol. 40, pp. 269-276.

[6] Dong, J. S., Liu, Y., Sun, J., & Zhang, X. Verification
of computation orchestration via timed automata.
Formal Methods and Software Engineering. 2006, pp.
226-245.

[7] Guermouche, N., & Godart, C. Timed conversational
protocol based approach for web services analysis.
Service-Oriented Computing. 2010, pp. 603-611.

[8] Liu, R., Hu, C., Zhao, C., & Gao, Z. Verification for
time consistency of Web service flow. Computer and
Information Science. May 2008, pp. 624-629.

[9] Emilia Cambronero, M., Díaz, G., Valero, V., &
Martínez, E. Validation and verification of Web
services choreographies by using timed automata. 1,
2011, Journal of Logic and Algebraic Programming,
Vol. 80, pp. 25-49.

[10] Martin, D., Paolucci, M., McIlraith, S., Burstein, M.,
McDermott, D., McGuinness, D., ... & Sycara, K.
Bringing semantics to web services: The OWL-S
approach. [ed.] Springer. Semantic Web Services and
Web Process Composition. 2005, pp. 26-42.

[11] Hobbs, J. R., & Pan, F.An ontology of time for the
semantic web. [ed.] ACM. 1, 2004, ACM
Transactions on Asian Language Information
Processing (TALIP), Vol. 3, pp. 66-85.

[12] Bérard, B., Bidoit, M., Finkel, A., Laroussinie, F.,
Petit, A., Petrucci, L., & Schnoebelen, P. Systems and
software verification: model-checking techniques and
tools. 2010.

[13] Alur, R., Courcoubetis, C., & Dill, D. Model-checking
in dense real-time. 1993. pp. 2-34.

[14] Alur, R., Dill, D. L. A theory of timed automata.
Theoretical computer science . 1994. pp. 183-235.

[15] Lindahl, M., Pettersson, P., & Yi, W. Formal design
and analysis of a gear controller. [ed.] Springer. Tools
and Algorithms for the Construction and Analysis of
Systems. 1998, pp. 281-297.

[16] Boumaza, A., Maamri, R. Bounded liveness in
semantic web services. ACIT. December 2012, 13,
pp. 602-610.

ICAASE'2014 Specification and Verification of Timed Semantic web Services

International Conference on Advanced Aspects of Software Engineering
ICAASE, November, 2-4, 2014, Constantine, Algeria. 90

