
INCOSE Italian Chapter Conference on Systems Engineering (CIISE2014)

Rome, Italy, November 24 – 25, 2014

Towards an effective interoperability of models

within the ‘Systems Engineering’

applied to aeronautics

Eugenio Brusa, Ambra Calà, Sergio Chiesa, Francesco De Vita, Davide Ferretto

Dept. Mechanical and Aerospace Engineering, Politecnico di Torino, Italy

Corso Duca degli Abruzzi, 24 – 10129 Torino, ITALY

email: eugenio.brusa@polito.it; ambra.cala@polito.it, sergio-chiesa@polito.it,

francesco.devita@polito.it, davide.ferretto@polito.it

Abstract. Aeronautics is a typical field of application of the Systems Engineering,

since aircraft includes many on–board equipments. The Systems Engineering

provides some suitable tool for an effective description of their functional behavior

but a detailed design needs a quantitative investigation. This task is performed by

resorting to modeling techniques, which define all the equations required to predict

the dynamic behavior in operation. Physical phenomena are described by numerical

models, which nowadays have to be connected to the tools of the Systems Engineering

to proceed with a really integrated product life management. This task is a fascinating

feature of the so–called ‘inter–operability’, which can be implemented among

methods, models and numerical tools. A test case is herein shown and concerns the

modeling of a de–icing system for a regional turboprop. A brief description of the

modeling activity is proposed, then tools of the System Engineering are applied to

perform a review of requirements. Limits of functional models are explored as well as

some weak information about functions and requirements in the physical models is

detected. Region of inter–operability of the two modeling environments is

consequently defined. The available methodologies for interoperating the design tools

are discussed, by resorting to the tasks of the ARTEMIS–CRYSTAL project.

Introduction

Accumulation of ice on wings, nacelles, tail and instruments is definitely one of the

most dangerous risks for the aircraft flight at different altitudes. Ice accretion is a very

heterogeneous phenomenon and depends on several environmental parameters as well

as upon some properties of the aircraft. Very often ice is a consequence of a

concentration of super–cooled water within clouds, because it is liquid even below 0

°C. Water droplets hit the aircraft and often stick upon the surfaces and freeze very

fast or instantly, thus causing a reduction of lift and of the angle of attack which might

be considered a limit for the stall. They increase drag and weight, by causing some

adverse effects on other control surfaces and induce a flow disruption. Therefore

several anti–icing systems are used to avoid the ice accumulation or alternately some

de–icing systems are applied to reduce the ice accretion. Among the technologies

implemented, very well-known are the electro–thermal system based on the heat

produced by resistors and the aero–thermal one which exploits a hot air stream

Copyright	
 ©	
 held	
 by	
 the	
 authors.	

directly coming from the engines. They are used both either as an anti–icing or

de–icing system. Nevertheless, de–icing systems are also designed to apply a suitable

action to break the ice layers covering the aerodynamic surfaces, by means of boots or

actuators. To develop herein a test case the well-known Goodrich’s de–icing system

will be analyzed. In this case some boots distributed over the most exposed surfaces of

the aircraft are either periodically or on demand inflated to break the ice.

Figure 1. Sketch of airfoil equipped with the Goodrich de–icing system

The Goodrich de–icing system and control

The Goodrich system is often selected for the turboprop aircrafts, because it implies

low power consumption. Some inflatable boots are located on the surface potentially

affected by ice accumulation. They are activated in sequence by means of compressed

air coming from the aircraft engines. A critical issue of design concerns the control

strategy applied to the inflation of boots. If they are inflated too early the ice might be

so thin that it will not break, being somehow elastic, when boots are inflated too late,

they could not break thick ice layers. Ice accretion rate is specified by some

International Standards and Regulations. Design activity usually starts by listing the

high level requirements of the de–icing system. Principal functions are defined by the

so–called functional requirements, while some operational requirements are written

by analyzing the flight profile and mission. Safety requirements are imposed by the

Regulations, as the CS–25 Appendix C. Very often it looks difficult defining any

physical requirement which could be compatible with some selected components,

because the architecture of the whole system is still under definition. Industrial

practice suggests of specifying at this stage some general constraints for the system

characteristics and some requirements for maintenance and installation. Defining a

preliminary set of performance requirements is even recommended.

To proceed straightforward with the requirements specification a functional model is

required. It allows investigating the system behavior in terms of functions and

performing a trade–off among the proposed architectures. Only a detailed physical

model focused on the quantitative performance of the system components can help the

designer in the dimensioning activity. This process is fundamental to define, allocate,

trace and verify each requirement within the product cycle development, especially

when it is updated during the sequence of actions foreseen by the workflow.

The role of the functional model

This system can be effectively modeled by following the Model–Based Systems

Engineering approach within the IBM Rational Rhapsody®. Different tools lead to

define the system structure and behavior, starting from the analysis of the customer

needs. System level is analyzed as first, then components and parts are specified and

either dimensioned or selected among some available commercial products.

Customer needs are formalized as a list of requirements by resorting to the IBM

Rational Doors®, then they are imported into the Rhapsody® model. Requirements

must be analyzed, clarified and refined during all the modeling process, eventually by

structuring their description into main and derived requirements. System will fit each

requirement through a specific function operated by some component. The SysML

language allows visualizing those components and their functions by means of its

typical diagrams.

Figure 2. Use cases of the Goodrich de–icing system

Once the main specifications are defined, a Use Case Diagram is drawn to analyze the

missions of the system, as in Fig.2. The context in which the system operates is

depicted by defining its neighboroughs, the functions provided and the actors

involved who directly interact with the system.

In the test case it can be easily realized that four main missions are foreseen and they

correspond to the use cases above described and functions to be implemented are all

related to those uses. A management of the de–icing operation, through a continuous

monitoring, a suitable ice removing and a forecasting capability to prevent the risk of

stall are required. In particular, the actors (namely stakeholders) strongly interact to

each other. The de–icing system must detect and monitor the icing condition in which

the aircraft operates. The air data system picks up the inputs from the environment and

from the ice condition forecasting, while the flight management system evaluates this

inputs, providing real time information to the pilot for those activities. The pilot acts

on the system through a control panel, as soon as he receives the inputs collected by

the other systems. Once the ice is detected the ice removing mission is performed by

the pneumatic system which inflates the boots.

The Use Case diagram describes the functions performed by the system, while

interacting with the stakeholders. The system behavior is predicted by the State

Machine diagram, which provides a functional analysis of each use case. This is a

qualitative description of the configurations exploited to perform the required

functions. It does not need that the system architecture is defined neither that

components are yet selected. The State Machine diagram shown in Fig.3 represents

how the ice removing mission is performed in terms of transitions from state to state,

being each one triggered by a known event. In case of manual mode state, when the

de–icing system is switched on, the pilot can manually activate the control panel the

protection system of both the tail and the wings through.

Figure 3. State Machine diagram – Manual Mode

This diagram is powerful when the system is just preliminarily defined, because it

allows investigating all the states which have to be considered and how the functions

allow the transition between two states. However it could suggest the need for a

function or a component (sensor, actuator, connection …) but it is not yet sufficient

for a detailed dimensioning of the physical system. This information is somehow

contained and utilized in other modeling tool usually applied for the physical

modeling, as the Simulink® or the Modelica®.

Figure 4. Block Definition Diagram at system level

It can be remarked that functional analysis of systems is completed by resorting to the

Activity diagrams, which analyze step by step the actions performed, and also by the

Sequence diagrams which describe the sequence of messages exchanged between

stakeholders and the system itself as a function of time. To focus on the

interoperability the State Machine diagram was modeled for an executable simulation

of the system, within the constraints above evidenced that simulation can only

describe the state at which the system is set up for a given boundary condition. A link

between the states and the quantitative values of the system parameters is a matter of

the interoperability among tools.

Moreover, once the operations of the de–icing system are defined a trade–off among

the proposed architectures has to be performed. This task is done by resorting to the

structural diagrams, which include blocks, subsystems, components and parts where

requirements can be allocated. Identifying the blocks allows depicting one or more

scenarios where the system performs its functions. The Block Definition diagram

shows both the composition and the classification of structural elements. This

representation is useful to completely define the system components and their

features. Interoperability may allow integrating the SysML Block diagrams and the

numerical simulator for a complete analysis.

It is remarkable that in Fig.4 each block represents an element of the main system, as a

part of the protection system, the distribution valves and the control system.

Nevertheless, very often a single block corresponds to a subsystem being itself

composed by several parts. Therefore to catch completely the interactions among

those parts and what kind of information they exchange it is usually drawn the Internal

Block diagram (Fig.5). It defines the internal structure of the details of the de–icing

system. For the test case it is necessary considering several Internal Block diagrams,

to compare functional and physical models, respectively, for instance as they appear

within the Simulink® simulation.

Figure 5. Internal Block Diagram

Diagram shown in Fig.5 represents an executable scenario. It contains the whole

control block. All the elements are connected to each other in the desired

configuration through some flow ports and connectors. The behavior of each part is

described in the State Machine diagrams. Flow ports are used to explicit the messages

exchanged between parts. Flow direction is defined and it is required to run the

simulation.

The role of the physical model

The functional model, as described in the previous section, can provide a detailed

description of the system architecture and its behavior. However this approach is

limited to some qualitative aspects and does not predict the physical ones. No

mathematical model is included. Therefore the functional model is unable to perform

numerical simulations, although this task is required for a full performance analysis.

This weakness motivates the resorting to the numerical modeling as in Simulink®. As

Fig.6 shows a Simulink® model of the Goodrich system includes a logical flow

behind the mathematical model which describes the system behavior. Each action and

its effects in time are predicted by solving the equations enclosed into the blocks

which appear in the depicted model. For each block inputs and outputs are numerical

values of some design parameters. The tool allows exploring also the hierarchy of the

operations performed by the blocks, eventually linked together to form a macro, or a

subsystem. This approach allows a detailed analysis of complex systems. It looks

effective because they are modeled as a tree of blocks.

Figure 6. Physical model

A key issue for simulation is the data management and the exchange of information

among blocks. Input variables can be stored in an external file, to be loaded as soon as

the code starts up. However inputs and outputs can be matter of exchange between the

Simulink® and another tool eventually co–simulated. Right now this is a well-known

option of engineering, for instance when the multi–body dynamics is analyzed

simultaneously with a control system operation. Since the appearing of the Systems

Engineering a challenging goal looked co–simulating functional models and

Simulink®. This task requires that data management somehow is performed across

the numerical and the functional modeling environments. In the test case the first

group of blocks Fig.6 defines the input section which allows to simulate either an

automatic or a manual mode operation. Performing the simulation through the

automatic mode is possible to predict the ice accretion on the ice–detector, while in

the manual mode the de–icing system is activated through a manual switch. If the

Simulink® model could be operated in connection with the Parametric diagram of the

system, according to Systems Engineering, the effects of manual operations, triggered

through the panel of the functional simulator in the Rhapsody® environment, could be

quantitatively predicted and visualized.

Outputs of the first section in Fig.6 are sent to the valve models, then results of such

block are inputs for the distribution valve, which implements the logic of the inflation

of boots. In the last set of blocks the second order model depicted in Fig.7 is

implemented for each component. It can be appreciated that in this physical model

outputs of the simulation are numerical values of air pressure, of volume of boots

chamber and of flow rate per cycle. Those results allow understanding quantitatively

the critical levels of the design parameters and lead to a detailed design activity.

Figure 7. Second order model for the numerical simulation of dynamics

The challenge of interoperability

The State Machine diagram built within Rhapsody® and the Simulink® model

represent two types of executable simulation. Languages and purposes are different.

Simulators of systems are built up by implementing the whole model including all its

parts within a certain modeling environment, through a specific tool. This allows

handling a unique or ‘homogeneous’ environment. However, in many industrial

applications it happens that systems exhibit a certain complexity associated to the

number of composing subsystems and of functions, typically obeying to physical laws

belonging to various engineering fields like in mechatronics. This complexity leads to

the practical impossibility of simulating the system in a unique environment and to the

need of performing several analyses by means of different approaches, supported by

different tools. In the test case the functional behavior is easily analyzed through the

SysML, while the dynamic performance can be investigated only through a physical

model. The so–called heterogeneous simulation environments are therefore growing

up as a key feature of the Model–Based Systems Engineering. Nevertheless, designer

needs to integrate the different environments as soon as the design synthesis is

required. This action can be performed if some connectors between two specific tools

are developed and applied. This is the goal of the interoperability standards. In the test

case interoperating the Rhapsody® and the Simulink® environments it is required to

perform a complete simulation of the de–icing system. Some key issues of design

cannot be investigated only by the State Machine diagram. For instance a critical task

within the simulator is the prediction of the ice accretion. Setting up a suitable time

period for inflating the boots in case of automatic de–icing is rather difficult if this

action is only based on the transitions between states. It is required a physical

modeling of the system and of the ice behavior, described into a set of equations,

which could be solved as a function of time, to test the effectiveness of control. To

perform this activity the model should be derived from the Block diagrams of the

SysML in such a way that any change in requirements could be updated in the

functional model and transferred to the physical one, almost automatically.

Dedicated connectors are currently and widely developed to provide some customized

interface to allow the interoperation between two simulation environments.

Unfortunately, they are applicable case by case only to the specific tools used.

Looking for an interoperability standard is currently a hot topic of the research

activity. It could allow a deeper integration among the tools of the Model–Based

Systems Engineering. One of the most promising standards currently available and

implemented by some tool developers is the ‘Functional Mock-up Interface’ (FMI). It

is an open standard that enables the integration of different models, being using

different languages and semantics.

Figure 8. Interoperation of tools with FMI Stereotypes

The specific interface created is referred to as ‘Functional Mock-up Unit’ (FMU) and

is aimed at allowing the communication exchange between tools. Two approaches are

foreseen and supported by the FMI. A ‘model exchange mode’ directly utilizes the

equations solver of an hosting numerical tool while the ‘co–simulation’ mode fully

exploits the skills of interoperability, because in this case an embedded solver is used

and the hosting tools have only to assure the synchronization of all the data handled by

the heterogeneous simulation environment. The state of arts does provide an assessed

connector for the interoperation between the Rhapsody® and Simulink®,

nevertheless the FMI 2.0 was selected as a standard reference to test at least the

exporting capabilities and to verify the consistence of FMI stereotypes, when

executing the same simulation in both the above mentioned tools. The real goal will be

co–simulating the tools as soon as the connectors will be available.

Application of the FMI to the test case is fairly linear. The first step is characterizing

the system composition and the simulation parameters defined in Rhapsody® through

the SysML language by using the FMI. This is meant to have a common structure.

System composition is obtained from the Internal Block Diagram, where interactions

between the blocks are specified by the flow ports and characterized by means of the

FMI stereotypes. In particular, each block is marked with the “FMU Export”

stereotype and is described by an associated State Machine Diagram, which shows his

functional behavior. All the relevant attributes of blocks are marked with “FMU

Parameter” stereotype whilst “FMU Ignore” is assigned to the attributes and ports

which are not considered. The above procedure assures that the system is composed

by a structured block in which its subsystems have a well-defined behavior and a

common semantics, that can be used to compile the FMI project and for exporting.

The stereotype “Structured Simulation” is in fact applied to the parts of the model that

contain lower levels blocks, as it usually happens in Simulink®. For the reasons

exposed above, the Simulink® model is re–organized and synchronized with the FMI

structure as well as the Rhapsody® model. The generated FMU file is indicated in the

Rhapsody® browser as “controlled file”. This strategy leads to perform the simulation

directly within Rhapsody® once that the external model is imported. In this case, time

management has to be taken into account because even if the FMI standard uses a

double precision floating point value (seconds), Rhapsody® represents it as an integer

in unit of milliseconds. This could lead to unacceptable behaviors, especially for

state-based dynamics, and variables trend has to be checked. The final simulation

environment will be composed by different SysML blocks connected to each other

with flow ports representing the variables in input or output. These variables are

managed inside each block, which is a sort of “black box” that includes the behavior

specified in the original external model. This means that the FMU is only a container

and it does not provide nor connection recommendations neither the structure of the

scenario. As a matter of fact, unlike the majority of the numerical simulation tools,

FMI standard has not yet a library and the set-up of the simulation scenario is a

responsibility of the engineer.

Conclusion and future works

Defining the architecture and requirements of a complex industrial product needs a

multidisciplinary and integrated approach suitable to involve all the necessary

technical competences. Functional and numerical issues of design are investigated, as

in case of the Goodrich de–icing system. Diagrams of the Systems Engineering allow

defining the interactions between the system and all the stakeholders, uses, activities

and sequences in operation, thus leading to straight identifying of blocks and of

requirements, which are allocated to functions and components. For an effective

dimensioning of the whole system a parametric simulation of states in functional

models, like in the Rhapsody®, are often insufficient without a physical model aimed

at predicting the system evolution in time domain as in the Simulink® code. To

enhance the integration of those design tools a reliable communication among

functional and physical models has to be developed such as the FMI interface. It could

create a permanent link between the SysML and the numerical tools, thus allowing to

perform a complete iterative design loop suitable to assess both the requirements and

the design parameters. In the Goodrich de–icing system, for instance, the above

described inter–operation of tools is useful to define the strategy of inflation of boots,

to be compatible with the real ice accretion phenomenon, predicted by some physical

model. Future works will focus on performing a complete hybrid simulation, setting

up an heterogeneous environment in Rhapsody® in which both the system activation

logic, based on SysML state machines, and the physical behavior from Simulink®

will be present. The interest for the creation of a reusable library within the FMI

standard applied to aeronautics is also expressed.

References

Chiesa S., 1995. Impianti di bordo per aeromobili: impianti pneumatici, condizionamento,
anti-ghiaccio e APU. CLUT, Torino.

———. 2006. Investigations of performance of pneumatic deicing boots, surface ice
detectors and scaling of intercycle ice. DOT/FAA/AR-06/48, Washington DC.

Sage, P., Rouse, W., 2008. Handbook of Systems Engineering and Management. John Wiley
and Sons, New York.

———. 2011. Systems Engineering Handbook: A Guide for System Life Cycle Processes and
Activities. Version 3.2.1 Revised by M. Krueger, D. Walden, and R. D. Hamelin. San
Diego, CA (US): INCOSE.

———. 2012. Requirements WG‐INCOSE, Guide for Writing Requirements, v1.0, INCOSE

2010‐006‐01, April 2012

———. 2014. EASA CS-25/Amendment 15

Feldman Y. A., Greenberg L., Palachi E., 2014. Simulating Rhapsody SysML Blocks in Hybrid
Models with FMI. Proceedings of the 10th International Modelica Conference, Lund,
Sweden.

Bertsch C., Ahle E., Schulmeister U., 2014. The Functional Mockup Interface seen from an
industrial perspective. Proceedings of the 10th International Modelica Conference,
Lund, Sweden.

Garro A., Groß J., Riestenpatt Gen. Richter M., and Tundi A., 2014. Reliability Analysis of an
Attitude Determination and Control System (ADCS) through the RAMSAS method.
Journal of Computational Science, Amsterdam, The Netherlands.

