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Abstract. In this paper, we model attacker behaviour. We have imple-
mented a usual, i.e., omniscient, attacker and our adaptive attacker. We
are going to compare these two models to find whether there is a sig-
nificant difference between them. We consider the comparison from the
attacker point of view and from the point of view of the defender (which
wants to minimise the damage from the attacks).

1 DMotivation

Existing models of attacker grant the penetrator the complete knowledge of a
system, i.e., the knowledge about unpatched vulnerabilities, installed counter-
measures, running services, etc [2,5]. With such knowledge the attacker is able
to select the best possible way to attack the system and reach her goal. Such
model is similar to the Dolev-Yao model for security analysis of protocols. It is
useful to find the weakest place in security system.

In the real world the attacker gains the knowledge about the system during
the attack [3]. The attacker collects all available information about the target
system, but such knowledge is never complete. Using vulnerability scanners also
provide only the information about a part of the system, without looking deep
into it. Moreover, aggressive scanning may be detected and the attack may be
prevented before its beginning. This means, that the model of the attacker with
complete knowledge does not provide the exact risk for the system.

In the previous paper [1], we proposed an adaptive attacker (AA) model.
The main peculiarity of this model is that the attacker does not have a complete
knowledge about the system but only his view about it. The attacker tries to
execute an attack and adjusts its course of actions if his view was wrong.

We continue the evaluation of the system with such kind of attacker. We
would like to compare the results of the analysis of the system with the AA and
the OA and check whether there is a difference in assessment of the system when
the two models are considered. We want to find the conditions, when the models
return the same results, and when the results are different.

2 Scientific Contribution

2.1 The Adaptive Attacker Model

Here we briefly outline the main features of the model proposed in [1].



Fig. 1. Test Graph

Let G = (S, A) be a real attack graph, such that a node s € S represents a
successfully exploited vulnerability and an edge a;; € A denotes further possi-
ble exploitation of another vulnerability. Let Gx = (Sx, Ax) be a belief attack
graph, where nodes exist according to the belief of the attacker. The real graph
is a subgraph of the belief graph. The example of such graph is shown in Fig-
ure 1. Green nodes (light grey) indicate the vulnerabilities really existing in the
system, when red (dark grey) nodes denote the nodes, which were patched by
the administrator, but the attacker has no knowledge about this fact.

Assume that we know the probability of successful exploitation of vulnera-
bility, i.e., Pr;; for every edge in G x, and monetary reward for the states, the
attacker wants to achieve. The attacker wants to maximise his profit. Thus, the
attacker has to solve a Markov Decision Problem (MDP) to find the optimal path
to one of his goals within a limited amount of time. We use backward induction
algorithm for computation of a policy, i.e., the sequence of steps the attacker
should follow. Such attack may include states, which do not exist in reality (e.g.,
the vulnerability was patched). An example of existing path in the graph shown
in Figure 1is {0,2,5,9,15, 19, 23}, when the path {3,7,11,17, 21, 22, 23} includes
the nodes which do not exist in reality (e.g., nodes 21 and 22).

We modify the behaviour of the omniscient attacker (OA) so that he may
reconsider his course of actions when she cannot complete his current attack
path. If the attacker fails to complete his attack because some vulnerability does
not exist, he assigns Pr;; = 0 for all edges leading to this vulnerability. Then,
the attacker uses the backward induction algorithm to compute a new strategy
using the updated attack graph and the rest of time

2.2 Evaluation Methodology

Now we would like to compare the AA and the OA. We perform some statistical
tests for the comparison. Our goals are to check:



— How paths of the AA and OA differs.
— How this difference depends on the shape of the system (i.e., the attack

graph).

First we analyse behaviour of the two attackers for a specific graph (shown
in Figure 1) to consider the difference between the strategies of the AA and the
OA. We use the following metrics to measure how close the two solutions are:

— Attack length (al) is a number of steps an attacker must make before she
reaches her goal. This parameter could be seen as an attacker cost, if we
assume that an attacker pays one unit for making a step.

— Similarity (sim) is the percentage of states in the path of the AA, which are
contained in the path of the OA.

— Same final decision (sfd) is the percentage of cases, when the path of the
OA is entirely included in the path of the AA. In other words, we check the
percentage of cases when the AA finally decided to use the same path that
the OA does.

We start with the entire graph as a real attack graph taking into account all
nodes. Then, we randomly choose some nodes and consider them as non-existing
ones (about these nodes the attacker has no precise knowledge). We repeat the
experiment 1000 times for every percentage of missing real nodes. We consider
only such belief graphs when the source and top nodes are connected by existing
vulnerabilities. The results are shown in Figure 2.

In Figures 2a and 2b we see that in average the number of steps for AA
is higher (by 20 — 30%). Note, that this does not mean that we always have
the same path at the end. Figure 2a shows, that sometimes path for AA differs
significantly from the path of the OA (if the percentage of real vulnerabilities is
90%, then only 85% of steps of AA are the steps from the paths of OA).

We see that similarity increases when the percentage of real states increases
between 60% and 100%. This tendency is evident: the less real states exist in
the system, the more wrong paths the attacker will follow first, before he finds
the existing way to the goal. Note that the similarity slightly decreases with the
increase of the percentage of real states in between 40% and 60%. This can be
explained by the fact that the AA gets to a non-existing state faster (than with
lower percentage of real nodes) and finds the optimal path with less wrong steps.
Figure 2b shows similar results.

Figure 2c indicates, that the number of paths, that use the path of OA is
the lowest for 90%. Naturally, when all states exist (100%), then the paths for
AA and OA are the same. Also, the less vulnerabilities really exist in the system
the less paths to the goal states are left. Thus, the AA finally comes to the
(sometimes, the only existing) path selected by the OA. We would like to note
here that in our example 40% of states is approximately, 10 states, while the
shortest path in the graph requires 5 states.

Now, we would like to consider different graphs, rather than a specific one and
check how number of nodes in and connectivity (i.e., average number of edges
leading from a node) of the graph affects the considered metrics. We generate a
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Fig. 2. Results for a) similarity, b) attack length and c¢) percentage of same final deci-
sion for a specific graph

graph randomly, and use exponential distribution to determine how many edges
a node should have.

In particular, we distributed nodes in a predefined number of layers. Layers
are required to model a depth of the graph and order the edges leading from a
source node to the top nodes. The number of nodes per layer is determined using
a lognormal distribution and adjusted by coefficient, which is required to force
the tree to have a tree-like form (smaller number of vulnerabilities for higher
layers and larger number for lower ones). A node is allowed to have an edge to
a node to any higher layer, but because of parameters of another exponential
distribution, most of them lead to the next layer.

We generated 100 graphs for every parameter we would like to evaluate and
took the average value of the received metric. For computation of the metric we
still do 1000 random test for every considered percentage of real nodes.

First we check the dependency of the metrics and the connectivity of edges.
We used exponential distribution to model the number of edges a node is con-
nected to. Thus, the higher the parameter (lambda) is the more connected the
graph is. We fix the number of nodes as 50 and vary lambda. The results are
shown in Figure 3.

We see that although similarity rate is higher for higher lambda it is rarer
that the whole attack path for OA is included into AA. This could be explained
by the fact, that although AA often uses some parts of the path of OA, it has
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Fig. 3. Dependency of a) similarity, b) attack length and c) percentage of same final
decision on parameter lambda

more opportunity to try a shorter path which differs from the optimal path. This
explanation is partially supported by the Figure 3b for attack path, where the
path becomes shorter with higher connectivity.

The next set of experiments was done with a fixed lambda = 3, and three
different numbers of nodes: 50, 75, and 100. The results are shown in Figure 4.

We see that number of nodes (V) has stronger impact on the metrics. The
main trend is evident: the more nodes are in the graph, the more opportunity
the AA has to deviate from the path of OA. Note, that if the percentage of real
nodes is between 0.3 and 0.7 then only 60% of time AA uses the path of OA for
N = 100. We see, that the length of the attack path for NV = 100 decreases with
the decrease of percentage of real nodes. This could be explained by the fact,
that the graph generating algorithm used the same amount of nodes between
the source and top nodes in average. Thus, in this case a higher number of nodes
lead to higher number of paths, and attacker has more choices, even if many
paths appear to be non-existing.

3 Conclusions

We see that using the omniscient attacker model for getting the real picture of
the security strength is prone to errors. Moreover, the more nodes the graph
has and the higher the connectivity is the higher the error is. According to the
literature on attack graphs [4, 6] these parameters often have large values. As
a result, the overpowering an attacker may lead to unnecessary investments in
security needs.
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Fig. 4. Dependency of a) similarity, b) attack length and c) percentage of same final
decision on number of nodes

There are a number of ways the work may be improved. First of all, its
integration with real attack graph generating and analysis tool is the most inter-
esting one. Furthermore, we may add some uncertainty to the attacker selecting
the next step, using some probability distribution. This uncertainty should al-
low us to consider not only the most probable path, but also near-most probable
ones, modelling uncertainty of attacker decisions.
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