
On Several Social Network Analysis Problems

© George Chernishev © Vsevolod Sevostyanov © Kirill Smirnov
Saint-Petersburg University, Russia

chernishev@gmail.com vsevost@gmail.com kirill.k.smirnov@math.spbu.ru

© Ilya Shkuratov
Saint-Petersburg University, Russia

shkuratov.ilya@gmail.com

Abstract

In this paper we describe our approach to sev-
eral problems offered at the ACMSIGMOD Pro-
gramming Contest 2014. These problems belong
to the area of a social network analysis and in-
volve several types of queries to a social graph.
The considered graph is modeled by the standard
SNBbenchmark. We briefly introduce this bench-
mark, the contest and the problems. Next, we de-
scribe our contribution, which is the following:
the algorithms for evaluation of these queries and
their efficient implementation. Furthermore, we
present parallelization techniques for these algo-
rithms and describe overall architecture of our
solution.

1 Introduction and Related Work

In this paper we study several problems offered at the
ACM SIGMOD Programming Contest 2014 [1], a yearly
programming contest focused on a data management top-
ics.

This contest has a number of features, which distin-
guish it from a well-known ICPC series:

• Participants are offered some science-intensive task,
which is usually an unsolved problem of current
importance.

• The contest runs for several months and no on-site
participation is required.

• Topic specificity — the clear data management fo-
cus is present. For example, contests of previous
years involved construction of distributed query pro-
cessing engine (2010), multidimensional index (2012)
or document stream filtering system (2013).

Proceedings of the 16th All-Russian Conference
”Digital Libraries: Advanced Methods and
Technologies, Digital Collections” – RCDL-2014,
Dubna, Russia, October 13-16, 2014.

• The participation is allowed to both graduate and
undergraduate students, without any restriction on
a number of attempts.

While this contest is not so well known as the ICPC, it
is nevertheless popular. For example, last year there were
more than 100 registered teams. The contest is relatively
young — it runs for 6th time this year.

In this paper we also describe the contest: the rules,
the task, its timeline and required qualifications. More-
over, we present our experiences and provide a solution of
the team “GenericPeople” (Ilya Shkuratov and Vsevolod
Sevostyanov), which was ranked1 17 out of 33 teams on
the preliminary (public) tests. While our approach is not
the best, it still has merit:

• our solution can serve as an example demonstrating
the required qualifications and which may help to
assess the required effort and work intensity. These
factors may be of interest for a person who is think-
ing about the participation;

• the solution successfully passed through all avail-
able tests (datasets of three different sizes) within
the time limits specified by the contest organizers
(5 and 10 minutes);

• the proposed algorithms passed all correctness tests;

• parallelization techniques of these algorithms may
be of interest;

• the number reported in the leaderboard is the sum
over all query types, at the present time we can say
nothing regarding their individual performance;

• at last, the number was reported for three datasets;
the proposed algorithmsmay behave differently (bet-
ter or worse) on another dataset.

Thus, we deem current study as worthy to be pre-
sented and of some interest for the reader. Another mo-
tivation for this paper is the concise presentation of the

1http://www.cs.albany.edu/~sigmod14contest/leaders.
html, last accessed 02/05/2014.

234

mailto:chernishev@gmail.com
mailto:vsevost@gmail.com
mailto:kirill.k.smirnov@math.spbu.ru
mailto:shkuratov.ilya@gmail.com
http://www.cs.albany.edu/~sigmod14contest/leaders.html
http://www.cs.albany.edu/~sigmod14contest/leaders.html

solution for the contest problem, which is usually lack-
ing. After the contest all what is left are the posters of the
top five performing teams without detailed explanation (it
is given orally at the conference). Also, these posters are
(or at least were in the past years) not going into the con-
ference proceedings and are kept on a website, which may
disappear. Moreover, we present our experiences and de-
scribe (at least partially) the waywewent through in order
to produce a working solution. It is impossible to pass on
all these aspects via poster.

This year contest was dedicated to a social network
analysis topic. Social network is essentially a graph, whose
vertices represent users and edges denote relations be-
tween them. An example of such relation may be “know
each other”, “follow” and so on. Additionally extra infor-
mation like a place of work or study, geographical infor-
mation, various tags, images, likes etc. is known.

In the past years massive amounts of such information
were made available for analysis, forming a strong incen-
tive for both academy and industry to come with means
for its efficient storage and processing. Social data play a
significant role in the whole “Big Data” movement.

A lot of analysis tools employ theMapReduce [6] pro-
gramming model. Industrial examples of such systems
are PIG (Yahoo) [13], SCOPE (Microsoft) [4], Hive (Face-
book) [19], Dremel (Google) [14]. Academic examples
are Starfish [9], HadoopDB [3] and many others2. An al-
ternative (which can be considered a poor man’s solution)
sometimes employed in production environment, is to use
scripts written in scripting language like Python to com-
mence the analysis. A data scientist has to analyze the
problem and implement all necessary algorithms manu-
ally. While it may not favor the rapid development, it
may allow to achieve a more efficient processing. Natu-
rally, this approach is more flexible than using a standard
tool and allows a fine-tuning of algorithms. However, it
requires extensive technical expertise: knowledge of al-
gorithms and data structures, the understanding of the data
processing and so on. The tasks of the contest are repre-
sentative examples of this “manual” approach and can be
considered as a training for a data scientist.

Another aspect of the contest task is the graph anal-
ysis component. Graph analysis is a mature area of re-
search which studies the efficient storage and processing
of graph data. There are several graph database man-
agement systems (a special type of DBMS) and graph
programming frameworks. These DBMS feature special
query languages, query processing algorithms and data
storage.

Some examples of the graph DBMS are Neo4j [12],
InfiniteGraph [10] and the framework examples areApache
Giraph [2], Signal/Collect [17]. It is necessary to mention
that two latter systems also follow theMapReduce model.

The contestants were given the task which consists of
the datasets and four types of queries. The social graph
was generated using the SNB [16] tool.

2A list can be found in http://dl.acm.org/citation.cfm?id=
1454166, last accessed 22/07/2014.

The goal was to develop a program which computes
the results as fast as possible. The contestants had not
only to devise the algorithms for efficient query process-
ing on a large graph, but also to parallelize them. This is a
must, given the fact that the evaluation of the resulting im-
plementation was performed on a server-class equipment
(8 cores).

Another important aspect was the order of compu-
tation for each sub-query. The contestants had to bear
in mind the size of intermediate results and the memory
bound. In other words, the contestants had to perform the
work of a query optimizer: gather needed statistics, assess
selectivities and develop an optimal processing strategy
for each query type. Also, given the hardware multi-core
capability, efficient inter-query type orders are also of in-
terest.

The contribution of this paper is the following:

• The description of the ACM SIGMOD Program-
ming Contest 2014 and its task;

• The contest from the participant’s point of view:
our experiences;

• The algorithms to handle the problems offered at
the contest;

• A parallelization techniques for each of these algo-
rithms;

• A general system architecture: subquery compu-
tation orders, inter-query type orders and chunk-
based data loading.

Now, we are going to describe our experience. The
SNB description and its data schema is presented in the
appendix section. Detailed description of our approach
and data statistics can be found in the report [5].

2 Contest description and experiences

Let’s describe this year contest from the participants’ point
of view. We have already briefly described the contest
and its specifics in the introduction section. You can find
detailed information regarding the ACM SIGMOD Pro-
gramming Contest series in the reference [18].

Our research group is a frequent participant of this
contest; we had achieved good results twice in the past:
in the 20103 (team “spbu”) and 20134 (team “Rota For-
tunae”) year. Both times our teams achieved 3rd place in
the final ranking.

2.1 General information

This year contest followed the general scheme described
in the reference [18]. However, there were several notable
divergences:

3http://dbweb.enst.fr/events/sigmod10contest/
results/#winner, last accessed 22/07/2014.

4http://sigmod.kaust.edu.sa/finalists.html, last ac-
cessed 22/07/2014.

235

 http://dl.acm.org/citation.cfm?id=1454166
 http://dl.acm.org/citation.cfm?id=1454166
http://dbweb.enst.fr/events/sigmod10contest/results/#winner
http://dbweb.enst.fr/events/sigmod10contest/results/#winner
http://sigmod.kaust.edu.sa/finalists.html

1. The contest started noticeable later compared to pre-
vious years;

2. There were no 2nd round, unlike early years. This
change happened in 2013;

3. The absence of the dedicated correctness testing phase
during the evaluation (it was performed concurrently
with the performance evaluation);

4. There was a series of datasets which were progres-
sively disclosed by the organizers, as the perfor-
mance of the submissions improved;

5. The task did not explicitly required parallelization
or concurrency support, but instead, implied it. It
was possible to submit purely sequential implemen-
tation;

6. It was possible to submit only the executable, with-
out source code during the preliminary evaluation.
The final evaluation required source code and this
led to some compatibility difficulties;

7. Contestants were allowed to choose programming
languages other than C++.

The provided task was a science-oriented problem re-
lated to social network analysis. The problem was to ex-
ecute a number of queries to a graph representing some
social network. The goal was to produce a correct answer
and minimize the overall processing time. The graph and
queries are fully described in the next section.

Below you can see the timeline of the contest.

• January 25, 2014 — Contest announced.

• February 1, 2014 — Detailed specification of the
requirements and test data available.

• February 16, 2014 — Amedium data set (10k peo-
ple) with query workload and answers are available
on the Task page. New query workload and an-
swers for the small data set (1k people) are avail-
able on the Task page.

• March 1, 2014—Team registration begins. Leader-
board available.

• March 11, 2014 — Workloads on a medium data
set (10k people) have been added to the evaluation
system.

• March 17, 2014 — Workloads on a large data set
(100k people) have been added to the evaluation
system.

• April 15, 2014 — Final submission deadline.

• May 15, 2014 — Finalists announcement.

• June 22-27, 2014—Conference: announcement of
the winner and the poster presentations.

In the overall the contest run for two and a halfmonths.
Also you can see that several datasets were progressively
added to the evaluation pool. These datasets were pro-
gressively disclosed by the organizers as the performance
of submissions improved. This is a rather new model
of evaluation (appeared in 2013 contest) and it was em-
ployed in the following way. As soon as the several sub-
missions were achieving some performance level, where
it was hard to discern their quality due to inaccurate mea-
surements (thread scheduling effects, for example), a new,
larger dataset was added.

2.2 Communication with the contest organizers

Information about the order and rules of the contest were
provided on a special web page [1], which was the main
mean of communication between the organizers and the
contestants. It also describes test data sets, the task and an
evaluation environment. Later opportunities to register a
team and submit solutions were added.

The organizers also created a Google Group in order
to discuss any technical issues (e.g. code page problems)
and to provide additional information that might be of in-
terest to all of the contestants: test data-sets publication
dates, disk space availability, size of data set for the final
evaluation and so on.

2.3 Required skills and our experiences

Since the organizers of the contest considers Linux as its
target platform, we decided to use C++ programming lan-
guage as it looks to us an highly-optimizable one. Those
who want to take part in the contest are advised to learn
Linux development utilities such as gcc, make, valgrind
(especially callgrind might be useful), gdb, etc. Also two
bash scripts were required: one should build the solution
and the other — run it with certain parameters.

You also may encounter restriction on size of submit-
ted solution. It was 8 MB this year, thereby it was helpful
for us to learn a couple of gcc flags. The first one is -s. It
removes unneeded symbols from an executable, thus re-
ducing its size without the loss of performance. The sec-
ond flag may be useful, if you use external libraries: -MM
instructs the compiler to generate source files dependen-
cies. This helped us to familiarize with boost headers de-
pendencies, strip boost from unneeded header files and
further reduce submitted archive size.

Understanding compiler optimizationmethodsmay be
of use as well. It allowed us to copewith the gcc optimizer
bug, namely incorrect copy propagation after global com-
mon subexpression elimination pass. It leads to usage of
the original pointer to the buffer instead of its copy, which
cause segmentation fault on an attempt to free this buffer.
The workaround is to add a dummy use of the original
pointer after working with the buffer.

Another important skill is an ability to find necessary
information on the subjects of the competition, i.e. the
ability to work with digital libraries. Usually the task of

236

the competition (or one of the tasks) is an unsolved sci-
entific problem. Thus one may find useful information
about methods have been tried or perspective approaches.
These gave us several hints for the given task.

2.4 Tools

Aside from the usual requirements this year contest posed
an additional one: knowledge of some scripting language
or a tool for data analysis. This language can be used for
data mining: to detect hidden dependencies in the source
data and to collect necessary statistics. We used Python
programming language; other examples includeR andOc-
tave tools.

2.5 Data

The schema for the data used in the task formulation is
presented on Figure 3. Data were stored as a set of CSV
files. It is worthy to mention that not all of the files were
needed for the query processing. Also, organizers had
provided data only for two datasets — the one containing
thousand and the one containing ten thousand of persons.
These datasets are sufficient for the debug purposes, but
they are not enough to tune algorithms for the final evalu-
ation, which involved a graph of million of persons. The
benchmark generation parameters were kept in secret and
it was impossible to generate that graph by ourselves.

3 Problems

The contest offered [1] the following problems (we fully
provide them here for the better understanding of the reader
and in case of the original website outage):

1. Query Type 1 (Shortest Distance Over Frequent
Communication Paths).
Given two integer person ids p1 and p2, and an-
other integer x, find the minimum number of hops
between p1 and p2 in the graph induced by persons
who:

(a) have made more than x comments in reply to
each other’s comments (see
comment_hasCreator_person and
comment_replyOf_comment);

(b) know each other (see person_knows_person,
which presents undirected friendships between
persons; a friendship relationship between per-
sons x and y is represented by pairs x|y and
y|x).

2. Query Type 2 (Interests with Large Communi-
ties).
Given an integer k and a birthday d, find the k in-
terest tags with the largest range, where the range
of an interest tag is defined as the size of the largest
connected component in the graph induced by per-
sons who:

(a) have that interest (see tag,
person_hasInterest_tag);

(b) were born on d or later;
(c) know each other (see person_knows_person,

which presents undirected friendships between
persons; a friendship relationship between per-
sons x and y is represented by pairs x|y and
y|x).

3. Query Type 3 (Socialization Suggestion). Given
an integer k, an integer maximum hop count h, and
a string place name p, find the top-k similar pairs
of persons based on the number of common interest
tags (see person_hasInterest_tag). For each of the
k pairs mentioned above, the two persons must be
located in p (see person_isLocatedIn_place, place,
and place_isPartOf_place) or study or work at or-
ganizations in p (see
person_studyAt_organization,
person_workAt_organization,
organisation_isLocatedIn_place, place, and
place_isPartOf_place). Furthermore, these two per-
sons must be no more than h hops away from each
other in the graph induced by persons and
person_knows_person.

4. Query Type 4 (Most Central People). Given an
integer k and a string tag name t, find the k persons
who have the highest closeness centrality values in
the graph induced by persons who:

(a) are members of forums that have tag name t
(see tag, forum_hasTag_tag,
and forum_hasMember_person);

(b) know each other (see person_knows_person,
which presents undirected friendships between
persons; a friendship relationship between per-
sons x and y is represented by pairs x|y and
y|x).

Here, the closeness centrality of a person p is:

(r(p)− 1) · (r(p)− 1)

(n− 1) · s(p)
,

where r(p) is the number of vertices reachable from
p (inclusive), s(p) is the sum of geodesic distances
to all other reachable persons from p, and n is the
number of vertices in the induced graph. When ei-
ther multiplicand of the divisor is 0, the centrality
is 0.

4 Algorithms

In this section we describe algorithms for the tasks of the
contest. Due to the space constraints they are presented
in a brief, a detailed version featuring algorithm listings
can be found in the report [5].

237

In the rest of this paper we refer to the graph induced
by “know each other” relation as graph, and to the breadth-
first search of that graph as BFS. This graph is used in
every query type and BFS (as we show further) plays the
key role in all of them. Thus, a shorthand notation would
be useful.

4.1 Query Type 1 (Shortest Distance Over Frequent
Communication Paths)

4.1.1 Algorithm description

An obvious strategy for evaluation of such query would
be the following:

1. Run BFS from person p1 to person p2 and return
hops count;

2. During the BFS traversal one needs to check the
replies condition. For each edge, considered on a
given BFS step, one has to calculate the number of
mutual replies for the corresponding persons. If it
is less than k, then the transition is not possible —
the edge does not exist.

This “naive” approach needs no preparation and can
be ran just after the graph construction. For each pair of
adjacent persons it is necessary to calculate the number of
replies and this may take some time. Thus, the described
BFS has the complexity O(m · n · (|V | + |E|)) where n
denotes a cardinality of “comment is reply of comment”
relation and m — cardinality of “comment has creator
person”.

Therefore, we propose a pretreatment phase that will
compute number of replies once, which effectively elim-
inates the repeated calculations. Our goal is to find per-
sons that made not less than k comments replying to each
other. For each pair of persons connected by an edge e in
the graphwewill determine the number of mutual replies
ke and attribute it to e. In this way, BFS on each step com-
pares two numbers: given k and pre-calculated ke.

4.2 Query Type 2 (Interests with Large Communities)

In order to reduce the overhead related to connected com-
ponent size estimation one needs to take into account re-
strictions which are specified by the query. To tackle the
first restriction (the common tag requirement) we built a
“tag-person” index. It allows to search persons which are
interested in a given tag. We employ the resulting list dur-
ing the node traversal. It allows us to avoid visiting nodes
(persons) which are not interested in a given tag. Also we
avoid expenses related to probing person interest list for
a given tag.

The second restriction which we have to take into ac-
count — the birthdate restriction. This restriction can be
tackled by projecting our graph to a given time interval.
By doing so, we avoid excessive comparisons related to
birthdate which take place during the query processing.
In this case the comparisons are moved to the preprocess-
ing phase, thus providing us no benefit. However, this

approach may be beneficial, if used differently. The idea
is to produce a decomposition of the whole time interval
into disjoint several time slices. During the query pro-
cessing we can use the projection corresponding to an in-
terval d, specified by the query. These projections are
constructed during the preprocessing phase. Thus, we can
avoid some excessive comparisons during the query pro-
cessing phase.

Thereby, the estimation of the connected component
size for a single tag is essentially a BFS, performed on a
graph whose time slice conforms to the date specified by
the query. This algorithm can be easily parallelized. For
example, one can divide tag set between threads equally
and then construct a final result by joining results for the
individual tags.

4.3 Query Type 3 (Socialization Suggestion)

4.3.1 Algorithm description.

The common sense may provide the following idea of the
straightforward evaluation:

1. for each vertex v in the graph perform BFS while
keeping in mind the given hops count h;

2. upon completion BFS returns the list of reached
people rp;

3. for v and each person vr from rp check information
about their work places, study places and location
for correlation with p;

4. if one of the places where both v and vr are in-
volved is p or its subplace, then calculate the num-
ber of common interests ci;

5. store (sorted by ci) the resulting pairs (v, vr);

6. return the top-k pairs as a result.

This algorithm requires examination of all the persons
returned by BFS. Since graph is a social its edge count
follows power law, therefore there are some hubs and con-
nectors with large degree and many vertices with only a
few incident edges [11]. Hubs and connectors shorten the
paths between persons and thus, the size of rp may be
significant. The time complexity of this algorithm is

O(|V | · (|V |+ |E|+ |rp| · |person.places|
+ |person.interests|)).

It is desirable to reduce the number of persons to ex-
amine without the loss of result correctness. In order to
do that we suggest to group persons by some of place
types. SNB provides three place types: city, country
and continent. The type country seems to be a good
choice (see [5] for the explanation).

Using the proposed partitioning we suggest a follow-
ing improvement: use the type of p to determine which
country c to process and then perform BFS for each per-
son v from c bearing in mind the given hops count h. That

238

way only persons from c are stored in rp, which reduces
its size and allows us to reach our goal.

Described approach time complexity is

O(|persons in p|·(|V |+|E|+|rp|·|person.interests|)).

4.4 Query Type 4 (Most Central People)

4.4.1 The calculation of closeness centrality metric

First of all, we should note, that our graph is an undirected
graph, therefore r(p) can be calculated once for each con-
nected component. Thus, the problem is how to compute
s(p).

Analgorithm selection. Given the fact that our graphs
is an undirected one and the edges are of unit weights,
a simple BFS modification would suffice for the evalu-
ation of s(p). For this purpose we can label each vis-
ited vertex with the distance to the initial one. In this
approach we do not increase asymptotic complexity of
BFS and do not use additional memory. We would re-
quireO(|V |+ |E|) time andO(|V |+ |E|)memory. This
estimation is better than estimation for many classical al-
gorithms oriented for general cases of problem “minimal
distance from one vertex to all other”. For example, Dijk-
stra algorithm [7] for graphs with non-negative weights,
based on Fibonacci heap [8] uses O(|V | + |E|) memory
and O(|V | · log |V |+ |E|) time. Moreover, our approach
is easily parallelizable: we can compute s(p) in parallel
for different vertices.

The cut-off heuristic. One can note that closeness
centrality is inversely proportional to s(p) within a con-
nected component. Thus, we can propose a criterion for a
vertex to enter the top-k of a given connected component
which uses it’s s(p). Let’s define a threshold:

Θ = max s(p)
p ∈ current_top_k

.

Now, we can interrupt the computation of s(p), if the cur-
rent value had exceeded the threshold Θ.

Despite the simplicity of this cut-off heuristics it dras-
tically decreased the evaluation time for the fourth query
type. Unfortunately, we do not know the number and pa-
rameters of queries of this type during the final evalua-
tion. But the implementation of this heuristic allowed to
decrease the evaluation time for more than 380 seconds
on a graph containing 100 thousand persons. The result-
ing time was 220 seconds.

We also construct a special index structure for this
type of query. More details can be found in the report [5].

Other approaches. In the last few days of the con-
test we found the solution that fits almost perfectly into
the described problem [15]. It is developed for directed
graphs with non-negative weights and reuses the CCV of
a single vertex in order to estimate CCV for other vertices
and reduce the further computations. Authors also use es-
timates in order to produce the cut-off of vertices which
not to get into top-k. That method could be modified to
take into account the memory restrictions. The experi-
ments described by authors show that this approach may

be particularly efficient for unweighted, undirected graph
of a large size. It can reduce the amount of computations
for a majority of vertices or even avoid their processing
at all.

5 System architecture

Graph structure. Considering the graph structure we
bear in mind the following: (i) the cardinality of vertices
may run up to a million, (ii) BFS is crucial for the evalu-
ation of every query type. Therefore, our approach must
have lowmemory footprint and provide efficient BFS eval-
uation. In order to satisfy these requirements we use rep-
resentation similar to adjacency lists, but with arrays in-
stead, that is, each vertex contains a pointer to an array of
adjacent vertices. It allows us to meet the memory con-
strains and avoid unnecessary comparisons in the BFS im-
plementation.

Layers.Three layers may be distinguished in our im-
plementation: (i) file loading, (ii) structure initialization
and preparation, (iii) query evaluation.

This layered structure is rather natural to the task and
allows some flexibility in the setting up the order of query
evaluation. That is a rather important feature for the per-
formance improvement. The use of the first layer is to
provide the interface to chunk-based file loading. It copes
with the problem of big files which can be up several gi-
gabytes in size. The use of the second layer is to parse
loaded files and to build indexes and other structures re-
quired for the query evaluation. The last layer is respon-
sible for the final results formation.

6 Experiments

In this paper we present some experiments illustrating the
performance of our approach. Unfortunately, we could
not provide detailed experimental data from the contest
due to several reasons: (i) we do not have access to the
final benchmarks (they are not yet released to public); (ii)
we no more have access to the hardware used for the eval-
uation by the organizers (it was a server-class one); (iii)
the two largest benchmarking query sets are unavailable
too (we used the largest available dataset — the medium
dataset, containing 10k persons).

Thus, we had to perform experiments on our own.
The hardware and software setup was the following: i7-
4930KCPU (6 cores), P9X79WSmotherboard, 4GBRAM;
Ubuntu 14.04, kernel 3.13.0-24, x86_64.

The first series of experiments is presented on Fig-
ure 1. They illustrate the basic approach when we sequen-
tially evaluate queries of the same type. The results show
the contribution of each query type to the overall process-
ing time. In this series we vary the number of threads.
Eventually we get a U-shaped graph, which shows that
it’s not useful to employ more than four threads for the
processing in this scenario. It is the result of the algo-
rithm parallelization imperfection (not all algorithms use

239

all cores all the time) and of the synchronization over-
heads. This leads us to the idea of pre-treatment phase
which will allow us to balance the load. The load balanc-
ing will be done by grouping tasks together into stages
and reordering of query types.

To examine our idea, we had split the query evalua-
tion into the following stages (the stages are described in
the [5]): (i) Q3 evaluation and Q1 preparation part 1, (ii)
Q1 preparation part 2, Q2 preparation andQ4 preparation,
(iii)Q1 evaluation, (iv)Q2 evaluation, (v)Q4 evaluation.
Tasks belonging to one stage are executed in parallel. Fig-
ure 2 shows the results for this kind of processing. Despite
that in fact we used our idea in the first two stages only,
the performance boost of the evaluation with six threads is
about 28% (compared to the best performance from Fig-
ure 1) and 56% comparing the performance with the six
threads. This may be considered a good result for the
medium dataset, which we use for testing. Efficiency of
such task grouping is determined by the “closeness” of
the tasks executed in parallel in terms of time. The closer
times of execution, the more efficiently we use the pro-
cessor. We can perform the load balancing in two ways:
by varying the number of threads for one task and by vary-
ing the number of tasks. Hence we can use this approach
to tune performance further. However, effects of the load
balancing may vary with the dataset. Taking such vari-
ation into account is rather difficult and requires a more
detailed study of the data structures and the algorithms
involved.

7 Conclusions

In this paper we described the ACM SIGMOD Contest
2014, its tasks, timeline and our experiences. Also we
presented our approach to the offered problems and de-
scribed the advantages over the naive processing. We
discussed algorithms as well as parallelization techniques
and presented the general system architecture. Its key
points are the following: query type intermixing, query
type reordering, continuous query processing and block
file loading techniques.

References

[1] ACM SIGMOD 2014 Programming Contest web-
site. http://www.cs.albany.edu/~sigmod14 con-
test. Accessed 23/05/14.

[2] Apache Giraph website. https://giraph.apache.
org/. Accessed 23/05/2014.

[3] Azza Abouzeid, Kamil Bajda-Pawlikowski, Daniel
Abadi, Avi Silberschatz, and Alexander Rasin.
2009. HadoopDB: an architectural hybrid of
MapReduce and DBMS technologies for analytical
workloads. Proc. VLDB Endow. 2, 1 (August
2009), 922–933.

[4] Ronnie Chaiken, Bob Jenkins, Per-Åke Larson, Bill
Ramsey, Darren Shakib, Simon Weaver, and Jin-
gren Zhou. 2008. SCOPE: easy and efficient par-
allel processing of massive data sets. Proc. VLDB
Endow. 1, 2 (August 2008), 1265–1276.

[5] On Several Social Network Analysis Problems: a
Report. George Chernishev, Vsevolod Sevostyanov,
Kirill Smirnov, Ilya Shkuratov. Technical re-
port. http://www.math.spbu.ru/user/chernishev
/papers/sigmod2014contest-report.pdf

[6] Jeffrey Dean and Sanjay Ghemawat. 2008. MapRe-
duce: simplified data processing on large clusters.
Commun. ACM 51, 1, 107–113.

[7] E. Dijkstra. 1959. A Note on Two Problems in Con-
nexion with Graphs”, Numerische mathematik, vol.
1, no. 1, 269–271.

[8] M. L. Fredman and R. E. Tarjan. 1984. Fibonacci
Heaps And Their Uses In Improved Network Op-
timization Algorithms. In Proceedings of the 25th
Annual Symposium on Foundations of Computer
Science, 1984 (SFCS ’84). IEEE Computer Society,
Washington, DC, USA, 338–346.

[9] H. Herodotou, H. Lim, G. Luo, N. Borisov, L. Dong,
F. Cetin, and S. Babu. Starfish: A Self-tuning Sys-
tem for Big Data Analytics. In Proc. of 5th Conf. on
Innovative Data Systems Research (CIDR), 2011.

[10] InfiniteGraph: The Distributed Graph Database.
Whitepaper. http://www.objectivity.com/wp-
content/uploads/Objectivity_WP_IG_Distr_
Benchmark.pdf. Accessed 23/05/2014.

[11] LDBC SocialNet Benchmark: Data Generation.
https://github.com/ldbc/ldbc_socialnet_bm
/wiki/Data-Generation#graph-generation.
Accessed 23/05/2014.

[12] The Neo Database — A Technology Introduc-
tion (20061123). http://dist.neo4j.org/neo-tech
nology-introduction.pdf. Accessed 23/05/2014.

[13] Christopher Olston, Benjamin Reed, Utkarsh Sri-
vastava, Ravi Kumar, and Andrew Tomkins. 2008.
Pig latin: a not-so-foreign language for data pro-
cessing. In Proceedings of the 2008 ACM SIG-
MOD international conference on Management of
data (SIGMOD ’08). ACM, New York, NY, USA,
1099–1110.

[14] Sergey Melnik, Andrey Gubarev, Jing Jing Long,
Geoffrey Romer, Shiva Shivakumar, Matt Tolton,
and Theo Vassilakis. 2010. Dremel: interactive
analysis of web-scale datasets. Proc. VLDB Endow.
3, 1–2 (September 2010), 330–339.

[15] Paul W. Olsen, Alan G. Labouseur, Jeong-Hyon
Hwang. “Efficient Top-k Closeness Centrality

240

0

5

10

15

20

25

1 2 3 4 5 6

Ti
m
e

Thread count

Query 1
Query 2
Query 3
Query 4

Figure 1: Performance scalability (without
pre-treatment phase).

0

5

10

15

20

25

3 4 5 6

Ti
m
e

Thread count

Stage 1
Stage 2
Stage 3
Stage 4
Stage 5

Figure 2: Performance scalability and effects of
query reordering (pre-treatment phase).

Search”. In Proceedings of the Data Engineering
(ICDE), 2014 IEEE 30th International Conference,
p 197-207, Chicago, IL, USA, 2014.

[16] Social Network Benchmark (SNB)
Task Force Progress Report
http://www.ldbc.eu:8090/download/attachments
/4325436 /LDBC_SNB_Report_Nov2013.pdf.
Accessed 23/05/14.

[17] Signal/Collect Documentation (website).
http://uzh.github.io/signal-collect/documenta
tion.html. Accessed 23/05/14.

[18] ACM SIGMOD Programming Contest: an
opportunity to study distinguished aspects
of database systems and software engineer-
ing. Kirill K. Smirnov, Georgiy A. Cherni-
shev. 2012. Компьютерные инструменты в
образовании, 6(2012), 22–25, ISSN: 2071-2340,
url:http://ipo.spb.ru/journal/index.php?article
/1541/ (in Russian).

[19] Ashish Thusoo, Joydeep Sen Sarma, Namit Jain,
Zheng Shao, Prasad Chakka, Suresh Anthony, Hao
Liu, Pete Wyckoff, and Raghotham Murthy. 2009.
Hive: a warehousing solution over a map-reduce
framework. Proc. VLDB Endow. 2, 2 (August
2009), 1626–1629.

8 Appendix: SNB Description

Let’s briefly survey the SNB benchmark which was used
during the contest and in the experimental section of this
paper.

The purpose. In order to provide efficient evaluation
for a variety of algorithms, tools, frameworks for social

network data management tasks, a standard benchmark,
called Social Network Benchmark (SNB) [16] was de-
veloped. This benchmark allows not only efficient, but
also a repeatable evaluation for a variety of scenarios: on-
line transactions, business intelligence and graph analyt-
ics. Authors of the benchmark tried to make it as realistic
as possible.

Covered systems. This benchmark covers several types
of systems: graph DBMS and graph programming frame-
works, RDF database systems, relational and NoSQL da-
tabase systems.

Data schema. The general data schema of the bench-
mark is presented on Figure 3 (illustration taken from [16]).
It is called Social Intelligence Benchmark Data Schema.
The schema uses UML notation to describe entities, at-
tributes and their relationships of different cardinalities.
The schema defines the result of the benchmark’s data
generator. Essentially it is a set of tables linked via primary-
foreign key relationships.

The schema defines some social network and its most
characteristic features:

1. users and their personal details, tags and likes;

2. relations between users (follows and knows);

3. textual content: posts and comment trees.

Generator and its output: technical details. This
benchmark is essentially a synthetic data generator, which
is implemented using MapReduce programming model.
The generator is dictionary-based and is capable of gen-
erating correlated values. The result of the generator is
the set CSV files, where each file contains records of the
corresponding table.

The benchmark and the contest. The organizers
of the contest used only the dataset generator, but not

241

Figure 3: Social Intelligence Benchmark Data Schema

queries. Instead, they proposed four stand-alone types of
queries, which we described earlier.

The dataset generator provided four types of graph
workloads: small (1k vertices), medium (10k vertices),
large (100k vertices) and huge (1M vertices). The last
one would be used for the final evaluation by the contest
organizers.

Unfortunately, only the first two datasets were fully

released to the public. The third one was discussed in
the mailing list, where some of the generator parameters
for this dataset were disclosed. However, no queries are
known. In this paper we use the largest available (on the
current date) dataset — the medium one for the experi-
mental evaluation. All of the queries are known at the
start of the processing, contestants are not required to pro-
cess them in a specific order.

242

	435_443_Чернышов
	435_Чернышов

