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Abstract – It is widely recognized that temporal aspects are indispensable for Web Service modeling. 
Unfortunately, the current Semantic web Services description languages suffer from the lack of useful 
concepts needed for timing description. For this purpose, we propose a global methodology for the 
specification of timing behavior with an extended OWL-S ontology and verification of temporal properties 
with UPPPAL tool. The applicability is illustrated through the multimodal transport use case. 
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1. INTRODUCTION

Automatic composition is the capability to 
automatically compose a set of services to fulfill 
user requirements when a single service is not 
available for fulfilling these requirements. 
Composing services need an approach based 
on semantic descriptions, as the requester 
required functionally has to be expressed in a 
high-level and abstract way to enable reasoning 
procedures. 
Efficiently, the semantic web community allows 
reasoning about web resources by explicitly 
declaring their preconditions and effects with 
terms defined precisely in ontologies. 
Furthermore, in Semantic Web Services, the 
common need for temporal information is 
satisfied by the use of the temporal ontologies to 
allow using of temporal concepts. However, the 
complexity comes usually with the growing 
expressiveness; it becomes a challenging area 
to ensure correctness. Hence, the verification of 
Web Service flow becomes more and more 
important.  
Formal methods are particularly well appropriate 
to address most of the aforementioned issues 
(e.g. composition and correctness). The majority 

of these are based on state-action models (e.g. 
labeled transition systems, timed automata, and 
Petri nets) or process models (e.g. π-calculus 
and other calculi) [1].  

2. Related works

Recently, a diversity of concrete proposals from 
the formal methods community have emerged in 
order to verify the correctness of the web service 
composition which is based on state action 
models or process models [2]. 
In [3], a case study is presented that shows how 
descriptions of web services written in BPEL-
WSCDL (Web Services Choregraphy 
Description Language) can be automatically 
translated to timed automata and subsequently 
be verified by Uppaal.  
In [4] the authors provide an encoding of BPEL 
processes into web service timed state transition 
systems and discuss a framework in which 
timed assumptions expressed in the duration 
calculus [5] can be model checked. 
In [6] a framework to automatically verify 
systems that are modeled in Orc1 is proposed. 

1 Home page: http://orc.csres.utexas.edu/ 
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Uppaal can be used to model check Orc models. 
The approach is demonstrated through a small 
case study. 
In [7], the authors deal with the compatibility 
problem. The proposed framework allows 
applying model checker Uppaal to asynchronous 
Web services composition analysis by using a 
set of CTL formulas that characterize the 
different choreography compatibility classes 
defined and verifying deadlock free property. 
In [8] was developed a method for verifying 
temporal consistency in the Web Service flow. 
Time ontology is added tothe OWL-S 
specification, and then the annotated OWL-S is 
transformed into formal model TCPN (Time 
Constraint Petri Net), then temporal consistency 
of Web Service flow is verified. 
In [9], the authors use a WS-CDL (Web Services 
Choreography Description Language) 
description of composite Web services, and 
define an operational semantics for a translation 
of a subset of WS-CDL into a network of Timed 
Automata. Uppaal tool is used for the validation 
and verification of the generated timed 
automata. 
It can be seen that there is little work on timing 
constraint satisfiability based on formal methods 
and which can combine semantic web approach. 
On the other hand and to our knowledge, there 
is no research conducted on bounded liveness 
property verification. 
In this paper, we propose a global methodology 
for specifying and verifying timed semantic web 
services. First, we use OWL-S ontology to 
specify the web services. The Time-Entry 
ontology allows us to express temporal and 
timed concepts. The resulting model is 
transforming into a network of timed automata to 
be verified with Uppaal tool. 

3. TIMED SEMANTIC WEB SERVICES 
SPECIFICATION 

3.1. Owl-S Overview 

OWL-S (Web Ontology Language for Services) 
is a high level ontology-based language for 
describing web service properties [10]. In this 
language, each web service is specified in three 
XML-based parts: service profile, which 
describes what the service does? Service 
model, which describes how does the service 
work (behave); and service grounding, which 
provides details on how to invoke a service 
through messages.OWL-S allows the 
description of the external behavior of a Web 

service by using a semantic model, in which 
each implicated atomic process is described 
semantically in terms of inputs, preconditions, 
outputs, and effects (IPOEs). 
Composite processes are used to describe 
collections of processes (either atomic or 
composite) organized on the basis of following 
control flow structure: 

 Sequence: A list of components to be 
done in order. 

 If-then-else: the selection based on 
some obviously defined conditions. 

 Choice: any of the given components 
may be chosen for execution. 

 Repeat-while: the component is 
performed repeatedly while certain 
conditions are satisfied. 

 Repeat-until: the component is 
performed repeatedly until some 
conditions hold. 

 Any-Order: the components are 
performed in some unspecified order but 
not concurrently. 

 Split: the components are activated and 
performed concurrently. 

 Split+Join: the parallel execution is 
synchronizing with barrier 
synchronization. 

3.2. Timing Constraint Specification 

Based on Semantic Web, OWL-S describes the 
service semantic in different aspects. 
Unfortunately, it still lacks the definition of time 
constraints for Web Service which makes it 
difficult to verify temporal properties of the Web 
Service flow. 
To provide support for describing temporal 
properties for OWL-S, we use an (entry) sub-
ontology of time, which is much simpler than the 
full ontology of DAML-Time2 which provides the 
basic temporal concepts and relations that most 
simple applications would need i.e. instants and, 
intervals [11]. 
By adding timing constraints to OWL-S, the time 
information related to the service can be defined 
easily. The entry sub-ontology provides quick 
access to the essential vocabulary in OWL for 
the basic temporal concepts and relations. It 
covers relations among instants and intervals 
and instant-like and interval-like events such as 
"before" and "overlaps". It includes measures for 
durations, so that we can say a course will last 1 
                                                             
2DAML-Time Homepage: 
http://www.cs.rochester.edu/~ferguson/daml/ 
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hour and 30 minutes, and it also includes a clock 
and calendar terms so that we can say a course 
starts at 10:00am on Monday, December 17, 
2013. 
These basic temporal constraint relations are: 

 Before (d₁, d₂): d₁ ends before d₂ starts 
and there is an interval between them. 

 Meets (d₁, d₂): d₁ ends at the same 
instant when d₂ starts to execute. 

 Finishes (d₁, d₂): d₂ starts after d₁ starts 
and before d₁ ends, and d₂ ends at the 
same instant with d₁. 

 Overlaps (d₁, d₂): d₂ starts after d₁ starts 
and before d₁ ends, and d₂ ends after d₁ 
ends. 

 Covers (d₁, d₂): d₁ execution interval 
includes d₁ execution interval. 

 Starts (d₁, d₂): d₂ starts at the same 
instant with d₁, and d₂ ends after d₁ 
ends. 

 Equals (d₁, d₂): d₂ starts and ends at the 
same instant with d₁. 

Notice that, an interval d may be also written as 
[b, e] corresponding to beginning and ending 
point, respectively. 

4. Timed Model Checking 

Model Checking [12] is one of the most 
successful approaches for verifying temporal 
specifications of hardware and software 
systems. System properties are specified in 
temporal logic for which various formalisms 
exist. Classically two types of properties are 
distinguished, safety and liveness. In practical 
applications, safety properties are prevalent. 
Consequently, very efficient algorithms and tools 
have been developed for checking safety 
properties. A model-checking tool accepts 
system designs (called models) and properties 
(called specification) that models are expected 
to satisfy. The tool then outputs yes, if the given 
model satisfies given specifications and 
generates a counter example otherwise. 

In this paper, we choose Timed Automata as 
underlying model, and TCTL [13] logic to specify 
the property to verify. 

4.1. Timed automata 

In this section we reply Timed Automata, which 
were introduced by Alur and Dill [14]. Timed 

Automata are extensions of finite state automata 
with constraints on timing behavior. The 
underlying finite state automata are augmented 
with a set of real time variables. 
Definition1.ܣ Timed Automaton ܣ is a six-
element tuple (ݏ,ܵ,ߑ,ܧ,ܪ,  :where (ܫ

 Σis a finite set of actions, 
 ܵ is a finite set of locations, 
 ݏ ⊆ ܵ is an initial location,  
 ܪ  is a finite set of clocks,  
 ܧ ⊆ ܵ × ܵ × ߑ × 2ு ×  is a (ܪ)ߔ

transition relation,  
 ܫis a (location) invariant. 

Each element e of ܧ is denoted by 〈ݏ,   〈߮,ߣ,ܽ,ᇱݏ
represents a transition from the location ݏ to the 
location ݏ′, executing the action ܽ, with the set 
ߣ ⊆  of clocks to be reset, and with the clock  ܪ
constraint ߮ defining the enabling condition for 
݁. 

4.2. Bounded liveness 

Temporal properties are conventionally 
classified into safety and liveness properties. A 
liveness property is a property, stating that 
"something good will eventually happen", e.g., 
the program will terminate. 
Nevertheless, this still insufficient to ensure 
correctness in case real-time deadlines must be 
observed. In reality, we need to establish that 
the property in question will hold within a certain 
upper time-bound. Thus, a bounded liveness 
property is a liveness property that comes with a 
maximal delay within which the "good thing" 
must happen. Several versions are available. 
We consider the more efficient one. Based on 
the method proposed in [15] in which time-
bounded leads-to properties are reduced to 
simple safety properties, first the model under 
investigation is extended with a boolean variable 
ܾ and an additional clock ݖ. The boolean 
variable ܾ must be initialized to false. Whenever 
߮ starts to hold, ܾ is set to true and the clock ݖ is 
reset. When ߰ commences to hold, ܾ is set to 
false. Thus the truth-value of b indicates whether 
there is an obligation of ߰ to hold in the future 
and ݖ measures the accumulated time since this 
unfulfilled obligation started. The time-bounded 
leads-to property ߮ ↝ஸ௧ ߰, ݐ ⊆ ℝ is simply 
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obtained by verifying the safety property∀□(ܾ ⇒
ݖ ≤  .(ݐ

Example: Intuitively, the formulae ߮ ↝[ଶ,ଷ] ߰ 
express that for all the runs, always when ߮ 
holds, ߰ holds in 2 to 3 units of time. InFigure 1, 
the formula ܾ ⇒ ݖ ≤  holds for all states of one ݐ
run. If this is true for all other runs, then the 
formulae ߮ ↝[ଶ,ଷ] ߰ holds too. 

Figure 1Example of TCTL Formulae 

4.3. Generic timed OWL-S verification 
approach 

The paper describes how to model Web 
Services and determine whether the 
specification satisfies the bounded liveness 
property. In the following we present the 
different steps of the proposed approach:  
 

 Step1: different web services are 
modeled in extended OWL-S language, 

 Step2: automated composition is 
performed in respect of customer 
requirements, 

 Step3: transformation of the composed 
service specification along with its 
imposed timing constraints into Timed 
Automata model, 

 Step 4: specification of the formulae to 
verify and augment Timed Automata 
with a necessary variable as explained 
in section 4.2,  

 Step 5: automatically verify the formula 
with Uppaal verifier, 

 Step 6: If the property is not satisfied go 
to Step 1 to correct the OWL-S 
specification. 

4.4. Timed OWL-S Timed Automata 
Transformation Rules 

Timed OWL-S is taken to specify logical 
structures, more important, temporal aspects of 
service processes with rich semantic 
information. Transformed from the extended 
OWL-S process model, Timed Automata model 
is constructed to depict the structure and 

behavior of the (composite) service specified 
with service operation and time semantic 
information. With Uppaal tool, verification of 
temporal property can be conducted. In the 
following, we describe both untimed and timed 
transformation rules from Timed OWL-S to 
Timed Automata. 
 
Sequence (P₁, P₂) Initial location is marked by a 
double circle. 

 

If Cond then P₁ else P₂ 

 
Split (P₁, P₂) and Split-join (P₁, P₂) Network 
(set) of Timed Automata allows expressing the 
parallelism. Edges labeled with complementary 
actions over the common channel Sync 
synchronize. 

Repeat P While Cond 

We can also obtain Repeat-Until by replacing 
 ݀݊ܿ ݐ݊ by ݀݊ܿ

Before (d₁, d₂) We use the clock ݔ to count time 
for݀, ݅ ∈ {1,2}. The guard ݔ == ܾ₁ 
(respectively ݔ == ݁₁) marks the begin 
(respectively the end) of ݀₁. The invariant 
ݔ ≤ ܾ₁ (respectively ݔ ≤ ݁₁) forces the system 
to leave once ݔ == ܾ₁ (respectivelyݔ == ݁₁). 
Analogously for ݀₂. 
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Meets (d₁, d₂) 

 
Overlaps (d₁, d₂) Since ݀₁ is not finished when 
݀₂ starts, we use another clock ݕ to count for ݀₂. 
Thus, ݔ and ݕ allow to express parallelism. 

 
Finishes (d₁, d₂) 

 

Covers (d₁, d₂) 

 

Starts (d₁, d₂) 

 

Equals (d₁, d₂) 

 

5. Case Study: Multimodal Transport 

Multimodal transport is being used across a 
wide range of government, it is generally 
considered as the most efficient way of handling 
an international door to door transport operation. 
This is so because multimodal transport allows 
combining in one voyage the specific 
advantages of each mode, such as the flexibility 
of road haulage, the larger capacity of railways 
and the lower costs of water transport in the best 
possible fashion. Multimodal transport also 
offers the shipper the possibility to rely on a 
single counterpart rather than having to deal 
with each and every modal specialist of the 
transport chain. 

While multimodal transport seems to offer only 
benefits to all parties, shippers and service 
providers, it is also very difficult to achieve. It 
requires a thorough control over all the steps 
involved in international transport; this means 
extensive use of information technologies that 
can provide freedom to plan and operate to 
carriers and reliable liability regimes to 
customers. 

In this case, we deal with the online shipment. 
Track-Ship is a fictitious service that offers 
online tracking and helps customers to take an 
appropriate decision to change transport 
strategy when it is necessary. For example, the 
transport mode chosen may have to change 
over time when delays happen. So let's consider 
this hypothetical Scenario. The supposed 
itinerary combines sea and railway transport. 
The departure date is in 5 days from registration 
and the arrival is in 10 days. On arrival, if there 
is no administrative problem, the railway 
transport is in 1day and take 2days to arrive at 
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destination. The delay due to administrative 
problem may take 2 days. In this case, customer 
has the choice to change to air transport or keep 
the previous plan, i.e.Sea-railway combined 
transport. A confirmation must be done no later 
than 1 to 2 days after shipment arrives in port, 
confirmation interval must be finished at the 
same instant as the interval corresponding to the 
administrative problem processing is finished. 
The airport departure is in 2 hours of 
administrative problem solving and the air transit 
time is not more than 1 hour. Finally, the goods 
are in stock within 1 day of arrival. 

5.1. Modeling Temporal Behavior 

The Track-Ship is a composite service. It 
contains three main services i.e. Sea, Railway 
and Air Services, each of them allows us to 
search information about available itineraries 
corresponding to our preferred needs. For 
example, the Air one is a service that makes it 
easy to find flights that meet our needs and 
planning travel. It includes a sequence of three 
operations i.e. GetDesiredDetails, 
SelectAvailableItinerary and Reservation. These 
three services are performed in parallel from 
which we use the control constraint "split" for the 
composition. 

The OWL-S specification remains insufficient to 
describe adequately our scenario since the 
timed aspects are not taking account. For this 
purpose we add two output parameters: 
WaitTime, that specifies the time between 
reservation instant and departure instant, and 
ProcessTime, that specifies the time between 
departure instant and arrival instant. 

 It makes easy with the use of the entry sub-
ontology of time; ProcessTime and WaitTime 
are defined as Intervals. To schedule the three 
itineraries we need to create ProcessTime and 
WaitTime subclasses corresponding to sea, 
railway and air information.  

Also, two other classes of Interval type are 
created to describe intervals corresponding to 
administrative procedure (AdminProcedure) and 
duration allowed to change transport strategy 
(Change). 

5.2. Service Composition 

Now, it only remains for us the automated 
composition based on customer needs.  
Specifically, different timed schedules 
betweenthese intervals are met. For example, 
the temporal relation between ProcessTimeSea 
and AdminProcedure is constructed by the use 
of a restriction on the object property intMeets 
i.e. the expression "intMeets only 
AdminProcedure" to ProcessTimeSea class. We 
apply the same logic to the rest of the intervals. 

Figure 3 AdminProcedure OWL Code 
 

Figure 3shows the entire description of the class 
AdminProcedure. 
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Now, we need to ensure the correctness of 
the composed service i.e. goods are in 
stock within a fixed period of time for this 

case. In the following, we try to verify the 
property: "Goods are in stock within 19 days 
and 3 hours (i.e. 459 hours) from 
registration". 

5.3. From timed OWL-S to timed automata 

By applying transformation rules presented in 
Section 3.4, the Timed Automata is generated from 
the OWL-S specification. The generated Timed 
Automaton is presented in 4. We can easily 
distinguish three main runs: 

 In green, the succession of actions
corresponds to the sea-railway
combined transport case;

 In orange, it corresponds to the situation
where a customer chooses to change
the transport strategy, to sea-air
combined transport, in order to overtake
lost time due to an administrative
problem;

 In red, corresponds to the worst case
where a customer chooses to keep the
initial plan, i.e. sea-railway combined

transport in spite of delays. 

5.4. Formal Verification 

Corresponding to [16], to specify the property to 
verify, the model under investigation must be 
extended with a boolean variable b and an 
additional clock Elapsed. The boolean variable b 
must be initialized to false. Whenever 
Registration is made, b is set to true and the 
clock Elapsed is reset. When the goods arrive, b 
is set to false. Thus the property “Goods are in 
stock within 19 days and 3 hours (i.e. 
459 hours) from registration” is obtained by 
verifying the safety property 
∀□(b⇒Elapsed≤459)  

5.4.1. Uppaal verifier results 

The verifier shows that the formula is not 
satisfied Hence, the selected travels cannot be 
accepted. 

Figure 4 Generated Timed Automaton 
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5.4.2. Uppaal simulator 

The simulator allows us to views the counter 
example. In our case, it indicates the run 
corresponding to the situation when users 
choose to keep the first plan in spite of the 
delays. 

Also, the simulator allows us to explore variable 
valuations (Figure 6). For example, when goods 
arrive by tracing the previous run, the clock 
Elapsed is in [456;480] and violate the condition 
Elapsed≤459. The lower bound of the interval 
corresponds to the arrival time at the airport and 
the upper bound corresponds to the time in 
which goods are available in stock. Moreover, 
the clock x counts time in which goods should 
be in stock after arriving. Contrariwise, the clock 
y is used to specify that the end of the 
confirmation interval (i.e. [24,48]) must 
correspond to  the administrative problem 
resolution (i.e. [0,48]). Formally expressed as 
Finishes([0,48],[24,48]) used to the entry sub-
ontology of time. 

6. Conclusion And Future Work 

This paper proposes a verification methodology 
for temporal properties of Semantic Web Service 
by Uppaal model checker. Taking account of 
time information, we use entry sub-ontology of 
time in conjunction with OWL-S for describing 
the temporal content of Web Services. Then we 
transform the OWL-S specification into Timed 
Automata, which is mandatory for an automated 
verification of Web Services. Transformation 
rules are projected and a case study is 
presented to show the applicability of our 
approach. 

In future work, we aim to automate our proposed 
approach with a use of Model-Driven 
Engineering (MDE) tools for implementing 
transformation rules from Timed OWL-S 
ontology to Timed Automata model. In addition, 
we will extend the applicability of our approach 
to verify more properties. Finally, we also plan to 
verify more ambitious applications. 
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