
rOWLer - A hybrid rule engine for legal reasoning

Johannes Scharf

University of Vienna, Faculty of Law, Vienna, Austria
johannes.scharf@gmx.at

Abstract. In this paper rOWLer, a hybrid rule engine for legal reasoning is pre-
sented. The engine combines the expressiveness of rules and ontologies to ena-
ble legal reasoning – hence the name “rOWLer”. It is tailored for use in public
administration (tax law, pension law, social benefits law, etc.) and provides a
flexible architecture, in particular concerning amendments, which allows for
adaption to different requirements.

Keywords: Rules, ontologies, OWL, legal reasoning, public administration

1 Introduction

The development of rOWLer is part of the PhD thesis of the author1 and draws on
experiences gained by modelling legal norms with Java and OWL 2. This research
tries to fill the gap between the syntactical representation of norms (in XML or other
formats) and the need of public administration for a powerful, yet easy to use and
customizable legal rule engine. The architecture of rOWLer is aligned with the se-
mantic web stack and is compatible with LegalRuleML [1], an upcoming standard for
modelling legal rules. Present software solutions could be improved, following the
theoretical models available.

1.1 Motivation

The use of logic-based knowledge systems2 in public administration (e.g. in tax
law) dates back to the 1970s in Austria, but there is still no standard or unified meth-
odology for implementation available. Formalization of statutes in practice happens
mainly in an ad hoc fashion by the software expert often without considering legal
theory at all.

Although the current models of law are rather useful and accepted in practice they
have several severe drawbacks. For instance they violate the isomorphism principle in

1 Johannes Scharf works as a software engineer at the federal computing center (Bun-
desrechenzentrum) in Vienna and a PhD researcher at the University of Vienna.

2 These systems are mostly “production systems” formalizing law by using thousands of if-
then-else statements.

mailto:johannes.scharf@gmx.at

a dynamic legal environment which makes maintenance a daunting task. Moreover
the legal dynamics (change of law over time) caused e.g. by amendments cannot be
handled appropriately. Usually a kind of monotonic reasoning is used which “simu-
lates” defeasible reasoning to some extent. However this approach is very limited in
use and can only capture a few aspects of legal reasoning.

The author’s PhD thesis tackles these challenges and claims that legal theory and
approaches from AI and Law can improve computable models of law used in practice
today. In the long run a flexible framework for building legal expert systems is need-
ed which builds on open standards and implements best practices to foster reuse. Such
a framework would also need to be complemented by a unified methodology for for-
malizing legal norms.

The contribution of this research towards a common framework is the development
of a solid temporal model which is capable of handling legal change in an efficient
manner, e.g. determining applicable rules according to the temporal relations of the
case. This supports the development of clean and well-structured models of law and
thus decreases maintenance costs. The technical architecture of rOWLer follows a
modular approach adhering to best practices3 from software engineering and can be
perceived as an extensible framework for building legal expert systems. This com-
plements efforts to acquire an acknowledged standard for the rule layer of the seman-
tic web cake.

2 Architecture

The architecture of rOWLer consists of three main layers complemented by an
electronic document repository, namely the process layer, the rule layer and the onto-
logical layer. What follows is a short overview of the architectural layers of rOWLer,
each providing a different view on law and legal rules.

• Process Layer: The process layer formalizes the legal procedure and is responsible
to handle the dialog between the applicant and the public agency. It collects the
relevant facts by automatic and manual means and interacts with the rule layer to
continuously provide preliminary results until the final decision. The authorizing
person is asked by the system for decision if a “hard” rule should be applied.

• Rule Layer: This layer contains the formal rules and the inference engine. It drives
legal reasoning by retrieving necessary information like facts from the ontology
and providing results to the process layer above.

• Ontological Layer: The ontological layer supports the layers above by shallow
reasoning on the knowledge base staying within OWL 2, preparing it for more
complex reasoning using rules. Especially by data completion, reasoning on mate-

3 This ensures more clean and maintainable code which is at the same time easier to understand
and read.

rial circumstances (claims, facts and proofs) and legal concepts by deriving infer-
ences.

• Electronic Document Repository: This layer complements the formal model by
providing access to electronic documents in Akoma Ntoso [13]. Entities of the oth-
er layers, this are rules, concepts, etc., can be linked by using IRIs with legal text.
This allows for supporting the decision making by the legal expert by providing
statutes, commentaries and judgments as well. Moreover it fosters isomorphism of
rules by linking them with their legal basis.

3 Reasoning module and algorithm

Technically the algorithm is encapsulated in a module which integrates the reason-
er with the rest of the system and also wraps the temporal model. This thin integration
layer is also responsible for deriving the parameters from the facts necessary to call
the engine, e.g. the significant date. Often it is required to reason over complex situa-
tions which span a longer time period4. Such scenarios are handled by the reasoning
module which interacts with the reasoner to achieve the overall conclusion.

In the following section the proposed algorithm for reasoning is presented, it has to
be mentioned that only a rather sketchy overview is given but no complete logical
formalization is provided due to space restrictions.

Basically the algorithm is divided into two separate steps to handle temporal and
legal reasoning: (1) Determine which rules are applicable to a case at a certain point
in time and (2) apply the rules determined in the first step to the case using defeasible
reasoning.

The distinction between temporal reasoning and legal reasoning allows for a sepa-
rate treatment of both problems. In technical terms each of the steps is encapsulated
using an interface with an independent implementation. This approach reduces the
complexity of the algorithm by separating the whole problem into smaller pieces,
independently of each other, while at the same time fostering better integration,
maintenance and testing.

4 Temporal model and reasoning

4.1 Theoretical background

There are several possibilities the legislator can adopt to reduce effort and cost of
legal change management [10]. Regardless of the methodology followed by the legis-
lator a computable model of law has to deal with changes of sources of law somehow.

4 For example due to the ruling of the Austrian Supreme Court of Justice regarding continuing
obligations the time before an amendment has to be judged according to the old rules and af-
terwards according to the new ones.

For the purposes of the current model we follow the “direct method” of [10] and
assume that each change of the sources of law (e.g. by an amendment) leads to a new
consolidated version of a statute, containing untouched, modified and new provisions
as well. The old version of the statute and its norms enter out of force before the day
the new versions enter into force. This approach reduces the complexity of the tem-
poral model.

From a theoretical perspective this may not fully convince as only some provisions
are affected by change and thus enter out of force by implicit derogation. However if
the legislator enacted an authentic consolidated version of law no such objections
exist, even from a theoretical point of view.

To handle change of law two aspects need to be considered: (1) A solid naming
convention for statutes and rules and (2) a versioning model which formalizes the
temporal dimensions of law.

Due to limited space only the second aspect will be discussed in the next section. It
should just be mentioned, that the used naming convention is aligned with FRBR [14]
and a simplified version of the HTTP-based syntax for IRIs of Akoma Ntoso [3, 13]
compliant with CEN MetaLex [2].

4.2 Versioning model

Temporal dimensions. According to legal theory the temporal model distinguishes
the following temporal dimensions of legal norms (cf. [11])5:

• Existence: The period in which the norm is part of the legal system, starting with
the day of publication (in an official journal), ended by a subsequent normative ac-
tion.

• Force: When the norm is in force and thus can be applied by the judge in general.
In Austria this period usually starts after the day of publication but can be deferred
by vacation legis.

• Efficacy: The period in which facts must have occurred in order for the rule to be
applicable is called the efficacy period.

• Applicability6: This is the period when a legal norm produces the consequences it
establishes.

Usually the periods of force coincides with efficacy and applicability of a norm.
However it is possible that the effects of a norm start before its force (retroactivity) or
continue after the repeal (ultra-activity). For example the tax law of 2008 should be

5 It has to be noted, that the terms are not always used homogeneously in literature and are used
with different meanings. The terms “efficacy” and “applicability” refer to “Bedingungs-
bereich” and “Rechtsfolgenbereich” respectively in German legal theory [15].

6 This refers strictly to temporal applicability, the derogation of norms, e.g. by EU law, is tack-
led in the second reasoning step of the proposed algorithm.

applied to the income earned in 2008 (efficacy), even if a case should be decided after
the 31st of December (applicability)7.

Versioning legal rules. The versioning model used in rOWLer is based on [12] but
has been slightly modified an extended to handle not only statutes (documents) but
legal rules as well and also to be capable of determining the norms which are applica-
ble to a case at a certain point in time.

The versions of a statute are ordered linearly in so called “versioning chains” by
their date of enter into force. When a new version of law is enacted it is added at the
end of the chain right after the last version. The model commits itself implicitly that
the periods of force of two distinct provisions never overlap. This ensures the sound-
ness of the linear ordering and the versioning chains.

It is assumed that the time when the changes are applied to the legal text coincides
with the time of enter into force of the amended provision. Moreover the publication
date of the amended provision is assumed to be the same as the amending provision
and is also used as the official version date of the act.

Retroactive modifications. Following [12] to handle retroactive modifications the
timeline has to be split virtually in the past creating a new legal situation which has
not existed originally in this instant in time. To avoid major change of the temporal
model in case of retroactive modifications, the proposed solution is enhanced and
adopted to avoid splitting of versioning chains.

Each versioning chain is identified by the publication date of the retroactive modi-
fication, which is the date from that the chain is valid and hence points at the “cur-
rent” legal situation. When a retroactive modification arrives, the current chain gets
duplicated and the new chain contains the modified provisions starting after the retro-
active change is applied.

Fig. 1. Example of retroactive modification (adapted from [12])

7 For the example we assume that the fiscal year coincides with the calendar year.

v1 v2 v3 vn

v4 v5 vm v1 1.5.2014

t0 t1 t2 tn

1.1.2010

Fig. 1 shows an example of an amendment published on 5/1/2014 which retroac-
tively modifies v2 at time t1 and thus leads to a new versioning chain which contains
the untouched v1 followed by the amended versions. Virtually the timeline gets split
after v1 which is not affected by the modification, as indicated by the dashed line.
There is no need to touch the existing chains. The retroactive change of v2 subse-
quently leads to an adaption of the following versions as well, thus we get the situa-
tion described above.

The versioning chains enable the reasoning engine to query the legal situation be-
fore and on (or after) the 1st of May 2014 when the retroactive amendment has been
published and became part of the legal system. Further it is possible to refer to the
“current” legal situation by assigning a variable to the last chain.

When the current chain needs to be put out of service due a retroactive modifica-
tion the variable “current” simply refers to the new chain, without affecting the rest of
the model. Unlike [12] there is no need to split existing chains in case of retroactive
modifications.

4.3 Selecting applicable rules

Based on the versioning model and the reflections made in the previous sections a
temporal reasoning engine has been designed which is able to compute the legal rules
applicable to a case in a given time. In this step the algorithm deals with the “exter-
nal” time of norms, which guide the lifecycle of the provision and not the “internal”
time which is expressed in the rule itself, e.g. when it is obligatory to use winter tires.

To figure out which rules are applicable to a case the engine needs to take the peri-
ods of efficacy and applicability into consideration. Accordingly the temporal model
needs to be queried with two dates: (1) The view point of the legal system and (2) the
“significant” date of the case used to determine the applicable rules. The latter usually
depends on the content and type of law (procedural or substantive law). For instance
in criminal law the date when the crime has been committed is significant and hence
determines which version of law is applicable to the case.

The algorithm adopted by the temporal reasoning engine of rOWLer implements
five steps and adheres to non-monotonic reasoning. Hence the temporal engine is able
to handle suspending provisions as well which block the effects of a norm temporari-
ly. The rest of this section will give a shallow presentation of each step for better un-
derstanding.

1. Query existing norms: The first step builds a snapshot of the legal system at view
date, which represents the instant in time when the judge has to apply the rules to
the case. In technical terms the last versioning chain with a publication date smaller
or equal than the view date is selected.

2. Calculate temporal dimensions: The temporal intervals of the norms selected in the
first step are fully calculated by using the norm’s static timestamps (startForce,
endForce, etc.).

3. Find applicable rules: The third step tries to figure out if a norm should be applied
to a case by investigating its dimensions efficacy and applicability. A norm is basi-
cally applicable if the view date8 is captured by the interval of applicability and the
significant date of the case occurs within the interval of efficacy of the rule. For-
mally this can be expressed as follows: (𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ≤ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑠𝑠𝑠𝑠𝑡𝑡𝑠𝑠 ≤
𝑡𝑡𝑒𝑒𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) ∧ (𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ≤ 𝑣𝑣𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠𝑠𝑠𝑡𝑡𝑠𝑠 ≤ 𝑡𝑡𝑒𝑒𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠).

4. Suspension of norms: Sometimes the effect of legal rules is suspended by other
norms, to give society the chance to adapt their behavior according to the new pro-
visions. The engine needs to handle such suspending norms in a non-monotonic
fashion removing the basically applicable rules9.

5. Resolving references: Finally the engine needs to resolve static and dynamic refer-
ences. From the conceptual point of view references are normative conditionals
whose consequences are not deontic but technically include other rules into the
current statute. After including the referenced provisions, the algorithm has to be
applied to them in a recursive way. The algorithm stops if no more references need
to be resolved.

Basically a simple implementation of the algorithm above could stop after the 3rd
step to handle many cases. However, a sophisticated implementation may need to
handle suspension of norms and the resolution of references as well.

5 Modelling norms

Following Kelsen [6] we assume in accordance with legal theory that norms have
basically the following structure: If A1,…,A2 then B; where “A1,…,A2” are the condi-
tions of the norm, “B” is the legal effect and “if…then” is a normative conditional.
Norms are therefore formalized using rule objects10 consisting of antecedent and con-
sequent. Technically rules are represented by an interface called Rule. With this
abstraction in place it is possible to represent the basic deontic notions, including
permission, obligation and prohibition, but more complex Hohfeldian concepts as
well.

5.1 Presenting rule priorities

In law we have to deal with implicit (lex specialis, lex posterior) and explicit ex-
ceptions between norms. A computable model of law must be able to represent both
kinds of exceptions to reflect the way statues are usually written, organized in general
rules and exceptions.

8 We assume that the “view date” of the legal system coincides with the point in time when
the judge has to apply the rules to the case.

9 Therefore temporal reasoning adheres to a kind of defeasible reasoning too.
10 We use an object-oriented model.

In AI and Law different methods to solve conflicts between rules have been pro-
posed, namely specificity, weight (salience) and preference relation. The model of
rOWLer supports weights and preference relations by using interfaces
WeightedRule and PreferenceRelation respectively.

Conflicts between rules are resolved by ordering rules using an implementation of
RuleOrderingStrategy. The strategy inspects all rules to order the rules sup-
porting all of the methods above, using explicit and implicit information as well. The
rules are placed in a network representing their ranking and wrapped by a dynamic
proxy11 at runtime implementing SuperiorityRelation.

A SuperiorityRelation represents an abstract concept describing the binary
relationship between two rules12, covering specificity, weight and preference relation
as well. This abstraction allows for a dynamic creation of arbitrary relations between
rules, e.g. of lex superior and lex inferior by inspecting the law making institutions
modelled in the ontology and linked with the rules.

The model enhanced with superiority relations between rules builds the foundation
for qualifying the rules as defeater, defeasible and strict in the sense of defeasible
logic [9]. Further it enables the use of a defeasible engine like SPINdle [7] for reason-
ing or the implementation of a custom engine built on an algorithm like [8].

Due to severe space limitations it is impossible to provide more details and to show
how deontic rules, metadata and isomorphism are handled by the formal model.

6 Related work

JBoss Drools13 is an open-source business rule engine and as such uses production
rules as data structure. Since version 6 it is based on “PHREAK” a monotonic algo-
rithm supporting forward and backward chaining.

Although drools performs well with thousands of rules and has a nice declarative
style for writing rules, it is not suited for the legal domain. First of all it only supports
monotonic reasoning and thus cannot deal with incomplete data. Second the time
model of Drools does not support the temporal dimensions of law and thus would
have to be extended to handle legal change over time. Compared to Drools, rOWLer
adheres to defeasible reasoning and its temporal model is well suited for the legal
domain.

11 The architecture of rOWLer is consistently based on interfaces which allows for using Ja-
va’s dynamic proxying facilities.

12 In this a sense superiority relation resembles a preference relation but in contrast to the latter
it is an abstraction whose instances are built dynamically at runtime by the engine.

13 By referring to “Drools” we mean “Drools Expert” which is the rule engine of the Drools
platform.

SPINdle [7] is another open-source rule engine which supports defeasible logic and
modal defeasible logic as well. Unlike Drools, which is based on a monotonic algo-
rithm, it is capable of defeasible reasoning over theories with thousands of rules.
SPINdle gives basic support for time and intervals but cannot handle the temporal
dimensions (force, efficacy, applicability) of legal norms. rOWLer is built on a so-
phisticated versioning model supporting temporal reasoning to determine applicable
provisions.

The rules in SPINDle are heavy based on literals. Basically the conclusion of a rule
is a literal or its negation. To formalize norms we need a representation of a rule
which allows for representing richer conclusions, e.g. a calculation or the inclusion of
other norms in case of references. Therefore rOWLer supports a richer object model
supporting different kind of rules which are executed by using an appropriate strategy.

However, it would be nice if SPINdle could be used as defeasible rule engine em-
bedded inside rOWLer. rOWLer’s modular architecture and algorithm would allow
for such an integration.

7 Conclusions and future work

Compared to present approaches in public administration, rOWLer is aligned with
legal theory and fosters defeasible reasoning, while maintaining isomorphism with the
sources of law. To cope with legal change over time a solid temporal model has been
developed with formalizes the temporal dimensions of law and further is able to de-
cide which norms should be applied to a case at a certain point in time. By using a
viewpoint the model is also capable of handling retroactive modification by providing
the historic and current version of a statute after the amendment. Present implementa-
tions used in practice lack a sophisticated temporal model for handling legal change
which increases code complexity and leads to severe maintenance problems.

At the moment rOWLer is designed as a single-agent system and the reasoning en-
gine is optimized to deal with statutes with a rather mathematical content like tax law
or “easy” cases14 in the terminology of Hart. However, the model of rOWLer is flexi-
ble enough to be extended in the future to handle “hard” cased as well, e.g. by provid-
ing the legal expert with different alternatives for decision making and integrating
more sophisticated argumentation systems like Carneades [4].

In the future the conceptual model needs to be refined, especially with regard to the
representation of norms and defeasible reasoning. Feasibility of the theoretical ap-
proach should be evaluated by developing a prototype in Java, which has become the
“mainstream” programming language nowadays.

14 “Easy” cases can be largely decided “mechanically” by deducing the required result from
the rule and the facts. “Hard” cases are ones for Hart in which the facts fall within the “pe-
numbra” of the meaning of the words in the applicable rule. These cases require the judge to
exercise discretion [5].

Acknowledgements. I would like to thank my supervisor Erich Schweighofer of
the Faculty of Law, University of Vienna, Centre for Computers and Law, for help
and guidance through this challenging research.

References

1. Athan, T. et al.: OASIS LegalRuleML. Proceedings of the Fourteenth
International Conference on Artificial Intelligence and Law - ICAIL ’13. pp. 3–12
ACM Press, New York, USA (2013).

2. Boer, A., van Engers, T.: A MetaLex and Metadata Primer: Concepts, Use, and
Implementation. In: Sartor, G. et al. (eds.) Legislative XML for the Semantic
Web. pp. 131–149 Springer Netherlands, Dordrecht (2011).

3. Francesconi, E.: Naming Legislative Resources. In: Sartor, G. et al. (eds.)
Legislative XML for the Semantic Web. pp. 49–74 Springer Netherlands,
Dordrecht (2011).

4. Gordon, T.F.: An Overview of the Carneades Argumentation Support System. In:
Reed, C. and Tindale, C.W. (eds.) Dialectics, Dialogue and Argumentation. An
Examination of Douglas Walton’s Theories of Reasoning. pp. 145–156 College
Publications, London (2010).

5. Hart, H.L.A.: The Concept of Law. Clarendon Press, Oxford (1994).
6. Kelsen, H.: Allgemeine Theorie der Normen. Manz, Wien (1979).
7. Lam, H.-P., Governatori, G.: The Making of SPINdle. In: Governatori, G. et al.

(eds.) Rule Interchange and Applications. pp. 315–322 Springer, New York
(2009).

8. Maher, M.J.: Propositional defeasible logic has linear complexity. Theory Pract.
Log. Program. 1, 06, 691–711 (2004).

9. Nute, D.: Defeasible Logic. In: Bartenstein, O. et al. (eds.) Web Knowledge
Management and Decision Support. pp. 151–169 Springer Berlin Heidelberg,
Berlin (2003).

10. Palmirani, M.: Legislative Change Management with Akoma-Ntoso. In: Sartor, G.
et al. (eds.) Legislative XML for the Semantic Web. pp. 101–130 Springer
Netherlands, Dordrecht (2011).

11. Palmirani, M. et al.: Modelling temporal legal rules. Proceedings of the 13th
International Conference on Artificial Intelligence and Law - ICAIL ’11. pp. 131–
135 ACM Press, New York, New York, USA (2011).

12. Palmirani, M., Brighi, R.: Time Model for Managing the Dynamic of Normative
System. In: Wimmer, M.A. et al. (eds.) Electronic Government. pp. 207–218
Springer Berlin Heidelberg, Berlin Heidelberg (2006).

13. Palmirani, M., Vitali, F.: Akoma-Ntoso for Legal Documents. In: Sartor, G. et al.
(eds.) Legislative XML for the Semantic Web. pp. 75–100 Springer Netherlands,
Dordrecht (2011).

14. Saur, K.G.: Functional Requirements for Bibliographic Records: Final report.
IFLA Study Group on the Functional Requirements for Bibliographic Records,
München (2009).

15. Walter, R. et al.: Grundriss des österreichischen Bundesverfassungsrechts.
Manzsche Verlags- und Universitätsbuchhandlung, Wien (2007).

	1 Introduction
	1.1 Motivation

	2 Architecture
	3 Reasoning module and algorithm
	4 Temporal model and reasoning
	4.1 Theoretical background
	4.2 Versioning model
	Temporal dimensions
	Versioning legal rules
	Retroactive modifications

	4.3 Selecting applicable rules

	5 Modelling norms
	5.1 Presenting rule priorities

	6 Related work
	7 Conclusions and future work
	References

