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Abstract. Aeronautics is a typical field of application of the Systems Engineering, 

since aircraft includes many on–board equipments. The Systems Engineering 

provides some suitable tool for an effective description of their functional behavior 

but a detailed design needs a quantitative investigation. This task is performed by 

resorting to modeling techniques, which define all the equations required to predict 

the dynamic behavior in operation. Physical phenomena are described by numerical 

models, which nowadays have to be connected to the tools of the Systems Engineering 

to proceed with a really integrated product life management. This task is a fascinating 

feature of the so–called ‘inter–operability’, which can be implemented among 

methods, models and numerical tools. A test case is herein shown and concerns the 

modeling of a de–icing system for a regional turboprop. A brief description of the 

modeling activity is proposed, then tools of the System Engineering are applied to 

perform a review of requirements. Limits of functional models are explored as well as 

some weak information about functions and requirements in the physical models is 

detected. Region of inter–operability of the two modeling environments is 

consequently defined. The available methodologies for interoperating the design tools 

are discussed, by resorting to the tasks of the ARTEMIS–CRYSTAL project. 

Introduction 

Accumulation of ice on wings, nacelles, tail and instruments is definitely one of the 

most dangerous risks for the aircraft flight at different altitudes. Ice accretion is a very 

heterogeneous phenomenon and depends on several environmental parameters as well 

as upon some properties of the aircraft. Very often ice is a consequence of a 

concentration of super–cooled water within clouds, because it is liquid even below 0 

°C. Water droplets hit the aircraft and often stick upon the surfaces and freeze very 

fast or instantly, thus causing a reduction of lift and of the angle of attack which might 

be considered a limit for the stall. They increase drag and weight, by causing some 

adverse effects on other control surfaces and induce a flow disruption. Therefore 

several anti–icing systems are used to avoid the ice accumulation or alternately some 

de–icing systems are applied to reduce the ice accretion. Among the technologies 

implemented, very well-known are the electro–thermal system based on the heat 

produced by resistors and the aero–thermal one which exploits a hot air stream 
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directly coming from the engines. They are used both either as an anti–icing or 

de–icing system. Nevertheless, de–icing systems are also designed to apply a suitable 

action to break the ice layers covering the aerodynamic surfaces, by means of boots or 

actuators. To develop herein a test case the well-known Goodrich’s de–icing system 

will be analyzed. In this case some boots distributed over the most exposed surfaces of 

the aircraft are either periodically or on demand inflated to break the ice. 
 

 

Figure 1. Sketch of airfoil equipped with the Goodrich de–icing system 

The Goodrich de–icing system and control 

The Goodrich system is often selected for the turboprop aircrafts, because it implies 

low power consumption. Some inflatable boots are located on the surface potentially 

affected by ice accumulation. They are activated in sequence by means of compressed 

air coming from the aircraft engines. A critical issue of design concerns the control 

strategy applied to the inflation of boots. If they are inflated too early the ice might be 

so thin that it will not break, being somehow elastic, when boots are inflated too late, 

they could not break thick ice layers. Ice accretion rate is specified by some 

International Standards and Regulations. Design activity usually starts by listing the 

high level requirements of the de–icing system. Principal functions are defined by the 

so–called functional requirements, while some operational requirements are written 

by analyzing the flight profile and mission. Safety requirements are imposed by the 

Regulations, as the CS–25 Appendix C. Very often it looks difficult defining any 

physical requirement which could be compatible with some selected components, 

because the architecture of the whole system is still under definition. Industrial 

practice suggests of specifying at this stage some general constraints for the system 

characteristics and some requirements for maintenance and installation. Defining a 

preliminary set of performance requirements is even recommended.  

To proceed straightforward with the requirements specification a functional model is 

required. It allows investigating the system behavior in terms of functions and 

performing a trade–off among the proposed architectures. Only a detailed physical 

model focused on the quantitative performance of the system components can help the 

designer in the dimensioning activity. This process is fundamental to define, allocate, 

trace and verify each requirement within the product cycle development, especially 

when it is updated during the sequence of actions foreseen by the workflow. 

The role of the functional model 

This system can be effectively modeled by following the Model–Based Systems 

Engineering approach within the IBM Rational Rhapsody®. Different tools lead to 

define the system structure and behavior, starting from the analysis of the customer 

needs. System level is analyzed as first, then components and parts are specified and 

either dimensioned or selected among some available commercial products. 



 

  

Customer needs are formalized as a list of requirements by resorting to the IBM 

Rational Doors®, then they are imported into the Rhapsody® model. Requirements 

must be analyzed, clarified and refined during all the modeling process, eventually by 

structuring their description into main and derived requirements. System will fit each 

requirement through a specific function operated by some component. The SysML 

language allows visualizing those components and their functions by means of its 

typical diagrams.   

 

 

Figure 2. Use cases of the Goodrich de–icing system 

Once the main specifications are defined, a Use Case Diagram is drawn to analyze the 

missions of the system, as in Fig.2. The context in which the system operates is 

depicted by defining its neighboroughs, the functions provided and the actors 

involved who directly interact with the system.  

In the test case it can be easily realized that four main missions are foreseen and they 

correspond to the use cases above described and functions to be implemented are all 

related to those uses. A management of the de–icing operation, through a continuous 

monitoring, a suitable ice removing and a forecasting capability to prevent the risk of 

stall are required. In particular, the actors (namely stakeholders) strongly interact to 

each other. The de–icing system must detect and monitor the icing condition in which 

the aircraft operates. The air data system picks up the inputs from the environment and 

from the ice condition forecasting, while the flight management system evaluates this 

inputs, providing real time information to the pilot for those activities. The pilot acts 

on the system through a control panel, as soon as he receives the inputs collected by 

the other systems. Once the ice is detected the ice removing mission is performed by 

the pneumatic system which inflates the boots. 

The Use Case diagram describes the functions performed by the system, while 

interacting with the stakeholders. The system behavior is predicted by the State 

Machine diagram, which provides a functional analysis of each use case. This is a 

qualitative description of the configurations exploited to perform the required 

functions. It does not need that the system architecture is defined neither that  

components are yet selected. The State Machine diagram shown in Fig.3 represents 

how the ice removing mission is performed in terms of transitions from state to state, 



 

  

being each one triggered by a known event. In case of manual mode state, when the 

de–icing system is switched on, the pilot can manually activate the control panel the 

protection system of both the tail and the wings through.  

 

 

Figure 3. State Machine diagram – Manual Mode  

This diagram is powerful when the system is just preliminarily defined, because it 

allows investigating all the states which have to be considered and how the functions 

allow the transition between two states. However it could suggest the need for a 

function or a component (sensor, actuator, connection …) but it is not yet sufficient 

for a detailed dimensioning of the physical system. This information is somehow 

contained and utilized in other modeling tool usually applied for the physical 

modeling, as the Simulink® or the Modelica®.  

 

 

Figure 4. Block Definition Diagram at system level 

It can be remarked that functional analysis of systems is completed by resorting to the 

Activity diagrams, which analyze step by step the actions performed, and also by the 

Sequence diagrams which describe the sequence of messages exchanged between 

stakeholders and the system itself as a function of time. To focus on the 

interoperability the State Machine diagram was  modeled for an executable simulation 



 

  

of the system, within the constraints above evidenced that simulation can only 

describe the state at which the system is set up for a given boundary condition. A link 

between the states and the quantitative values of the system parameters is a matter of 

the interoperability among tools. 

Moreover, once the operations of the de–icing system are defined a trade–off among 

the proposed architectures has to be performed. This task is done by resorting to the 

structural diagrams, which include blocks, subsystems, components and parts where 

requirements can be allocated. Identifying the blocks allows depicting one or more 

scenarios where the system performs its functions. The Block Definition diagram 

shows both the composition and the classification of structural elements. This 

representation is useful to completely define the system components and their 

features. Interoperability may allow integrating the SysML Block diagrams and the 

numerical simulator for a complete analysis. 

It is remarkable that in Fig.4 each block represents an element of the main system, as a 

part of the protection system, the distribution valves and the control system. 

Nevertheless, very often a single block corresponds to a subsystem being itself 

composed by several parts. Therefore to catch completely the interactions among 

those parts and what kind of information they exchange it is usually drawn the Internal 

Block diagram (Fig.5). It defines the internal structure of the details of the de–icing 

system. For the test case it is necessary considering several Internal Block diagrams, 

to compare functional and physical models, respectively, for instance as they appear 

within the Simulink® simulation.  

 

 

Figure 5. Internal Block Diagram 

Diagram shown in Fig.5 represents an executable scenario. It contains the whole 

control block. All the elements are connected to each other in the desired 

configuration through some flow ports and connectors. The behavior of each part is 

described in the State Machine diagrams. Flow ports are used to explicit the messages 

exchanged between parts. Flow direction is defined and it is required to run the 

simulation. 

The role of the physical model 

The functional model, as described in the previous section, can provide a detailed 

description of the system architecture and its behavior. However this approach is 

limited to some qualitative aspects and does not predict the physical ones. No 

mathematical model is included. Therefore the functional model is unable to perform 

numerical simulations, although this task is required for a full performance analysis. 



 

  

This weakness motivates the resorting to the numerical modeling as in Simulink®. As 

Fig.6 shows a Simulink® model of the Goodrich system includes a logical flow 

behind the mathematical model which describes the system behavior. Each action and 

its effects in time are predicted by solving the equations enclosed into the blocks 

which appear in the depicted model. For each block inputs and outputs are numerical 

values of some design parameters. The tool allows exploring also the hierarchy of the 

operations performed by the blocks, eventually linked together to form a macro, or a 

subsystem. This approach allows a detailed analysis of complex systems. It looks 

effective because they are modeled as a tree of blocks.  

  

 

Figure 6. Physical model 

A key issue for simulation is the data management and the exchange of information 

among blocks. Input variables can be stored in an external file, to be loaded as soon as 

the code starts up. However inputs and outputs can be matter of exchange between the 

Simulink® and another tool eventually co–simulated. Right now this is a well-known 

option of engineering, for instance when the multi–body dynamics is analyzed 

simultaneously with a control system operation. Since the appearing of the Systems 

Engineering a challenging goal looked co–simulating functional models and 

Simulink®. This task requires that data management somehow is performed across 

the numerical and the functional modeling environments. In the test case the first 

group of blocks Fig.6 defines the input section which allows to simulate either an 

automatic or a manual mode operation. Performing the simulation through the 

automatic mode is possible to predict the ice accretion on the ice–detector, while in 

the manual mode the de–icing system is activated through a manual switch. If the 

Simulink® model could be operated in connection with the Parametric diagram of the 

system, according to Systems Engineering, the effects of manual operations, triggered 

through the panel of the functional simulator in the Rhapsody® environment, could be 

quantitatively predicted and visualized. 

Outputs of the first section in Fig.6 are sent to the valve models, then results of such 

block are inputs for the distribution valve, which implements the logic of the inflation 

of boots. In the last set of blocks the second order model depicted in Fig.7 is 

implemented for each component. It can be appreciated that in this physical model 

outputs of the simulation are numerical values of air pressure, of volume of boots 

chamber and of flow rate per cycle. Those results allow understanding quantitatively 

the critical levels of the design parameters and lead to a detailed design activity. 

 



 

  

 
Figure 7. Second order model for the numerical simulation of dynamics 

 

The challenge of interoperability 

The State Machine diagram built within Rhapsody® and the Simulink® model 

represent two types of executable simulation. Languages and purposes are different. 

Simulators of systems are built up by implementing the whole model including all its 

parts within a certain modeling environment, through a specific tool. This allows 

handling a unique or ‘homogeneous’ environment. However, in many industrial 

applications it happens that systems exhibit a certain complexity associated to the 

number of composing subsystems and of functions, typically obeying to physical laws 

belonging to various engineering fields like in mechatronics. This complexity leads to 

the practical impossibility of simulating the system in a unique environment and to the 

need of performing several analyses by means of different approaches, supported by 

different tools. In the test case the functional behavior is easily analyzed through the 

SysML, while the dynamic performance can be investigated only through a physical 

model. The so–called heterogeneous simulation environments are therefore growing 

up as a key feature of the Model–Based Systems Engineering. Nevertheless, designer 

needs to integrate the different environments as soon as the design synthesis is 

required. This action can be performed if some connectors between two specific tools 

are developed and applied. This is the goal of the interoperability standards. In the test 

case interoperating the Rhapsody® and the Simulink® environments it is required to 

perform a complete simulation of the de–icing system. Some key issues of design 

cannot be investigated only by the State Machine diagram. For instance a critical task 

within the simulator is the prediction of the ice accretion. Setting up a suitable time 

period for inflating the boots in case of automatic de–icing is rather difficult if this 

action is only based on the transitions between states. It is required a physical 

modeling of the system and of the ice behavior, described into a set of equations, 

which could be solved as a function of time, to test the effectiveness of control. To 

perform this activity the model should be derived from the Block diagrams of the 

SysML in such a way that any change in requirements could be updated in the 

functional model and transferred to the physical one, almost automatically. 

Dedicated connectors are currently and widely developed to provide some customized 

interface to allow the interoperation between two simulation environments. 

Unfortunately, they are applicable case by case only to the specific tools used. 

Looking for an interoperability standard is currently a hot topic of the research 

activity. It could allow a deeper integration among the tools of the Model–Based 

Systems Engineering. One of the most promising standards currently available and 

implemented by some tool developers is the ‘Functional Mock-up Interface’ (FMI). It 

is an open standard that enables the integration of different models, being using 

different languages and semantics.  



 

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

Figure 8. Interoperation of tools with FMI Stereotypes 



 

  

The specific interface created is referred to as ‘Functional Mock-up Unit’ (FMU) and 

is aimed at allowing the communication exchange between tools. Two approaches are 

foreseen and supported by the FMI. A ‘model exchange mode’ directly utilizes the 

equations solver of an hosting numerical tool while the ‘co–simulation’ mode fully 

exploits the skills of interoperability, because in this case an embedded solver is used 

and the hosting tools have only to assure the synchronization of all the data handled by 

the heterogeneous simulation environment. The state of arts does provide an assessed 

connector for the interoperation between the Rhapsody® and Simulink®, 

nevertheless the FMI 2.0 was selected as a standard reference to test at least the 

exporting capabilities and to verify the consistence of FMI stereotypes, when 

executing the same simulation in both the above mentioned tools. The real goal will be 

co–simulating the tools as soon as the connectors will be available. 

Application of the FMI to the test case is fairly linear. The first step is characterizing 

the system composition and the simulation parameters defined in Rhapsody® through 

the SysML language by using the FMI. This is meant to have a common structure. 

System composition is obtained from the Internal Block Diagram, where interactions 

between the blocks are specified by the flow ports and characterized by means of the 

FMI stereotypes. In particular, each block is marked with the “FMU Export” 

stereotype and is described by an associated State Machine Diagram, which shows his 

functional behavior. All the relevant attributes of blocks are marked with “FMU 

Parameter” stereotype whilst “FMU Ignore” is assigned to the attributes and ports 

which are not considered. The above procedure assures that the system is composed 

by a structured block in which its subsystems have a well-defined behavior and a 

common semantics, that can be used to compile the FMI project and for exporting. 

The stereotype “Structured Simulation” is in fact applied to the parts of the model that 

contain lower levels blocks, as it usually happens in Simulink®. For the reasons 

exposed above, the Simulink® model is re–organized and synchronized with the FMI 

structure as well as the Rhapsody® model. The generated FMU file is indicated in the 

Rhapsody® browser as “controlled file”. This strategy leads to perform the simulation 

directly within Rhapsody® once that the external model is imported. In this case, time 

management has to be taken into account because even if the FMI standard uses a 

double precision floating point value (seconds), Rhapsody® represents it as an integer 

in unit of milliseconds. This could lead to unacceptable behaviors, especially for 

state-based dynamics, and variables trend has to be checked. The final simulation 

environment will be composed by different SysML blocks connected to each other 

with flow ports representing the variables in input or output. These variables are 

managed inside each block, which is a sort of “black box” that includes the behavior 

specified in the original external model. This means that the FMU is only a container 

and it does not provide nor connection recommendations neither the structure of the 

scenario. As a matter of fact, unlike the majority of the numerical simulation tools, 

FMI standard has not yet a library and the set-up of the simulation scenario is a 

responsibility of the engineer. 

Conclusion and future works 

Defining the architecture and requirements of a complex industrial product needs a 

multidisciplinary and integrated approach suitable to involve all the necessary 

technical competences. Functional and numerical issues of design are investigated, as 

in case of the Goodrich de–icing system. Diagrams of the Systems Engineering allow 

defining the interactions between the system and all the stakeholders, uses, activities 

and sequences in operation, thus leading to straight identifying of blocks and of 



 

  

requirements, which are allocated to functions and components. For an effective 

dimensioning of the whole system a parametric simulation of states in functional 

models, like in the Rhapsody®, are often insufficient without a physical model aimed 

at predicting the system evolution in time domain as in the Simulink® code. To 

enhance the integration of those design tools a reliable communication among 

functional and physical models has to be developed such as the FMI interface. It could 

create a permanent link between the SysML and the numerical tools, thus allowing to 

perform a complete iterative design loop suitable to assess both the requirements and 

the design parameters. In the Goodrich de–icing system, for instance, the above 

described inter–operation  of tools is useful to define the strategy of inflation of boots, 

to be compatible with the real ice accretion phenomenon, predicted by some physical 

model. Future works will focus on performing a complete hybrid simulation, setting 

up an heterogeneous environment in Rhapsody® in which both the system activation 

logic, based on SysML state machines, and the physical behavior from Simulink® 

will be present. The interest for the creation of a reusable library within the FMI 

standard applied to aeronautics is also expressed. 
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