
WOP 2014
5th Workshop on Ontology and

Semantic Web Patterns

Co-located with ISWC2014

Riva del Garda, Italy - October 19th 2014

Edited By:
Victor de Boer, VU University Amsterdam, NL

Aldo Gangemi, Université Paris 13, FR

Krzysztof Janowicz, University of California, USA

Agnieszka Lawrynowicz, Poznan University of Technology, PL

Preface

The 5th edition of the Workshop on Ontology and Semantic Web Patterns
(WOP2014) was be the very first in Europe, in which traditionally the design
pattern community for Semantic Web and Linked Data had been very strong.
The aim of the workshop was twofold: (i) providing an arena for proposing and
discussing good practices, patterns, pattern-based ontologies, systems etc., and
(ii) broadening the pattern community that is developing its own language for
discussing and describing relevant problems and their solutions.

WOP2014 was a full-day workshop, co-located with the 13th International
Semantic Web Conference, that included an invited talk, paper presentations
and posters. The invited talk was given by Valentina Presutti and was enti-
tled ”Fueling the future with Semantic Web Patterns”. Altogether, WOP2014
received 10 research paper submissions and 2 pattern paper submissions. From
among these submissions, the Program Committee selected 6 research papers
and 2 pattern papers for the presentation at the workshop. The poster session
included 4 posters (2 of them presented pattern papers, and the remaining 2
presented patterns that were described within research papers).

This year’s Workshop on Ontology and Semantic Web Patterns o↵ered a fast-
track submission of selected papers to the Semantic Web journal’s special issue on
ontology design patterns. Authors of best papers were invited to submit a revised
and extended version of their work to the journal. Based on the reviewer scores,
the Organization Committee decided to invite two papers. To ensure objectivity,
this decision was verified with the members of the Steering Committee.

We thank the Program Committe and the Steering Commitee for their hard
work, and the authors for submitting their papers and for addressing the re-
viewers comments. We thank our invited speaker, Valentina Presutti, for the
interesting and inspiring talk. We also thank the organisers of the 13th Interna-
tional Semantic Web Conference for hosting WOP2014 at ISWC2014.

Further information about the Workshop on Ontology and Semantic Web
Patterns can be found at: http://ontologydesignpatterns.org/wiki/WOP:
2014.

November 2014

WOP Chairs

Victor de Boer
Aldo Gangemi
Krzysztof Janowicz
Agnieszka Lawrynowicz

Fueling the future with Semantic Web Patterns

Valentina Presutti1,2

1
Semantic Technology Laboratory of the National Research Council (CNR), Rome,

Italy

2
University Paris 13 - CNRS, Paris, France

Abstract. I will claim that Semantic Web Patterns can drive the next

technological breakthrough: they can be key for providing intelligent ap-

plications with sophisticated ways of interpreting data. I will picture

scenarios of a possible not so far future in order to support my claim. I

will argue that current Semantic Web Patterns are not su�cient for ad-

dressing the envisioned requirements, and I will suggest a research direc-

tion for fixing the problem, which includes the hybridization of existing

computer science pattern-based approaches, and human computing.

A pattern-based ontology for describing
publishing workflows

Aldo Gangemi1,2, Silvio Peroni1,3,
David Shotton4, and Fabio Vitali3

1 STLab-ISTC, Consiglio Nazionale delle Ricerche (Italy)
aldo.gangemi@cnr.it

2 Laboratoire d’Informatique de Paris Nord, Université Paris 13 (France)
3 Department of Computer Science and Engineering, University of Bologna (Italy)

silvio.peroni@unibo.it, fabio.vitali@unibo.it

4 Oxford e-Research Centre, University of Oxford (UK)
david.shotton@oerc.ox.ac.uk

Abstract. In this paper we introduce the Publishing Workflow Ontol-
ogy (PWO), i.e., an OWL 2 DL ontology for the description of generic
workflows that is particularly suitable for formalising typical publishing
processes such as the publication of articles in journals. We support the
presentation with a discussion of all the ontology design patterns that
have been reused for modelling the main characteristics of workflows.

Keywords: PWO, ODP, publishing process, workflow description

1 Introduction

Keeping track of publication processes is a crucial task for publishers. This ac-
tivity allows them to produce statistics on their goods (e.g., books, authors, ed-
itors) and to understand whether and how their production changes over time.
Organisers of particular events, such as academic conferences, have similar needs.
Tracking the number of submissions in the current edition of a conference, the
number of accepted papers, the review process, etc., are important statistics that
can be used to improve the review process in future editions of the conference.

Some communities have started to publish data, e.g., the Semantic Web Dog
Food5 and the Semantic Web Journal6, which describe those scholarly data as
RDF statements in the Linked Data, in order to allow software agents and ap-
plications to check and reason on them, and to infer new information. However,
the description of processes, for instance the peer-review process or the pub-
lishing process, is something that is not currently handled – although sources
of related raw data exist (e.g., EasyChair metadata). Furthermore, having these
types of data publicly available would increase the transparency of the aforemen-
tioned processes and allow their use for statistical analysis. Of course, a model

5 Semantic Web Dog Food: http://data.semanticweb.org.
6 Semantic Web Journal: http://semantic-web-journal.com.

2 Gangemi et al.

for describing these data is needed. Moreover, the model should be easy to in-
tegrate and adapt according to the needs and constraints of di↵erent domains
(publishing, academic conferences, research funding, etc.).

In this paper we introduce the Publishing Workflow Ontology (PWO), that
we developed in order to accommodate the aforementioned requirements. This
ontology is one of the Semantic Publishing and Referencing (SPAR) Ontologies7

(which have been created for the description of di↵erent aspects of the publishing
domain), and allows one to describe the logical steps in a workflow, as for example
the process of publication of a document. Each step may involve one or more
events that take place at a particular phase of the workflow (e.g., authors are
writing the article, the article is under review, a reviewer suggests to revise
the article, the article is in printing, the article has been published, etc.). This
ontology has been developed in order to allow its use with other SPAR Ontologies
as well as other models and existing data.

The rest of the paper is organised as follows. In Section 2 we discuss some
related works on workflows within the Semantic Web domain. In Section 3 we
provide the definitions of workflow we have used as starting point for modelling
our ontology, and discuss the use of some existing ontology design patterns for
addressing the modelling issues related to the main characteristics of workflows.
In Section 4 we introduce PWO, describing how it extends the aforementioned
patterns in order to handle the main components of workflows, and we support
the discussion by means of a real example of publication process of an article of
the Semantic Web Journal. Finally, in Section 5 we conclude the paper sketching
out some future works.

2 Workflows and the Semantic Web

In the last years the Semantic Web community have started on working and
proposing models for the formalisation and description of generic workflows, and
have shown several applications of these models/theories within the publishing
domain. Maybe the first huge-impact project on these topic has been Workflow
4ever (STREP FP7-ICT-2007-6 270192)8 [8]. This project addresses challenges
related to the preservation of scientific experiments through the definition of
models and ontologies for describing scientific experiments, to the collection of
best practices for the creation and management of Research Objects9 [2], and to
the analysis and management of decay in scientific workflows.

As already stated, one of the outcomes of the project has been the proposal
for workflow-centric Research Objects [1], i.e., an OWL ontology10 for linking
together scientific workflows, the provenance of their executions, interconnections
between workflows and related resources (e.g., datasets, publications, etc.), and
social aspects related to such scientific experiments.

7 SPAR Ontologies website: http://purl.org/spar.
8 Workflow 4ever project homepage: http://www.wf4ever-project.org.
9 Research Object website: http://www.researchobject.org.

10 Research Object OWL ontology: http://purl.org/wf4ever/ro.

A pattern-based ontology for describing publishing workflows 3

Another interesting proposal for describing workflows is the work done by
Garijo and Gil [7]. In this work, they describe a framework to publish compu-
tational workflows, which includes the specification a particular OWL ontology,
i.e., the Open Provenance Model for Workflows (OPMW)11, for the description
of workflow traces and their templates. Along the lines of the aforementioned
work, the same authors recently published the Ontology for Provenance and
Plans (P-Plan)12. P-Plan is an OWL 2 DL ontology that extends the Prove-
nance Ontology [12] in order to represent the plans that guided the execution
of scientific processes, describing how such plans are composed and their corre-
spondence to provenance records that describe the execution itself.

Finally, among the other proposals for describing workflows, it worths men-
tioning the OWL ontology proposed by Sebastian et al. [18] for describing generic
workflows, which reuses existing ontologies such as the Change and Annotations
Ontology (ChAO) [13], and the SCUFL2 Core ontology13 that has been used
to describe workflows in Taverna14, an open source and domain-independent
Workflow Management System [19].

3 Foundational material: design patterns

In order to design an ontology for modelling (publishing) workflows, we have to
understand what are the minimal characteristics that such ontology should ad-
dress and if we can reuse some existing modelling solutions. Oxford Dictionaries
defines workflow as follows:

“The sequence of industrial, administrative, or other processes through
which a piece of work passes from initiation to completion.”15

From this definition it is possible to identify some important characteristics
of any workflow, i.e., the fact that it involves a sequence of processes that allow
to initiate and then complete a piece of work during a specifiable time interval.
The definition of the SearchCIO website is still more specific:

“Workflow is a term used to describe the tasks, procedural steps, organi-
zations or people involved, required input and output information, and
tools needed for each step in a business process.”16

From this definition we can spot other crucial aspects. First of all, its struc-
tural organisation in procedural steps, each of them describes tasks performed
by organisations and people, and each step requires some input information and
tools in order to produce an output. Using these two definition as input, we

11 Open Provenance Model for Workflows: http://www.opmw.org/ontology/.
12 Ontology for Provenance and Plans: http://purl.org/net/p-plan#.
13 http://ns.taverna.org.uk/2010/scufl2
14 http://www.taverna.org.uk
15 http://www.oxforddictionaries.com/definition/english/workflow
16 http://searchcio.techtarget.com/definition/workflow

4 Gangemi et al.

can identify some well-known ontological patterns that already address, from an
abstract point of view, some of the aspects related of workflows.

Participation. The participation pattern17 is a simple pattern that allows us
to describe processes, events, or states (through the class Event), and to specify
the various objects (through the class Object) that participate in these events.

This pattern seems to be very useful to define workflows as events involving
people, organisations, places, and other objects as participants, as well as to link
workflows and related activities to the expected steps .

Sequence. The sequence pattern18 is another pattern that can be used be-
tween tasks, processes or time intervals, in order to define sequences of such
objects through direct (i.e., directlyFollows and directlyPrecedes) and transitive
relations (i.e., follows and precedes). It is, of course, very useful to describe the
logical organisation of the various steps of a workflow.

Control flow and plan execution. The control flow pattern19 is an OWL
representation of some of the constructs defined in the Workflow Patterns20 by
Wil van der Alst (cf. [17]). Either action or control (e.g., branching, concurrency,
looping) tasks are represented and related by means of the sequence pattern.
Tasks are distinct from activities, which are supposed to be executed based on the
task structure. This link is made in the context of the basic plan description21 and
the basic plan execution22 patterns, which reuse the foundational descriptions
and situations pattern to relate task compositions (plans) to organised activities
(plan executions). A comprehensive presentation is provided in [6].

These patterns are of course, very useful to describe the kinds of steps (the
term used here for tasks) in a workflow and in general in publishing workflows.
The action and control tasks from the control flow pattern are not specialised in
the publishing workflow pattern, because they are expected to work as they are
(by typing the steps according to their workflow semantics) when the need for
control flows emerges in a planned workflow.

Time-indexed situation. The time-indexed situation pattern23 allows the
description of a situation (i.e., the class TimeIndexedSituation) – i.e., a view on
a set of entities linked to it through the property isSettingFor – that is explicitly
indexed at some time specifiable through the property atTime linking a time
interval (i.e., an instance of the class TimeInterval).

This pattern can be used to describe steps from an abstract point of view as
kinds of situations representing the settings for all the events and input/output
material needed or produced by these steps. Notice that time-indexed situation
combines perfectly with plan execution in order to provide a temporal ordering
to activities organised into a plan.

17 http://www.ontologydesignpatterns.org/cp/owl/participation.owl
18 http://www.ontologydesignpatterns.org/cp/owl/sequence.owl
19 http://www.ontologydesignpatterns.org/cp/owl/controlflow.owl
20 The Workflow Patterns page is: http://www.workflowpatterns.com.
21 http://www.ontologydesignpatterns.org/cp/owl/basicplandescription.owl
22 http://www.ontologydesignpatterns.org/cp/owl/basicplanexecution.owl
23 http://www.ontologydesignpatterns.org/cp/owl/timeindexedsituation.owl

A pattern-based ontology for describing publishing workflows 5

Error Ontology. The Error Ontology24 is a unit test that produces an
inconsistent model if a particular (and incorrect) situation happens. It works by
means of a data property, error:hasError, that denies its usage for any resource,
as shown as below (in Manchester Syntax [9]):

DataProperty: error:hasError
Domain: error:hasError exactly 0 Range: xsd:string

A resource that has an error makes the ontology inconsistent, since its domain
is “all those resources that do not have any error:hasError assertion”.

This model is very useful in our context in order to define constraints on the
input/output objects needed by the steps of a workflow. For instance, we could
use it to deny the use of a certain object as input of a step if it will be produced
only as output of one of the following steps.

4 PWO: the Publishing Workflow Ontology

In order to accommodate workflow requirements, we developed the Publishing
Workflow Ontology25 (PWO), which is entirely based on the ontology patterns
introduced in Section 3. This ontology allows one to describe the logical steps in
a workflow, as for example the process of publication of a document. Each step
may involve one or more events (or actions) that take place to a particular phase
of the workflow (e.g., authors are writing the article, the article is under review,
a reviewer suggests to revise the article, the article is in printing, the article has
been published, etc.).

As shown in Fig. 1, PWO is based on two main classes, which are:

– class pwo:Workflow. It represents a sequence of connected tasks (i.e., steps)
undertaken by the agents; it is a subclass of plan:PlanExecution26;

– class pwo:Step. It is an atomic unit of a workflow, subclass of taskrole:Task;
it is characterised by a (required) starting time and an ending time, and it is
associated with one or more events (activities) that are executed within the
step. A workflow step usually involves some input information, material or
energy needed to complete the step, and some output information, material
or energy produced by that step. In the case of a publishing workflow, a
step typically results in the creation of a publication entity, usually by the
modification of another pre-existing publication entity, e.g., the creation of
an edited paper from a rough draft, or of an HTML representation from an
XML document.

24 http://www.essepuntato.it/2009/10/error
25 http://purl.org/spar/pwo
26 Note that in PWO we are not using explicitly the separation between workflow

definition and workflow execution, since PWO has been thought as an ontology to
provide a retrospective description of running workflows. Even if this is a simpli-
fication of the whole approach described by the imported patterns, we decided to
include both patterns for workflow definition and execution in order to handle even
workflow definitions in case we may need it (even if we have not yet explored this
use of PWO properly).

6 Gangemi et al.

Fig. 1. Gra↵oo representation [5] of the Publishing Workflow Ontology (PWO).

PWO was implemented according to the aforementioned ontology patterns.
As shown in Table 1, such patterns have been used as follows:

– plan execution to describe workflows as plans, and their executions;
– time-indexed situation to describe workflow steps as entities that involve a

duration and that are characterised by events and objects (needed for and
produced by the step);

– sequence to define the order in which steps appear within a workflow;
– control flow to describe the specialization and nature of steps at planning

time;
– participation to describe events (and eventually agents involved) taking part

in the activities carried out according to the steps.

In addition, by means of the Error Ontology, we can generate an inconsistency
every time the steps of a workflow are not arranged in a correct temporal order.
In particular, an error is raised when a step requires (property pwo:needs) to use
a particular object that will be produced (property pwo:produces) as consequence
of another sequent step. The following excerpt shows the implementation of this
constraint through a SWRL rule [10]:

Step(?step1) , Step(? step2) , needs (?step1 ,? resource) ,
produces (?step2 ,? resource) , sequence:precedes (?step1 ,? step2)

-> error:hasError (?step1 ,"A step cannot need a resource that will be
produced by a following step "^^xsd:string)

In the next subsections we show how to describe the process of publication
of a journal article step by step. In particular we introduce how PWO can be
used in combination with existing data of the Semantic Web Journal27 [11] and
other SPAR ontologies, such as PSO [15], C4O [4], FaBiO and CiTO [14].

27 Semantic Web Journal data: http://semantic-web-journal.com/sejp.

A pattern-based ontology for describing publishing workflows 7

Table 1. A summary of all the entities of PWO and their relations with the original
pattern-based entities.

PWO entity Pattern entity Description

Workflow
Plan

(plan execution)
The class of particular situation types describing a
real-life work, composed by a sequence of steps

Step
Task

(task role, via control flow)
The class describing specific tasks that form the workflow

and that are done within particular time intervals

hasStep
definesTask

(basic plan description)
The relation linking a workflow to a component step

hasFirstStep
definesTask

(basic plan description)
A sub-property of hasStep which identifies the starting

step of a workflow

hasNextStep
directlyPrecedes

(sequence)
An object property linking a step in a workflow with the

step that directly follows it

hasPreviousStep
directlyFollows
(sequence)

An object property linking a step in a workflow with the
step that directly precedes it

involvesAction
isExecutedIn

(task execution)
The object property linking a step in a workflow to an

activity done in the context of that step

needs
forEntity

(time-indexed situation)
The object property linking a workflow step to anything

required to undertake that step

produces
forEntity

(time-indexed situation)
The object property linking a workflow step to the thing

that the step produces, creates or results in

4.1 A typical publishing workflow of a journal article

From a pure publisher’s perspective, the first step of any workflow that brings
to a new journal publication starts with a formal submission of a manuscript
performed by someone, hereinafter the author. This activity expresses, at the
same time, interest on the topics of the journal and may acknowledge, indirectly,
the quality of the journal itself – since authors (usually) would like to publish
articles in a venue that they consider respectful and qualitatively worth for
di↵erent reasons (e.g., quality of reviews, journal impact factor, definite timing
of the publishing process). Then, in the next step, i.e., the reviewing phase,
the person (designated by the publisher) in charge of the quality of submitted
material, hereinafter the editor, invites other people (hereinafter the reviewers)
for assessing the quality of the submitted manuscript. The opinions returned by
the reviewers to the editor are the fundamental input that the editor will use to
decide upon the fate of the manuscript during the next step, i.e., the decision
phase. Finally, if the manuscript have been considered worth of publication in
the present form, the editor will acknowledge the author of the acceptance of
his/her work – and the next steps of the workflow will be in charge of the
publisher itself. Otherwise, if the article is not ready for being published, the
editor either may ask for its rejection, thus finishing the workflow, or (s)he
can return a list of issues to be addressed to the author in order to deserve
publication. In this latter case, the revision phase will start and the author will
revise the paper according to reviewers’ comments and editor’s suggestions, and
thus the workflow will continue with a new submission phase.

8 Gangemi et al.

Fig. 2. A diagram describing the typical publishing workflow of a journal article –
note that it does not take into account any withdrawing action by the author, nor any
comment made by users on publisher’s website before/after article publication.

The whole publishing workflow we have described (summarised in Fig. 2) can
be formally represented by means of PWO. In the following excerpt (in Turtle
[16]) we create an instance of the class pwo:Workflow as composed by a definite
(but not specified, in this example) number of steps28:

:workflow a pwo:Workflow ;
pwo:hasFirstStep :step -one ;
pwo:hasStep :step -two , :step -three , :step -four ,

In the next sections we show how to describe the first four steps of such
workflow by taking into account real publication data available in the Semantic
Web Journal Linked Data repository concerning [3].

4.2 Submission

The first step of the workflow concerned the submission of a manuscript by one
of its authors, in this case Paolo Ciccarese. Thus, the manuscript received the
status of “submitted” and it was made available to the journal editor and the
reviewers for the next step of the workflow. In order to describe all these aspects
concerning the first step, we use several entities defined in the ontology patterns
imported by PWO, as well as a number of other entities from another SPAR
ontology, i.e., the Publishing Status Ontology (PSO)29 [15]. This is an ontology
for describing the status held by a document or other publication entity at each
of the various stages in the publishing process. In addition, existing entities of
the Semantic Web Journal Linked Data repository (e.g., people and manuscripts)
are reused in order to demonstrate the flexibility of PWO in working with other
existing models and data, as shown as follows:

:step -one a pwo:Step ; # Submission step
pwo:involvesAction :submission -action ; tisit:atTime [a ti:TimeInterval ;

ti:hasIntervalStartDate "2013 -01 -21 T10 :08:28"^^ xsd:dateTime ;
ti:hasIntervalEndDate "2013 -01 -21 T10 :08:28"^^ xsd:dateTime] ;

28 Prefixes available at http://www.essepuntato.it/2014/wop/prefixes.ttl.
29 http://purl.org/spar/pso

A pattern-based ontology for describing publishing workflows 9

pwo:needs swj -node :432 ; pwo:produces :submitted -status ;
pwo:hasNextStep :step -two .

The event in which one of the authors submits the manuscript
:submission -action a taskex:Action ;

dcterms:description "Paolo Ciccarese submits the paper" ;
part:hasParticipant swj:paolo -ciccarese , swj -node :432 .

The new status ’submitted ’ associated to the paper after the submission
:submitted -status a pso:StatusInTime ; pso:isStatusHeldBy swj -node :432 ;

pso:isAcquiredAsConsequenceOf :submission -action ;
pso:withStatus pso:submitted ; tvc:atTime [a ti:TimeInterval ;

ti:hasIntervalStartDate "2013 -01 -21 T10 :08:28"^^ xsd:dateTime] .

4.3 Reviewing

The step regarding the reviewing phase began with the activity of the editor,
Giancarlo Guizzardi, of looking for appropriate reviewers for the paper. Once
found, the reviewers were provided with the manuscript, reviewed it, and wrote
down their comments that were finally sent back to the editor. In order to de-
scribe all the aspects concerning the second step, we use several entities defined
in additional SPAR ontologies, i.e., the Citation Counting and Context Char-
acterisation Ontology (C4O)30 [4] the Citation Typing Ontology (CiTO)31 [14],
in order to express the content of reviews and to explicitly link those to the
manuscript they reviewed. In the following excerpt we introduce the formalisa-
tion in PWO of the second step of the workflow:

:step -two a pwo:Step ; pwo:hasNextStep :step -three ; # Reviewing step
pwo:involvesAction :choosing -reviewers -action ,

:reviewing -action , :reviews -notification -sending -action ;
tisit:atTime [a ti:TimeInterval ;

ti:hasIntervalStartDate "2013 -02 -18 T17 :04:32"^^ xsd:dateTime ;
ti:hasIntervalEndDate "2013 -04 -01 T05 :53:24"^^ xsd:dateTime] ;

The review process can start only when a manuscript has been submitted
pwo:needs swj -node :432 , :submitted -status ;
pwo:produces :review -1, :review -2, :under -review -status , :reviewed -status.

:choosing -reviewers -action a taskex:Action ;
dcterms:description "The editor , Giancarlo Guizzardi , chooses Csaba Veres

and Fernando Naufel do Amaral as reviewers of the manuscript" ;
part:hasParticipant swj:csaba -veres , swj:fernando -naufel -do-amaral ,

swj:giancarlo -guizzardi , swj -node :432 .
:reviewing -action a taskex:Action ;

dcterms:description "Reviewers review the manuscript" ;
part:hasParticipant

swj:csaba -veres , swj:fernando -naufel -do -amaral , swj -node :432 .
:reviews -notification -sending -action a taskex:Action ;

dcterms:description "The reviews are sent to the editor" ;
part:hasParticipant swj:csaba -veres , swj:fernando -naufel -do-amaral ,

:review -1 , :review -2 , swj:giancarlo -guizzardi .
:review -1 a fabio:Comment ; # Review 1 by Csaba Veres

frbr:realizationOf [a fabio:Review] ;
cito:reviews swj -node :432 ; frbr:realizer swj:csaba -veres ;
c4o:hasContent "The paper addresses a very practical ..." .

:review -2 a fabio:Comment ; # Review 2 by Fernando Naufel do Amaral
frbr:realizationOf [a fabio:Review] ; cito:reviews swj -node :432 ;
frbr:realizer swj:fernando -naufel -do-amaral ;
c4o:hasContent "The paper presents the Collection Ontology (CO)..." .

The paper has been assigned to the under -review status for a while
:under -review -status a pso:StatusInTime ; pso:isStatusHeldBy swj -node :432 ;

30 http://purl.org/spar/c4o
31 http://purl.org/spar/cito

10 Gangemi et al.

pso:isAcquiredAsConsequenceOf :reviewing -action ;
pso:isLostAsConsequenceOf :reviews -notification -sending -action ;
pso:withStatus pso:under -review ; tvc:atTime [a ti:TimeInterval ;

ti:hasIntervalStartDate "2013 -02 -26 T12 :00:07"^^ xsd:dateTime ;
ti:hasIntervalEndDate "2013 -04 -01 T05 :53:24"^^ xsd:dateTime] .

The paper status has changed in ’reviewed ’ after reviewers ’ comments
:reviewed -status a pso:StatusInTime ; pso:isStatusHeldBy swj -node :432 ;

pso:isAcquiredAsConsequenceOf :reviews -notification -sending -action ;
pso:withStatus pso:reviewed ; tvc:atTime [a ti:TimeInterval ;

ti:hasIntervalStartDate "2013 -04 -01 T05 :53:24"^^ xsd:dateTime] .

4.4 Decision

During the third step, the editor was responsible for the fate of the paper and
provided a decision for it according to reviewers’ comments. Once formalised
the decision, a decision letter was sent by email to the corresponding author
(i.e., Paolo Ciccarese) and the status of the paper changed in then in “minor
revision”. In the following excerpt we introduce the formalisation in PWO of the
third step of the workflow:

:step -three a pwo:Step ; pwo:hasNextStep :step -four ; # Notification step
pwo:involvesAction :decision -action , :notification -action ;
tisit:atTime [a ti:TimeInterval ;

ti:hasIntervalStartDate "2013 -04 -01 T05 :53:24"^^ xsd:dateTime ;
ti:hasIntervalEndDate "2013 -06 -10 T17 :47:53"^^ xsd:dateTime] ;

pwo:needs swj -node :432 , :review -1 , :review -2 ;
pwo:produces :minor -revision -status , :decision -letter .

:decision -action a taskex:Action ;
dcterms:description "The editor decides for acceptance or not" ;
part:hasParticipant

swj:giancarlo -guizzardi , :review -1 , :review -2 ,swj -node :432 .
:notification -action a taskex:Action ;

dcterms:description "The editor notifies his decision to the corresponding
author (i.e., Paolo Ciccarese)." ;

part:hasParticipant swj:giancarlo -guizzardi , :decision -letter ,
:review -1 , :review -2 , swj:paolo -ciccarese , swj -node :432 .

The decision letter written by the editor
:decision -letter a fabio:Letter , fabio:Email ;

frbr:realizationOf [a fabio:Opinion] cito:citesAsRelated swj -node :432 ;
frbr:realizer swj:giancarlo -guizzardi ;
c4o:hasContent "Dear authors , Thank you for your interest in..." .

The minor revision status assigned to the paper after editor ’s decision
:minor -revision -status a pso:StatusInTime ; pso:isStatusHeldBy swj -node :432 ;

pso:isAcquiredAsConsequenceOf :decision -action ;
pso:withStatus swj:minorRevision ; tvc:atTime [a ti:TimeInterval ;

ti:hasIntervalStartDate "2013 -06 -10 T17 :47:53"^^ xsd:dateTime] .

4.5 Revision

During the fourth step, the authors worked in order to revise the content of
the previous version of the paper according to reviewers’ comments and editor’s
suggestions. At the end of this step, the main result was the creation of a new
version of the paper (i.e., swj-node:506 in our example) that had to be submitted
in the next step. In the following excerpt we introduce the formalisation in PWO
of the fourth step of the workflow:

:step -four a pwo:Step ; pwo:hasNextStep :step -five ; # Revision step
pwo:involvesAction :revision -action ; tisit:atTime [a ti:TimeInterval ;

A pattern-based ontology for describing publishing workflows 11

ti:hasIntervalStartDate "2013 -06 -10 T17 :47:53"^^ xsd:dateTime ;
ti:hasIntervalEndDate "2013 -07 -01 T05 :51:30"^^ xsd:dateTime] ;

pwo:needs swj -node :432 , :decision -letter , :review -1 , :review -2 ;
pwo:produces swj -node :506 .

:revision -action a taskex:Action ;
dcterms:description "The authors revises the paper" ;
part:hasParticipant swj -node :432 , :decision -letter ,

:review -1 , :review -2 , swj:silvio -peroni , swj:paolo -ciccarese .

5 Conclusion

In this paper we introduced the Publishing Workflow Ontology (PWO), i.e., an
OWL 2 DL ontology part of the Semantic Publishing and Referencing (SPAR)
Ontologies, which allows the description of publishing workflows in RDF. The
whole ontology is entirely based on existing ontology design patterns that allowed
us to model the various aspects of workflows in an appropriate and standardised
way. We showed a particular use of PWO for describing the first steps of a real
publishing workflow concerning the publication of an article of the Semantic
Web Journal, i.e., [3], in which we reused entities and data coming from several
models and data, e.g., other SPAR ontologies and existing resources from the
Semantic Web Journal Linked Dataset.

Although PWO had been thought in principle to describe publishing-related
workflows, it has been developed on purpose as an ontology for the description of
generic workflows. In future we plan to align it to other workflow-related models,
e.g., PROV-O, the Research Object ontology and the other ontologies described
in Section 2. In addition, we are currently studying the applicability of PWO
in the legal and scientific domains. In particular, we plan to work on its use for
describing workflows that concern the process of codification of the laws of the
United States legislation and the series of computational or data manipulation
steps in scientific applications.

References

1. Belhajjame, K., Corcho, O., Garijo, D., Zhao, J., Missier, P., Newman, D. R., ...
Goble, C. (2012). Workflow-Centric Research Objects: A First Class Citizen in the
Scholarly Discourse. In Proceedings of the 2nd Workshop on Semantic Publishing
(SePublica 2012). http://ceur-ws.org/Vol-903/paper-01.pdf

2. Belhajjame, K., Zhao, J., Garijo, D., Hettne, K. M., Palma, R., Corcho, O., ... Goble,
C. A. (2014). The Research Object Suite of Ontologies: Sharing and Exchanging
Research Data and Methods on the OpenWeb. The Computing Research Repository
(CoRR), abs/1401.4307. http://arxiv.org/abs/1401.4307

3. Ciccarese, P., & Peroni, S. (2013). The Collections Ontology: creating and handling
collections in OWL 2 DL frameworks. Semantic Web. DOI: 10.3233/SW-130121

4. Di Iorio, A., Nuzzolese, A. G., Peroni, S., Shotton, D., & Vitali, F. (2014). Describ-
ing bibliographic references in RDF. In Proceedings of 4th Workshop on Semantic
Publishing (SePublica 2014). http://ceur-ws.org/Vol-1155/paper-05.pdf

5. Falco, R., Gangemi, A., Peroni, S., & Vitali, F. (2014). Modelling OWL ontologies
with Gra↵oo. In ESWC 2014 Satellite Events - Revised Selected Papers.

12 Gangemi et al.

6. Gangemi, A., Borgo, S., Catenacci, C., & Lehmann, J. (2004).
Task taxonomies for knowledge content. METOKIS Deliverable D7.
http://metokis.salzburgresearch.at/files/deliverables/metokis d07 task taxonomies
final.pdf

7. Garijo, D., & Gil, Y. (2011). A new approach for publishing workflows: abstractions,
standards, and linked data. In Proceedings of the 6th workshop on Workflows in sup-
port of large-scale science (WORKS 2011): 47–56. DOI: 10.1145/2110497.2110504

8. Hettne, K., Soiland-Reyes, S., Klyne, G., Belhajjame, K., Gamble, M., Bechhofer,
S., ... Corcho, O. (2012). Workflow forever: semantic web semantic models and tools
for preserving and digitally publishing computational experiments. In Proceedings
of the 4th International Workshop on Semantic Web Applications and Tools for the
Life Sciences (SWAT4LS 2011): 36–37. DOI: 10.1145/2166896.2166909

9. Horridge, M., & Patel-Schneider, P. F. (2012). OWL 2 Web Ontology Language:
Manchester Syntax (Second Edition). W3C Working Group Note, 11 December
2012. http://www.w3.org/TR/owl2-manchester-syntax/

10. Horrocks, I., Patel-Schneider, P. F., Boley, H., Tabet, S., Grosof, B., & Dean, M.
(2004). SWRL: A Semantic Web Rule Language Combining OWL and RuleML.
W3C Member Submission, 21 May 2004. http://www.w3.org/Submission/SWRL/

11. Hu, Y., Janowicz, K., McKenzie, G., Sengupta, K., & Hitzler, P. (2013). A Linked-
Data-Driven and Semantically-Enabled Journal Portal for Scientometrics. In Pro-
ceedings of the 12th International Semantic Web Conference (ISWC 2013): 114–129.
DOI: 10.1007/978-3-642-41338-4 8

12. Lebo, T., Sahoo, S., & McGuinness, D. (2013). PROV-O: The PROV Ontology.
W3C Recommendation, 30 April 2013. http://www.w3.org/TR/prov-o/

13. Noy, N. F., Chugh, A., Liu, W., & Musen, M. A. (2006). A Framework for Ontology
Evolution in Collaborative Environments. In Proceedings of the 5th International
Semantic Web Conference (ISWC 2006): 544–558. DOI: 10.1007/11926078 39

14. Peroni, S., & Shotton, D. (2012). FaBiO and CiTO: Ontologies for de-
scribing bibliographic resources and citations. Web Semantics,17: 33–43. DOI:
10.1016/j.websem.2012.08.001

15. Peroni, S., Shotton, D., & Vitali, F. (2012). Scholarly publishing and linked data:
describing roles, statuses, temporal and contextual extents. In Proceedings of the
8th International Conference on Semantic Systems (i-Semantics 2012): 9–16. DOI:
10.1145/2362499.2362502

16. Prud’hommeaux, E., & Carothers, G. (2014). Turtle - Terse RDF Triple Language.
W3C Recommendation, 25 February 2014. http://www.w3.org/TR/turtle/

17. Russell, N., ter Hofstede, A.H.M., van der Aalst, W.M.P., & Mulyar, N. (2006).
Workflow Control-Flow Patterns: A Revised View. BPM Center Report BPM-06-22.
http://www.workflowpatterns.com/documentation/documents/BPM-06-22.pdf

18. Sebastian, A., Noy, N. F., Tudorache, T., & Musen, M. A. (2008). A Generic Ontol-
ogy for Collaborative Ontology-Development Workflows. In Proceedings of the 16th
International Conference on Knowledge Engineering and Knowledge Management
(EKAW 2008): 318–328. DOI: 10.1007/978-3-540-87696-0 28

19. Wolstencroft, K., Haines, R., Fellows, D., Williams, A., Withers, D., Owen, S., ...
Goble, C. (2013). The Taverna workflow suite: designing and executing workflows
of Web Services on the desktop, web or in the cloud. Nucleic Acids Research, 41
(W1): W557–W561. DOI: 10.1093/nar/gkt328

Building ontologies from textual resources: A pattern
based improvement using deep linguistic information

Sami Ghadfi, Nicolas Béchet and Giuseppe Berio

IRISA, UMR 6074, Université de Bretagne-Sud, 56017 Vannes, France
sami.ghadfi@gmail.com, nicolas.bechet@irisa.fr, giuseppe.berio@univ-ubs.fr

Abstract. Ontologies are a key component for several applications. Ontologies
are often built by hand, but automatizing the process of ontology building has
been and is even more recognized as very important for scaling and speeding up
this process. However, several difficulties have been identified, some of them
are quite fundamental. In this paper, we present our work for overcoming some
of the fundamental difficulties. Our work resulted in improvements of an exist-
ing ontology building tool (Text2Onto). The contribution of our work consists
in the creation of a flexible language (DTPL—Dependency Tree Patterns Lan-
guage) for expressing patterns as syntactic dependency trees to extract semantic
relations, and making an existing ontology building tool (Text2Onto) able to use
them. DTPL allows to exploit deep linguistic information (related to co-
reference resolutions, conjunctions, appositions, passive verbal phrases, etc.)
provided by deep syntactic analysis of the text, and also (in order to improve the
accuracy of patterns) to express the exclusion of some dependency bindings in
patterns.

Keywords: ontology building, semantic relation extraction, dependency tree
patterns, deep linguistic information, Text2Onto, DTPL.

1 Introduction

Ontologies are a key component for several applications. Ontologies are often built by
hand, but automatizing the process of building ontologies has been and is even more
recognized as very important for scaling and speeding up this process. Indeed, hu-
mans employ texts for providing information directly or indirectly, through the Web
for instance. However, unstructured or semi-structured texts do not provide a well-
defined semantic structure to be used by machines for reasoning tasks. Ontologies
play therefore the key role for representing more explicitly the knowledge hidden in
texts. As a consequence, ontologies can be made available for further applications.

Unfortunately, several difficulties concerning automatic ontology building have
been identified, some of them are quite fundamental.

Additional arguments suggesting the need for developing complete “Ontology
Building Support Systems” (OBSS) can be mentioned. Despite the fact that humans
can recognize ontology artifacts from terms and sentences (which is enabled by their
knowledge of the domain and the contexts on which terms are put together in sen-
tences, suggesting semantic relations between terms), OBSS can supply the frequent

mailto:nicolas.bechet@irisa.fr

terms and the contexts in which they appear, and systematically apply rules for sug-
gesting how they are related to ontology artifacts. The magnitude of these terms and
contexts makes their identification a task more suitable for machines than humans. In
addition, ontologies evolve and these evolutions should be supported by automated
systems.

For ontology building, there are two main challenges to be taken into account,
which correspond to the basic building blocks of any ontology:

─ The extraction of concepts and their possible instances: it is a task in which we
further distinguish between the extraction of the concept/instance itself, and nam-
ing it;

─ The extraction of semantic relations (hierarchical and non-hierarchical): it is a task
in which we distinguish between identifying the relation occurrence (for example,
identifying the relation occurrence “lion,animal”), and then identifying the seman-
tic relation to which it belongs (“lion,animal” is an occurrence of a hyponymy rela-
tion, the whole relation occurrence can be rewritten as is-hyponym-
of(lion,animal)).

Even if these two challenges are partially connected (i.e. the extraction of relations
may impact on already extracted concepts and instances or may lead to additional
concepts and instances), in this paper, we concentrate on the second one, i.e. semantic
relation extraction. However, as better explained in Section 2, concept/instance ex-
traction and relation extraction can be treated separately. This is also confirmed by the
fact that tools used or usable for concept/instance extraction are developed inde-
pendently for performing well identified tasks such as terminology extraction (possi-
bly comprising disambiguation) and entity identification.

Semantic relation extraction methods can be categorized into two approaches: Pat-
tern based (mainly employing linguistic patterns), and Clustering based (mainly em-
ploying clustering and statistical methods). We consider that linguistic patterns are
natural and concrete (because close to what humans (can) apply when they manually
build ontologies – by following methodologies and design patterns) for improving the
overall ontology building process, thus, we have focused on pattern based approaches
for relation extraction for the following detailed reasons:

─ Patterns represent frequent contexts in which term-pairs related by a given seman-
tic relation tend to appear—the reason for this observation is the way patterns are
constructed; very often, this construction begins by specifying seed examples
(term-pairs related by a given semantic relation), then looking for the contexts –in
sentences– in which they tend to appear together (these contexts can be sequences
or sets of words [1,10], or dependency paths in syntactic dependency trees [12],
[11]), and then generalizing/merging the most similar contexts or keeping only the
most accurate ones (i.e. contexts relating at least a given number of instance exam-
ples)—; for instance, the Hearst pattern " X(NP1) such as Y(NP) " [5] induces the
relation "Y is-hyponym-of X", where the context in this case is the sequence of
words "such as".

─ Patterns fall into two categories: 1. Reliable patterns (they possess high precision
and low recall), 2. Generic patterns (they possess low precision and high recall).
One can use the advantages of one category to overcome the drawbacks of the oth-

1 NP represents a noun phrase.

er. For instance, in [8], the authors have used reliable patterns as a reference to
evaluate the relevance of relation occurrences extracted by generic patterns.

─ Any extraction method and technique that does not use predefined patterns takes
more processing time, because it needs to identify the (frequent) contexts in which
terms related by a given relation do appear (for instance, these contexts can be syn-
tactic dependency links that bind individual words in the text—as used in [2] and
[9]—, etc.). These methods are based on the distributional hypothesis [4] and its
derivations [15], [6], [7].

However, effective usage of patterns within an OBSS remains an open research
question. In Section 2, we present the existing methods for pattern-based relation
extraction, and also their inherent difficulties (or limitations) preventing to get ac-
ceptable ontologies. Section 3 presents the contributions of the paper, i.e. (I) A meth-
od for enhancing OBSS with the ability to use deep linguistic information for relation
extraction, (II) Making the generation of relations (including how relations can be
named) through patterns very flexible, and (III) Implementing this method within an
existing ontology building tool (Text2Onto). We finally conclude by summarizing the
contributions and presenting perspectives in Section 4.

2 Difficulties

Willing to semi-automatically build ontologies (or to support ontology building as
best as possible) starting form texts, improvements can be concentrated on:

─ Improving the input text by modifying (substituting) the employed terms (e.g. for
adopting a more standard terminology) and sentence structures, resolving ambigui-
ties and co-references and so on;

─ Improving the quality of the final ontology by performing a quality assessment
(e.g. using reasoning, if applicable, similarity (and other) measures) followed by
relevant modifications;

─ Improving the process of building the ontology by improving the efficiency and
effectiveness of the required tasks (i.e. relation extraction, concept/instance extrac-
tion, etc.).

In this paper, we focus on the third line of improvements, and more specifically,
(as said in the Introduction) on relation extraction, because, as explained in section
2.1 below, concept/instance extraction can be performed independently from relation
extraction. Section 2.2 presents the inherent difficulties in using pattern-based ap-
proaches for extracting semantic relations and related work.

2.1 Reasons for processing relation extraction and concept/instance extraction
separately

Although concept/instance extraction and relation extraction are two partially de-
pendent tasks, they can be treated separately. A formal justification can be presented
as follows, on the top of a hypothetical ontology Description Logics formalization;
whenever a relation (role) R is newly introduced, additional axioms involving existing
concepts can be added. Generally speaking, introducing R can result in 3 situations:

─ Additional specification for an existing concept C e.g. C⊑ ∃R.⊤⊓∀R.⊤ or
C⊓∃R.⊤⊓∀R.⊤≠⊥;

─ Splitting an existing concept in subconcepts C’, C’’ such as, for instance,
C⊑C’⊓C’’, C’⊑∃R.⊤⊓∀R.⊤;

─ Creating a new concept C’ such that C’⊑∃R.⊤⊓∀R.⊤.
These few arguments should convince the reader that the extraction of relationships
can be modularly managed as well. As a consequence, addressing only the difficulties
concerning relation extraction is not a limitation; it even contributes in a well-defined
modular way to improve concept/instance extraction.

2.2 Relation extraction methods using flat patterns and the inherent
difficulties

Pattern-based relation extraction methods often concern hyponymy and part-of rela-
tions [8]. These methods often use patterns expressed as flat regular expressions (Flat
patterns), which contain basic syntactic information (like part of speech tags, lemmas,
affixes, etc.). The most known and successful example of using flat patterns is Hearst
patterns [5], which are used for extracting the hyponymy relation (or IS-
A/subsumption relation when using the standard ontology terminology). Because of
their high precision, Hearst patterns have been used even in clustering-based relation
extraction methods: for instance, in [2], Hearst patterns have been used to name the
clusters of a hierarchy of terms based on the hyponymy relation (a hyponymy hierar-
chy is close to an IS-A taxonomy). In [10], a similar approach has been used for nam-
ing the clusters of a hyponymy hierarchy.

Another successful use of flat patterns is using reliable patterns to correct the ex-
traction results of less accurate patterns [8].

Java Annotation Patterns Engine (JAPE), a language of the open-source platform
General Architecture for Text Engineering (GATE2), has been the key language for
expressing flat patterns. With JAPE, flat patterns are expressed as transducers (using
macros, input and output annotations) to annotate sentences in the text that match the
pattern. Transducers are organized in queues corresponding to sentences in which, the
results (output annotations or macros) of one phase can be used as inputs by the next
one. A relevant usage of JAPE can be found in Text2Onto [3] (an ontology building
tool), where GATE is used as the key library for preprocessing. Text2Onto prepro-
cessing tasks involve some of GATE’s components such as the Part Of Speech (POS)
tagger, the named entity extractor, and also patterns made by the user.

Using flat patterns has been successful for extracting semantic relations, but such
patterns suffer from two major limitations that we point out hereafter.

The absence of deep syntactic information in flat patterns leads to misinterpreta-
tions when these patterns are matched to the text. Consider the following sentences:
(s1) “The semantic formalization of knowledge has been achieved by the use of sever-
al tools such as ontologies, semantic networks and expert systems.”;; (s2) “Euclid, a
great mathematician in his own right, showed to a king that there is no royal road to
geometry.”. In these sentences, the comma can play two roles, i.e. a conjunction in
(s1), or an introducer of apposition in (s2) (in (s2) the apposition is "great mathemati-
cian"). Another example of cases leading to misinterpretations is when the syntactic

2 A full documentation on GATE can be found at http://gate.ac.uk/documentation.html

http://en.wikipedia.org/wiki/General_Architecture_for_Text_Engineering

structure of the text (having impact on its semantic interpretation) cannot be efficient-
ly and effectively captured by flat patterns. This includes cases like verb phrases ex-
pressed in active or passive form, or discontinuity cases (topicalization, etc.).

Flat patterns contain often unnecessary symbols for relation extraction, which of-
ten reduce the patterns coverage. It is the syntactic information conveyed by symbols
that should be identified: in the example above (sentences (s1) and (s2)), what is in-
teresting is to know whether the comma symbol represents a conjunction or an appo-
sition. Another example is in the Hearst pattern P: " <Hypernym>(NP) including
<Hyponym>(NP) ". The flat pattern P can be applied successfully to extract the hyp-
onymy relation instance "specie is-hyponym-of organism" (r1) from the sentence (s3)
“Organisms including species like flies, yeast, monkeys and worms have previously
been put on diets and shown to have their life spans extended by 30 to 200%.”. How-
ever, if we insert the adjective diverse between including and species in the sentence
(s3) (which results in the sentence (s4) “Organisms including diverse species like
flies, yeast, monkeys and …”), then P does not match anymore. However, the seman-
tic relation (r1) should have been extracted from both sentences. Adding an adjective
between the word including and the hyponym in P is not necessary (from the seman-
tic view) to identify the hyponymy relation.

2.3 Dependency tree patterns

Fig. 1. (t3) A sub-tree of the syntactic dependency tree of the sentence (s3)

Fig. 2. (t4) A sub-tree of the syntactic dependency tree of the sentence (s4)

The limitations of flat patterns mentioned in Section 2.2, can be overcome by using
patterns that take into account deep linguistic information, i.e. syntactic dependency
links3. We call these patterns Dependency Tree patterns (DT patterns). For example,
the limitation involving the Hearst pattern P and sentences (s3) and (s4) mentioned in
Section 2.2 can be overcome by the following DT pattern P2 " <Hypernym>(NP) --
prep--> including(VBG4) --pobj--> <Hyponym>(NP) ". A matching between P2 and

3 The dependency links (mwe, prep, pobj, amod, etc.) mentioned in this paper are described in

[13].
4 VBG is a part of speech tag corresponding to a gerund or the present participle of a verb.

the dependency tree t3/t4 (of the sentence s3/s4) in Figures 1,2 above allows the ex-
traction of the same relation (r1).

Using dependency tree patterns for relation extraction has been proposed in [12]
in which the authors presented an algorithm for discovering patterns expressed as
dependency paths. Those patterns allowed the authors of [12] to construct (what they
called) a “hypernym-only classifier” showing a dramatic improvement compared to
previous classifiers: their best logistic regression classifier showed a 132% improve-
ment of average maximum F-score over the Hearst patterns based classifier. In [11]
the authors followed a similar approach which they used to compare dependency tree
patterns to flat patterns in terms of precision and recall (the patterns they used are for
extracting hyponymy relations from Dutch texts) but their result is in contradiction
with the work of [12]; the authors of [11] concluded that using deep syntactic infor-
mation does not produce substantial improvement in the precision and recall of the
extracted results. An explanation for this gap can be identified in the section 4.3 (the
error analysis section) of [11] where one can see that most of the errors are due to the
syntactic analyzer.

However, in the works mentioned above, the usage of dependency tree patterns
has not been made neither systematic nor user-oriented. Indeed, in those works, there
has been no specification of a formal language (in the same way that JAPE allows to
express flat patterns to be used modularly by extraction tools) for expressing DT pat-
terns that can be used by users for programming and experimenting DT patterns.

The most similar work to ours is [16] which presents a new ontology learning
system (OntoCmaps) intended to overcome the drawbacks of tools using flat patterns
which contain only shallow linguistic information (such as Text2Onto). The patterns
used in OntoCmaps [17] contain deep linguistic information and are expressed in a
language syntactically different than ours. Both languages are meant to make patterns
use deep linguistic information for extracting knowledge from the text through the
usage of regular expressions. Some of the differences between the language used to
express patterns in OntoCmaps and DTPL (defined in Section 3) is that the later al-
lows to use many POS tags for a node, it also allows to express properties for patterns
(as the JAPE language does) that extraction tools could use modularly. Another dif-
ference between the two languages is that each pattern expressed in DTPL is meant to
extract only one kind of relations, the reason is that each time that a pattern identifies
more than one kind of relations it indicates nested patterns to differentiate by specify-
ing dependency bindings (each dependency binding consists of a dependency link, the
governor and the dependent) that should not exist when a match occurs (by adding the
symbol ‘!’ to the dependency binding to exclude from the matching, in [18] we pre-
sent an example for such use); this distinction is needed because the extracted results
of one pattern could be erroneous for another one. Another difference is that On-
toCmaps uses collapsed dependencies [13] while we use uncollapsed ones.

3 Improvements in ontology building by using DT patterns

The key contribution of this paper consists in giving OBSS the ability to modularly
use patterns expressed as dependency trees (Dependency Tree patterns—DT pat-
terns) to take into account deep syntactic information found in texts. This will be
achieved by (I) Specifying a formal language for expressing DT patterns to be
matched with syntactic dependency trees of sentences, and (II) Creating and integrat-

ing a new algorithm in an ontology building tool (Text2Onto) to extract semantic
relations by using DT patterns.

3.1 DTPL, a language for expressing DT patterns

In this section we are going to define DTPL (Dependency Tree Patterns Language), a
language for expressing patterns represented as dependency trees, each DT pattern
helps to extract a semantic relation. In order to extract a given relation from a sen-
tence S, a DT pattern must be matched with the syntactic dependency tree of S.

Dependency trees (both patterns and sentences) comprise nodes and arrows. Table
1 provides the reader with the relevant definitions (the 3rd column concerns patterns—
DT patterns— only).

Tree

component
Components of the tree component Optional

or Mandatory
Node NodeValue: it represents either a non-terminal

symbol (output annotation) or a terminal symbol
(word)

mandatory

PosTags: the part(s) of speech of the symbol
represented by this node

mandatory (the wildcard
character * can be used, it
matches with any POS tag)

Index: the index of the symbol in the sentence
in which the pattern is to be matched

optional

Arrow DependencyLink: the name of the dependency
link that exists between the two connected nodes

mandatory

SourceNode: the node from which the arrow is
departing

mandatory

ArrivalNode: the node to which the arrow is
aiming at

mandatory

Table 1. Inner components of a dependency tree

In DT patterns, each node must possess only one parent, with one exception for
any node linked by the ref dependency link (i.e. in a sentence containing a co-
reference, the ref link binds a relative pronoun with the noun it refers to) with its gov-
ernor, the reason is that such nodes have more than one parent (for more detail on co-
reference links used in this paper we refer the reader to [13]). In other terms, without
the occurrences of the ref link, a DT pattern must have a tree structure. In [18] the
reader can find examples that illustrate how the use of co-reference links in DT pat-
terns allows to extract semantic relations.

In DT patterns, each node has to be expressed in the form NodeValue-
Index(PosTags) (e.g. the nodes " as(IN) ", " as-5(IN) ", " as(*) "), see the example at
the end of this subsection. Each arrow must be expressed in the form " Dependen-
cyLabel(SourceNode,ArrivalNode); ". The only imposed constraint is that there
must be no spaces between the closed parenthesis ") " and the " ; " character for ex-
pressing each arrow (for instance, in the arrow " mwe(as(IN),such(JJ)); " of the DT
pattern (dtp1) at Figure 3, we have DependencyLink=mwe, SourceNode=as(IN) and
ArrivalNode=such(JJ)). The output annotation labels (which correspond to non-

terminal symbols) are in the form <annotationLabel>. For instance, <firstHyponym>,
<domain>, <range> and <relationName> are nonterminal symbols in the pattern (dtp1).

DT patterns can possess properties. Each property corresponds to a non-terminal
symbol. Each pattern property is defined between two ‘#’ characters in the form
#propertyName=regularExpression#, where propertyName is the name of the proper-
ty, and regularExpression is a regular expression combining terminal and non-
terminal symbols except pattern properties (for instance, in the pattern (dtp1) it’s not
allowed to define the <relationName> property as follows #<relation-
Name>=<domain>_to_<range># because the non-terminal symbols <domain> and
<range> are also properties of the pattern).

A DT pattern allows to extract a relation (unary, binary, or having any other non-
null arity). The idea is that each argument of a relation can be pointed out by a pattern
property. For instance, to identify the hyponym and hypernym of a hyponymy rela-
tion, one can use the annotations <hyponym> and <hypernym>. For binary relations
(which are quite important because –for instance– any Description Logics formaliza-
tion of an ontology comprises only binary relations), we can use the properties <do-
main> to represent the Domain of a relation and <range> to represent its Range.

The expressions written in a DT pattern are either defining properties (e.g. the 1st
three lines in the patterns of Figure 3) or defining dependency links between nodes.
The order on which POS tags are mentioned for each node isn’t important (for in-
stance, in (dtp2), the nodes <verb>(VBN|VBZ|VBD) and <verb>(VBZ|VBD|VBN) are the
same).

For extracting binary relations for ontologies, DT patterns have to contain the
three properties <relationName>, <domain>, and <range>.

(dtp1) DT pattern similar to Hearst’s such as pattern

#<relationName>=is-hyponym-of#

#<domain>=<conjDep>#

#<range>=<prepositionGov>#

mwe(as(IN),such(JJ));

pobj(as(IN),<firstHyponym>(NN|NNS|NNP));

prep(<prepositionGov>(NN|NNS),as(IN));

conj(<firstHyponym>(NN|NNS|NNP),<conjDep>(NN|NNS|

NNP));

(dtp2) DT pattern for extracting semantic relations based on
intransitive verb phrases (verb phrases of which the verb is

intransitive) containing prepositions

#<relationName>=<verb>_<directObject>_<preposition>#

#<domain>=<depNoun> <subject>#

#<range>=<prepositionalObject>#

nsubj(<verb>(VBN|VBZ|VBD),<subject>(NNP|NN|NNS));

pobj(<preposition>(IN|TO),<prepositionalObject>(NNP|NN|NNS))

;

dobj(<verb>(VBZ|VBN|VBD),<directObject>(NNP|NN|NNS));

prep(<verb>(VBZ|VBD|VBN),<preposition>(IN|TO));

nn(<subject>(NNP|NN|NNS),<depNoun>(NNP|NN|NNS));

Fig. 3. The DT patterns (dtp1) and (dtp2)

In Figure 3, in the DT pattern (dtp1), the output annotation <domain> represents
the hyponym, while <range> represents the hypernym. In (dtp2), the output annotation
<domain> represents the subject of the verb annotated by <verb>, while <range> repre-
sents the prepositional object. The tree (tdtp1) in Figure 4 is a way to visualize the DT
pattern (dtp1). For visualizing (dtp2) we refer the reader to [18].

The Domain and Range also have to be written as regular expression. For details
on the syntax of DTPL we refer the reader to [18].

Fig. 4. (tdtp1) A visual representation of the DT pattern (dtp1)

Matching (dtp1) with the dependency tree (t5) in Figure 5 (the syntactic depend-
ency tree of the sentence (s5) ”Carmakers such as Maruti, Hyundai, Tata, Toyota,
Ford, GM & Mercedes put brakes on price hikes despite margin pressures”) allows
to extract the relations is-hyponym-of(mercedes,carmaker), is-hyponym-
of(ford,carmaker), is-hyponym-of(toyota,carmaker), is-hyponym-of(tata,carmaker),
is-hyponym-of(hyundai,carmaker), is-hyponym-of(gm,carmaker). While the pattern
(dtp2) allows to extract from the tree (t6) in Figure 6 (the syntactic dependency tree of
the sentence (s6)”The Ebola virus causes internal bleeding to its victims”) the rela-
tion cause_bleeding_to(ebola virus,victim) (r2).

Fig. 5. (t5) The syntactic dependency tree of the sentence (s5)

Fig. 6. (t6) The syntactic dependency tree of the sentence (s6)

Other examples (including the exploitation of co-reference resolutions, and also
examples of expressing the exclusion of some dependency bindings in DT patterns —
to improve the accuracy of patterns—) can be found at [18].

3.2 Text2Onto enhancement and improvement by introducing DTPL

For relation extraction purposes, Text2Onto has been used as target for testing DT
patterns expressed by the language DTPL.

Text2Onto comprises various algorithms for ontology extraction tasks (such as re-
lation extraction, concept/instance extraction). Given our interest on relation extrac-
tion, we will only present Text2Onto5 native algorithm for relation extraction, named
SubcatRelationExtraction.

Difference DTP_BinaryRelationExtraction SubcatRelationExtraction

The usage of deep
linguistic infor-
mation

Uses deep linguistic information for
extracting semantic relations.

Uses shallow syntactic information for
relation extraction.

The language used
for expressing
patterns

Uses patterns expressed in DTPL. Uses patterns expressed in JAPE.

Extracting multiple
instances of a
relation

Extracts several instances of a
relation without restrictions and
provides a frequency, indicative of
the relevance of a relation instance.

Extracts only one instance of a relation
formed by the most frequent element of the
Domain and the most frequent element of
the Range (which is a source of errors).

Allowing more
modularity for
relation extraction

Allows the explicit naming of the
extracted relation (is-a relations,
part-of relations, verb phrase based
relations, etc.).

• Constrained to extract only relations based
on verb phrases (for instance, for transitive
verb phrases, it generates relation instances
in the form Verb(Subject,Object)).
• It does not allow the explicit naming of
the relation.

Table 2. Differences between DTP_BinaryRelationExtraction and SubcatRelationExtraction

SubcatRelationExtraction is a pattern-based relation extraction algorithm using
flat patterns expressed in JAPE (here, patterns are called JAPE rules) located in
Text2Onto’s /3rdparty/gate/english directory. SubcatRelationExtraction takes into
account the information that JAPE rules possess (like the output annotations Transi-
tiveVerbPhrase, Subject and Object) to generate relations. However, another limita-
tion of SubcatRelationExtraction (other than using flat patterns) is the exclusive usage
of verb phrases (transitive/intransitive, etc.) for extracting and naming relations. For
instance, from the sentence (s6), SubcatRelationExtraction extracts (given the right
JAPE rule) cause_to(ebola virus,victim) (which is not as meaningful as (r2)). Indeed,
despite the fact that numerous semantic relationships can be identified from verb
phrases, this is not always the case (as for the hyponymy relation in sentence (s5)).

We implemented the new relation extraction algorithm
DTP_BinaryRelationExtraction, which uses DT patterns expressed in DTPL for bina-
ry relation extraction. DTP_BinaryRelationExtraction uses a JAVA library (Tree-
Matcher) which generates relations by using the regular expressions that define the
pattern properties <domain>, <range> and <relationName>.

To parse the input texts, TreeMatcher uses the Stanford Full Parser version 3.3.1
(which can be found at [14]) and its parsing model englishPCFG.ser.gz. TreeMatcher

5 Text2Onto version 2007-11-09, it can be found at https://code.google.com/p/text2onto/.

https://code.google.com/p/text2onto/

is tolerant to DT patterns containing empty lines and multiples space characters as
well. Each pattern has to be specified in DTPL in a distinct file (textual file) within
Text2Onto’s /3rdparty/gate/english directory. The name of each file containing a DT
pattern has to start with “dtp-“. For example, the DT pattern (dtp1) can be named
“dtp-SuchAsPattern“.

DT patterns can be added, removed, modified and used modularly by Text2Onto
like any flat pattern expressed in JAPE (e.g. the JAPE rules SubclassOfRelation1,
SubclassOfRelation2, etc. of the JAPE file ontological_relations.jape in Text2Onto’s
/3rdparty/gate/english directory).

TreeMatcher allows DTP_BinaryRelationExtraction to process relation extraction
in four steps: (I) Reading the DT patterns in Text2Onto’s /3rdparty/gate/english direc-
tory, (II) Producing syntactic dependency trees from the input corpus by using the
Stanford Full Parser, (III) Performing matching between dependency trees extracted
from the corpus and the DT patterns, each matching can produce many relations (the
generation of relations uses the regular expressions attached to the properties <do-
main>, <range> and <relationName> (see Section 3.1)), and each relation contains the
frequency of its occurrence on the corpus, (IV) Producing the result as a list of rela-
tions (each relation instance possess an index indicative of its relevance).

Table 2 above summarizes the differences between the algorithm
DTP_BinaryRelationExtraction and Text2Onto’s native algorithm SubcatRelationEx-
traction.

4 Conclusion and perspectives

We have presented in this paper a method giving ontology building tools the ability to
use deep linguistic information in patterns called DT patterns. Specifically, we have
first defined a new language (DTPL) to express these patterns, and, accordingly, en-
hanced and improved an existing ontology building tool (Text2Onto).

The work that we described in this paper is a piece of a bigger scheme aiming at:

─ The integration of a new parsing strategy (especially made for relation extraction
algorithms) assuring the accuracy of the extracted relations (because of the deep
syntactic analysis) while maintaining a reasonable computational cost;

─ Introducing two weakly supervised algorithms for pattern discovery, one for DT
patterns and the other for flat patterns. The patterns to be learned are for extracting
sematic relations (including IS-A and part-of).

Using deep linguistic information needs deep syntactic analysis of the text which
takes longer runtime than shallow parsing. This may be overcome by using a strategy
for relation extraction which consists in parsing only sentences that contain at least
two Terms Representative of the knowledge Domain of the corpus (TRD), the meth-
ods for extracting such terms need only shallow parsing. This strategy is expected to
enhance the precision of the extracted results, but the gain in computational time de-
pends on how many sentences contain at least two TRDs in the corpus (i.e. if such
sentences are too frequent, then there would be no significant gain).

REFERENCES

1. Sergey Brin. 1998. “Extracting patterns and relations from the world wide web”. WebDB
Workshop at 6th International Conference on Extending Database Technology, EDBT ’98.

2. Sharon A. Caraballo. 1999. “Automatic acquisition of a hypernym-labeled noun hierarchy
from text”. In Proceedings of ACL-99. pp 120-126, Baltimore, MD.

3. Philipp Cimiano, Johanna Völker. 2005. “Text2Onto: a framework for ontology learning
and data-driven change discovery”. In Proceedings of the 10th international conference on
Natural Language Processing and Information Systems, June 15-17, 2005, Alicante,
Spain [doi>10.1007/11428817_21].

4. Zellig S. Harris. 1954. “Distributional structure”. Word 10 (23): 146–162.
5. Marti A. Hearst. 1992. “Automatic Acquisition of Hyponyms from Large Text Corpora”. In

Proceedings of ACL-92. Nantes, France.
6. Maayan Geffet, Ido Dagan. 2005. “The distributional inclusion hypotheses and lexical en-

tailment”. In Proceedings of the 43rd Annual Meeting on Association for Computational
Linguistics, p.107-114, June 25-30, 2005, Ann Arbor, Michi-
gan [doi>10.3115/1219840.1219854].

7. Maayan Zhitomirsky-Geffet, Ido Dagan, Idan Szpektor, Lili Kotlerman. 2010. “Directional
distributional similarity for lexical inference”. Natural Language Engineering, 16(04): 359–
389.

8. Patrick Pantel, Marco Pennacchiotti. 2006. “Espresso: leveraging generic patterns for au-
tomatically harvesting semantic relations”. In Proceedings of the 21st International Confer-
ence on Computational Linguistics and the 44th annual meeting of the Association for
Computational Linguistics, p.113-120, July 17-18, 2006, Sydney, Australia.

9. Patrick Pantel, Deepak Ravichandran. 2004. “Automatically labeling semantic classes”. In
Proceedings of HLT/NAACL-04. pp. 321-328. Boston, MA.

10. Patrick Pantel, Deepak Ravichandran, Eduard H. Hovy. 2004. “Towards terascale
knowledge acquisition”. In Proceedings of COLING-04. pp. 771-777. Geneva, Switzerland.

11. Erik T. K. Sang, Katja Hofmann. 2009. “Lexical patterns or dependency patterns: which is
better for hypernym extraction?”. In Proceedings of the Thirteenth Conference on Computa-
tional Natural Language Learning (CoNLL '09). Association for Computational Linguistics,
Stroudsburg, PA, USA, 174-182.

12. Rion Snow, Daniel Jurafsky, Andrew Y. Ng. 2004. “Learning syntactic patterns for auto-
matic hypernym discovery”. In NIPS 2004.

13. Marie-Catherine de Marneffe, Christopher D. Manning. 2008. “Stanford typed dependencies
manual”: http://nlp.stanford.edu/software/dependencies_manual.pdf

14. “The Stanford Parser: A statistical parser”: http://nlp.stanford.edu/software/lex-
parser.shtml

15. Julie Weeds, David Weir, Diana McCarthy. 2004. “Characterizing Measures of Lexical
Distributional Similarity”. In Proceedings of Coling-04. Geneva, Switzerland.

16. Amal Zouaq, Dragan Gasevic, Marek Hatala. 2011. “Towards open ontology learning and
filtering”. Information Systems, v.36 n.7, p.1064-1081, November,
2011 [doi>10.1016/j.is.2011.03.005].

17. Amal Zouaq, Dragan Gasevic, Marek Hatala. 2012. “Linguistic Patterns for Information
Extraction in OntoCmaps”. In Proceedings Of the 3rd Workshop on Ontology Patterns -
WOP2012, in conjunction with the 11th International Semantic Web Conference, Boston,
USA.

18. “Grammar of the DTPL language, and examples”:
http://people.irisa.fr/Nicolas.Bechet/WOP2014/

http://dl.acm.org/citation.cfm?id=2129816&CFID=388792570&CFTOKEN=59271365
http://dl.acm.org/citation.cfm?id=2129816&CFID=388792570&CFTOKEN=59271365
http://dl.acm.org/citation.cfm?id=2129816&CFID=388792570&CFTOKEN=59271365
http://dl.acm.org/citation.cfm?id=2129816&CFID=388792570&CFTOKEN=59271365
http://dx.doi.org/10.1007/11428817_21
http://dl.acm.org/citation.cfm?id=1219854&CFID=541211081&CFTOKEN=39823386
http://dl.acm.org/citation.cfm?id=1219854&CFID=541211081&CFTOKEN=39823386
http://dl.acm.org/citation.cfm?id=1219854&CFID=541211081&CFTOKEN=39823386
http://dx.doi.org/10.3115/1219840.1219854
http://dl.acm.org/citation.cfm?id=1220190&CFID=460310665&CFTOKEN=60240067
http://dl.acm.org/citation.cfm?id=1220190&CFID=460310665&CFTOKEN=60240067
http://dl.acm.org/citation.cfm?id=1220190&CFID=460310665&CFTOKEN=60240067
http://dl.acm.org/citation.cfm?id=1220190&CFID=460310665&CFTOKEN=60240067
http://nlp.stanford.edu/software/dependencies_manual.pdf
http://nlp.stanford.edu/software/lex-parser.shtml
http://nlp.stanford.edu/software/lex-parser.shtml
http://dl.acm.org/citation.cfm?id=1995286&CFID=407812091&CFTOKEN=21541430
http://dl.acm.org/citation.cfm?id=1995286&CFID=407812091&CFTOKEN=21541430
http://dl.acm.org/citation.cfm?id=1995286&CFID=407812091&CFTOKEN=21541430
http://dx.doi.org/10.1016/j.is.2011.03.005
http://people.irisa.fr/Nicolas.Bechet/WOP2014/

Towards the reuse of standardized thesauri into
ontologies1

Elena Cardillo1, Antonietta Folino2, Roberto Trunfio2, Roberto Guarasci2

1 Institute for Informatics and Telematics, Italian National Research Council, Pisa, Italy
2 Laboratorio di Documentazione (LabDoc), University of Calabria, Rende, Italy

elena.cardillo@iit.cnr.it
{antonietta.folino,roberto.trunfio,roberto.guarasci}@unical.it

Abstract. One of the main holdbacks towards a wide use of ontologies is the
high building cost. In order to reduce this effort, reuse of existing Knowledge
Organization Systems (KOSs), and in particular thesauri, is a valuable and
much cheaper alternative to build ontologies from scratch. In the literature tools
to support such reuse and conversion of thesauri as well as re-engineering pat-
terns already exist. However, few of these tools rely on a sort of semi-automatic
reasoning on the structure of the thesaurus being converted. Furthermore, pat-
terns proposed in the literature are not updated considering the new ISO 25964
standard on thesauri. This paper introduces a new application framework aimed
to convert thesauri into OWL ontologies, differing from the existing approaches
for taking into consideration ISO 25964 compliant thesauri and for applying
completely automatic conversion rules.

Keywords: Thesauri; Ontology; Knowledge Organization System; Conversion
Framework; ISO 25964; OWL.

1 Introduction

Nowadays, Knowledge Organization Systems (KOSs) (e.g. thesauri, taxonomies,
ontologies, classification systems) are assuming a key role in knowledge and infor-
mation management. Even though a KOS can be used as a standalone application, to
take benefit of its features it is generally integrated in larger information systems
(search engines, content management systems, etc.). Thus, in the literature a consoli-
dated issue is the interoperability of different KOSs for a cost-effective exchange of
structured information. Driven by the philosophy of the Semantic Web [4] that widely
relies on ontologies for knowledge sharing, reuse and inference, researchers are con-
centrating their effort towards the reuse of less formal terminological systems, and in
particular thesauri, into ontologies. This is motivated by the fact that a huge amount
of thesauri have been already realized in the last decades for almost every knowledge

1Authors have jointly collaborated in the drafting of the article. However, each has been in-
volved in one or more paragraphs: E. Cardillo of Section 1, 2.1, and 3; A. Folino of Section
2.2., and 4.2; R. Trunfio of all Section 4; and R. Guarasci of Section 5.

domain [18] and some of them are steadily updated. So, there could be no benefit to
replicate a domain modeling from scratch, but recovering and reusing the knowledge
embedded into a thesaurus could speed-up the activity of building ontologies.

In order to address this challenging topic, this paper introduces an application
framework for reusing standardized thesauri2 into ontologies as defined by [7]. In
particular, the framework uses new re-engineering rules formulated to be applied on
an ISO 25964 compliant thesaurus [12, 13].

The paper is organized as follows: a brief description of the main similarities and
differences between thesauri and ontologies, and between thesaurus entities before
and after the introduction of ISO 25964 is given in Section 2; an updated overview of
the literature is provided in Section 3; the description of the proposed re-engineering
approach along with some examples of rules for the reuse of a standardized thesaurus
into an OWL ontology are given in Section 4; finally, conclusions and future works
are outlined in Section 5.

2 Thesauri and Ontologies: an overview

In this section, first a brief description of the similarities and differences between
thesauri and ontologies is given; secondly, some important novelties introduced by
the ISO 25964 standard in terms of thesaurus principles, interoperability and mapping
with other types of controlled vocabularies are briefly reported.

2.1 Thesauri vs Ontologies

Some similarities between thesauri and ontologies can be identified. In particular,
both describe a domain, include concepts and relations between them, use hierarchies.

Furthermore, both are used in applications of information management for cata-
loguing and in search engines. However, several differences must be taken into ac-
count, specifically depending on their origin and purposes. Thesauri have been used
for a long time in librarian contexts as indexing tools and controlled vocabularies. As
such they are thought to represent knowledge in a less formal and comprehensive
manner than ontologies. They are not characterized by a level of conceptual abstrac-
tion as ontologies, which are originated from philosophy and conceived as accepted
and formal ways of describing knowledge domains3. So difference between a concept
and its lexicalization in a thesaurus is not clearly established.

Moreover, other fundamental differences are related to their structures. As clearly
described in [10], with respect to thesauri, ontologies are characterized by: (i) an ex-
plicit representation of the types of relationships; (ii) the use of powerful formalisms

2 Thesauri are defined as “controlled and structured vocabulary in which concepts are repre-

sented by terms, organized so that relationships between concepts are made explicit, and
preferred terms are accompanied by lead-in entries for synonyms or quasi-synonyms” [12].

3 Ontologies consist of a set of definitions of classes, properties, and individuals, together with
a set of axioms expressing the relations between classes and properties, and a set of facts
about particular individuals.

(e.g. axioms, relationships cardinality). These differences enable ontologies to reuse
knowledge of a domain, make domain assumptions explicit, and allow access to and
evolution of legacy data, as well as automated reasoning.

2.2 ISO 25964 vs other standards on thesauri

In this section we briefly analyze structural and conceptual differences between ISO
norms on thesauri in order to allow for the proposal of updated and more standardized
re-engineering rules for building ontologies from thesauri.

From a more comprehensive perspective, the need for a new norm about thesauri
and other controlled vocabularies was due to the technological evolution and to the
new role recognized to thesauri as information retrieval tools and not only as indexing
resources. This required new specifications about data models, exchanging formats,
interoperability with other vocabularies, etc., all present in the ISO 25964 [12, 13].
ISO 25964 completely replaces the previous ISO 2788:1986 [15] and ISO 5964:1985
[14] standards, and almost reuses the content of two other national norms:
ANSI/NISO Z39.19:2005 [2] and BS 2783-5:2008 [5].

Given the aim of the paper, we focus here only on three main changes that contrib-
ute to approach thesauri towards ontologies and that are of interest for re-engineering
purposes (see [6] for a complete analysis):

x Term-based vs Concept-based thesaurus. Considering thesaurus structure, ISO
25964 provides a data model (absent in ISO 2788:1986) that formally represents its
objects and relationships. The major difference that can be observed in this data
model is the clear distinction between concepts and terms4 (ThesaurusConcept is
separated from ThesaurusTerm and from PreferredTerm, hasPreferredLabel,
hasNonPreferredLabel, etc.). In fact, similarly to ontologies, concepts in ISO
25964 are defined as units of thoughts lexically represented by terms. Thus, a the-
saurus is considered as a concept-based resource, rather than a term-based one.

x Thesaurus structure. The ISO 25964 adds important elements for organizing the
structure of a thesaurus, such as the thesaurus array5 and concept group6 elements,
that were not explicitly illustrated in the previous ISO norm. This implies that in a
conversion process these constructs should be taken into account, so new patterns
have to be introduced in order to reengineer them into ontology elements.

x Semantic relationships. One of the innovations introduced by the current norm is
the possibility to make explicit the nature of semantic relationships, by further
specifying the standard ones. This possibility contributes to make thesauri more
similar to ontologies, as well as the clear distinction between concept and term. In

4 This does not mean that in the ISO 2788:1986 the same meaning was recognized to terms and

concepts, but for practical aims they were treated as synonyms.
5 A thesaurus array is defined in [13, p.4] as “group of sibling concepts”.
6 A concept group is defined in [12, p.1] as “a group of concepts selected by some specified

criteria, such as relevance to a particular subject area”.

particular, some changes regarding the equivalence and the hierarchical relation-
ships are worth mentioning:
─ Equivalence relationship. The ISO 25964 clarifies, first of all, that it relates

terms rather than concepts (more than one term for expressing a unique con-
cept). In addition to the standard tags USE/UF, the norm establishes that other
tags could be used, depending on the kind of terms to be put into relation: AB
for abbreviations, FT for the full form of a term, SP for spelling variant.

─ Hierarchical relationship. It holds between two or more concepts that express
subordinate and super-ordinate meanings at different levels and is depicted
through the tags BT/NT (i.e. narrower term and broader term, respectively). To
extend the richness of thesauri, hierarchical relationships can be further divided
into generic (NTG/BTG), partitive (NTP/BTP) and instantial (NTI/BTI). Both
ISO 2788 and 25964 clarify that concepts can be hierarchically related only if
they belong to the same conceptual category (objects, actions, properties, etc.)
and if the so called all-and-some test is verified. Moreover, the ISO 25964 spec-
ifies that this relationship holds “between a pair of concepts when the scope of
one of them falls completely within the scope of the other” [12]. This criterion is
undoubtedly important to guarantee the correctness of the hierarchy.

3 Related Works

In the last decades the conversion of thesauri into ontologies has taken the attention of
the scientific community, that produced several stimulating works. Nonetheless, few
of them rely on a computer-aided conversion process. Moreover, most of the existing
approaches were conceived before the publication of ISO 25964.

Two pioneering works described in [22] and [19] show the creation of RDFS On-
tologies reusing domain specific thesauri: the former in particular proposes highly
structured semantic descriptions for a subset of art-object (antiquate furniture) from
the Art and Architecture Thesaurus (AAT)7; the latter approach is tested on the well-
known AGROVOC thesaurus8. In both cases BT/NT relationships are mapped to the
is-a relation in the ontology and terms of the thesaurus to classes.

A semiautomatic approach is proposed in [3] where the TERMINAE method for
ontology extraction from texts is applied to a thesaurus. Here three hypotheses about
the reuse of terms relations are proposed: (i) preferred terms in the thesaurus are in-
dexed to constitute terms identifying domain concepts in the ontology; (ii) relations
between terms and preferred terms are synonym relations in the thesaurus, that means
putting together terms as label of the same concept in the ontology; (iii) relations
between preferred terms are indexed to identify concepts relations. Even if some in-
teresting conversion rules are presented, the application of this methodology to par-
ticular use cases is very limited (i.e. an application for the medical domain).

7 http://www.getty.edu/research/tools/vocabularies/aat/
8 http://aims.fao.org/standards/agrovoc/about/

More close to our work is the conversion approach proposed by [9], where they
formalize an ISO 25964 compliant thesaurus into an OWL ontology9, assuming that a
standard-compliant thesaurus is concept-based, rather than term-based, as observed in
the norm. This implies that thesaurus concepts and facets are treated as classes in the
corresponding ontology, while thesaurus terms (synonyms or quasi-synonyms intro-
duced by the equivalence relationships) are represented in the ontology as class labels.
In addition, checking and refinement of thesaurus relationships are performed in order
to: explicitly distinguish between different types of hierarchical relationships, manage
cycles, orphans, polyhierarchy, etc. (e.g. the generic relation (NTG/BTG) are trans-
lated into is-a relation in the ontology, and the instantial one (NTI/BTI) into the dis-
tinction between class and individuals). Moreover, in order to guarantee similarity in
design choices, an alignment of the thesaurus (i.e. AGROVOC) with top-level ontol-
ogies is proposed. However, also in this case, the approach “has not been tested and
refined on the scale of re-engineering a complete thesaurus” [9].

In addition to these approaches, in the last few years different patterns for the re-
engineering of non-ontological resources (including thesauri) into ontologies have
been proposed. We mainly refer here to those proposed in [20] and [21], whose objec-
tive is the conversion of both terms/concepts and semantic relationships provided by
thesauri (USE/UF; BT/NT; RT) into ontology classes, individuals and relations.

Other approaches that try to convert thesauri, but also classification systems into
more formal resources as ontologies can be found in [8, 16, 17].

Considering the literature, the aim of our research is to demonstrate that, although
these studies proved usefulness and applicability, some of the existing patterns need
to be revised/integrated in the light of the mentioned ISO norm 25964 [12, 13].

Furthermore, due to the common issues related to the conversion process (e.g. the
ambiguity in the distinction between a class and an instance, difficulties in the speci-
fication of the nature of thesaurus relationships) in our opinion, a challenge for the
future is the development of new methodological and application frameworks that
allow for more specific, standard based, and automatic conversions.

4 A Framework for Reusing ISO 25964 Thesauri into OWL
Ontologies

By taking advantages of the analysis provided in Section 2, this section briefly out-
lines the concepts at the basis of our conversion framework. The framework’s aim is
to export the knowledge embedded into an ISO 25964 compliant thesaurus and to
reuse it as the skeleton for a formalized ontology. Specifically, the application con-
structs an ontology in OWL 2 DL10 starting by an RDF-based schema for modelling
an ISO 25964 standardized thesaurus. The framework is implemented in Java 7 and
uses APIs taken from the well-known Apache Jena11 framework for building Seman-

9 https://www.w3.org/TR/owl2-overview/
10 http://www.w3.org/TR/owl-features/
11 https://jena.apache.org/

https://jena.apache.org/

tic Web and Linked Data application. In particular, it uses the Model Loader and
the Model Translator APIs. The former is devoted to enable the loading of a
thesaurus formalized through a model specified via RDF12 which is handled by the
RDF API from Apache Jena.

The Model Translator API applies a set of rules designed to identify classes,
properties, instances and semantic relations from the RDF graph and consequently to
extract an ontological schema. For this purpose, the Ontology API from Apache Jena
is used to represent a formal logical descriptions in OWL 2 DL. The use of OWL 2
DL is motivated by the fact that it is decidable and its tableau reasoners prove to be
tractable in practice on several scales of problems (despite the poor theoretical com-
plexity). Moreover, for reasons of performance, all the conversion rules are hard cod-
ed in the Java library. The Java API is available upon request from the authors.

4.1 Model Loader API

As mentioned before, the Model Loader is devoted to represent a standardized
thesaurus in an RDF-graph based on a SKOS (Simple Knowledge Organization Sys-
tem) 13 and SKOS-XL14 extension for modelling ISO 25964 thesauri, known as iso-
thes-25964 [11] (for convenience, we define the prefix it:
<http://purl.org/iso25964/skos-thes>). It must ensure the consistency of
the RDF graph with respect to the domains of the semantic relations and entailment
rules provided by the iso-thes-25964 and those inherited by SKOS. To this extent, the
iso-thes-25964 extension promotes the reuse of some of the standard SKOS classes
(i.e. skos:Concept, skos:ConceptScheme). However, it introduces important
classes like it:ConceptGroup, aimed to represent group of concepts selected by
some specified criteria, such as relevance to a particular subject area (see Sec. 3.18
from [13]) and it:ThesaurusArray, used in our framework to represent a node
label with characteristic of division (see Sec. 11 from [12]).

Moreover, it provides new semantic relations (e.g. it:broaderGeneric,
it:broaderInstantial, it:broaderPartitive, it:narrowerGeneric,
it:narrowerInstantial, it:narrowerPartitive, etc.), which integrate and
specialize the existing SKOS relations intended to be used for thesauri representation
(e.g.: skos:broader, skos:broaderTransitive, skos:hasTopConcept,
skos:inScheme, skos:narrower, skos:narrowerTransitive,
skos:related, skos:topConceptOf, skos:member).

Finally, following ISO 25964, we extended iso-thes-25964 by introducing the class
Facet as sub-class of skos:Collection. Facet is defined as disjoint with classes
it:Concept, and it:ThesaurusArray. Moreover, it is in domain of
it:superGroup and in range of it:inScheme. In our opinion, the choice to intro-
duce a new class is supported by the need to ensure a non-ambiguous representation
of facets in the RDF graph.

12 http://www.w3.org/TR/1999/REC-rdf-syntax-19990222
13 http://www.w3.org/2004/02/skos/
14 http://www.w3.org/TR/skos-reference/skos-xl.html

http://purl.org/iso25964/skos-thes

4.2 The Model Translator API: Conversion rules

The Model Translator applies a set of rules in order to extract an OWL 2 DL
ontology from an ISO 25964 standardized thesaurus formalized according with the
Model Loader specifications. The Model Translator can translate in an OWL
class or property elements of a thesaurus such as concepts, concept groups, facets,
thesaurus arrays, as well as associative (RT), hierarchical (TT, BT/NT, BTG/NTG,
BTP/NTP, BTI/NTI) and equivalence relationships (USE/UF). The RDF graph is
explored hierarchically starting by the nodes identified as facets, top terms and terms
with no broader definition. Finally, concept groups nodes are explored. For space
reasons, we give examples only for those rules that need clearer explanations.

Facets and Top Terms. Facets are used to group together concepts from the same
category, that means concepts sharing similar properties, such that members of a facet
are mutually exclusive with the members of another. According to the standard, the
following set of facets should be used: things, types, parts, properties, materials, pro-
cesses, activities, products, by products, patients, agents, space and time. In this per-
spective, although facets can be personalized, in our framework facets are considered
as the classes of a foundation ontology. Hence, rule (1) is applied:

(1) “Once a Facet node is found, it must be mapped as a class that is

subclass of owl:Thing and has no other parent relations”.

When a skos:Concept, identified as a Top term, is found in the RDF graph, then it
must be mapped to an ontological class, as stated by the following rule:

(2) “Given a skos:Concept <A> and a skos:ConceptScheme <C>

such that <A> skos:topConceptOf <C>, then: if exists one and
only one Facet <F> such that <F> skos:member <A>, then <A> is
mapped as subclass of the ontological class defined for <F>; other-
wise <A> is mapped as a subclass of owl:Thing and it has no other
parent relations”. Moreover, if another Facet <E> exists, then a re-
lation owl:disjointWith must be used between the resulting OWL
classes for nodes <A> and each class under facet <E>”.

For translation convenience, whenever no TT relation are explicitly provided in the
thesaurus, we assume that a concept that has not broader concepts is a top concept.

Hierarchical relationships. Generally speaking, whenever a BT/NT or a BTG/NTG
relationship is found in the RDF graph, the following rule comes:

(3) “Given two Concept nodes <A> and such that <A>

skos:narrower , then <A> and are mapped as two OWL
classes such that rdfs:subClassOf <A>”.

Further rules are needed for the hierarchical relationships BTP/NTP and BTI/NTI.
Specifically, a BTP/NTP relation in our framework entails rule (4):

(4) “Given three Concept nodes <A>, <B1> and <B2>, such that <A>

it:broaderPartitive <B1>, <B2>, then <B1> and <B2> are
each represented in OWL either as classes linked to node <A> by a
part of relationship in the case they have further narrower concepts
in the thesaurus, or as individuals of node <A>”.

A narrower concept represented via the BTI/NTI relation generally becomes instance
of the OWL class obtained from the broader concept. However, as stated in [23], the
following exception may occur: if at a certain level of the hierarchy in the thesaurus
an instance of a NTI/BTI relation is also the broader concept of one or more concepts
in other BT, BTP, or BTG relations, then it cannot be converted in the ontology as an
individual. To clarify this exception, the following example is provided:

 Countries
 NTI United States of America

 United States of America

 NTP Alabama
 NTP Alaska
 NTP Arizona

This is mapped in RDF via the iso-thes-25964 model as follows using turtle notation:

@prefix ex: <http://example.com/skos/thes#> .
...
ex:id1 rdf:type skos:Concept;
skos:prefLabel "Countries"@en;
 it:narrowerInstantial ex:id2.
ex:id2 rdf:type skos:Concept;
 skos:prefLabel "United States of America"@en;
 it:broaderInstantial ex:id1;
 it:narrowerPartitive ex:id3, ex:id4, ex:id5.
ex:id3 rdf:type skos:Concept;
 skos:prefLabel "Alabama"@en;
 it:broaderPartitive ex:id2.
ex:id4 rdf:type skos:Concept;
 skos:prefLabel "Alaska"@en;
 it:broaderPartitive ex:id2.
ex:id5 rdf:type skos:Concept;
 skos:prefLabel "Arizona"@en;
it:broaderPartitive ex:id2.

Since ontologies necessarily distinct between classes and individuals, in order to ena-
ble reasoning and inferencing, rule (5) is adopted:

(5) “Given two Concept nodes <A> and such that <A>

it:broaderInstantial : if exists a Concept node <C>
such that skos:broader <C>, or
it:broaderGeneric <C> or it:broaderPartitive <C>,
then the same rule for NTP concepts is applied; otherwise, be-
comes an instance of the OWL class defined for node <A>”.

According to rules (4) and (5), in the simplest case (NTP converted as individuals) the
following OWL 2 DL is obtained:

<owl:Class rdf:ID="#United_States_of_America">
 <owl:subClassOf rdf:parseType="#Countries">
 </owl:subClassOf>
</owl:Class>
<United_States_of_America rdf:ID="Alabama">
...
</United_States_of_America>
<United_States_of_America rdf:ID="Alaska">
...
</United_States_of_America>
<United_States_of_America rdf:ID="Arizona">
...
</United_States_of_America>

Thesaurus Array. Another type of node of the RDF graph which is translated in our
framework is it:ThesaurusArray, i.e. a node label used to represent a collection of
siblings concepts with a common characteristic of division. As reported in ISO 25964,
a node label is put between two concepts related by the NT/BT relation. A thesaurus
array is not a concept itself. Moreover, following ISO 25964 definition for node la-
bels, all the concepts under a node label represent disjoint classes. An example from
the EARTh thesaurus [1] follows.

Forecasting
 [Forecasting by length]
 NT Long-term forecasting
 NT Short-term forecasting
 [Forecasting by target]
 NT Drought forecasting
 NT Earthquake forecasting

From this example, as stated in Sec. 11 of [12], it can be asserted that the concepts
following the “by” clause in the node label represent a property of the concept “Fore-
casting”. Thus, we map “length” as an object property between the OWL class for
concept “Forecasting” and the two OWL classes for the concepts “Long-term fore-
casting” and “Short-term forecasting”. Specifically, the following rules are applied:

(6) “Given two Concept nodes <A> and and a ThesaurusArray
node <TA> such that <A> skos:broader (or <A>
it:broaderGeneric or <A> it:broaderPartitive
), and <A> it:subordinateArray <TA> and <TA>
skos:member , then is mapped as a subclass of the OWL
class defined for node <A> and an owl:ObjectProperty is defined
between <A> and with rdf:ID=”<TA>””.

(7) “Given two Concept nodes <B1> and <B2> and a ThesaurusAr-

ray node <TA>, such that <TA> skos:member <B1>, <B2>, then
the constructor owl:disjointWith must be used between the re-
sulting OWL classes for nodes <B1> and <B2>”.

According with these rules, the following OWL 2 DL conversion is obtained:

<owl:Class rdf:ID="#Forecasting">
 <owl:unionOf rdf:parseType="Collection">
 <owl:Class rdf:ID=
 "#Forecasting_by_length">
 <owl:oneOf rdf:parseType="Collection">
 <owl:Class rdf:ID="#Long-term_forecasting">
 </owl:Class>
 <owl:Class rdf:ID="#Short-term_forecasting">
 </owl:Class>
 </owl:oneOf>
 </owl:Class>
 <owl:Class rdf:ID="#Forecasting_by_target">
 <owl:oneOf rdf:parseType="Collection">

<owl:Class rdf:ID="#Drought_forecasting">
 </owl:Class>
 …
 </owl:oneOf>
 </owl:Class>
 </owl:unionOf>
</owl:Class>

Since a ConceptScheme can be divided in ConceptGroup nodes, each one typically
used to represent a self-contained thesaurus identified by a typical subject area (e.g. to
represent a domain, theme, microthesaurus or simply a “group”). Thus, in our opin-
ion, all the OWL classes defined from the it:Concept nodes belonging to an
it:ConceptGroup are simply enriched with a datatype property via
owl:topDataProperty, by considering the concept group as a literal that annotates
all the concepts from that group.

Finally, observe that all the SKOS labels associated to a skos:Concept node in
the graph are preserved in the ontology for completeness. Labels are used, in our
framework, primarily to formalize a USE/UF relation between the terms associated to
the same concept.

5 Conclusions and Future Work

In this paper we described an alternative application framework to convert thesauri
into OWL 2 ontologies. The framework includes a translator module that, starting
from an ISO 25964 compliant thesaurus, applies conversion rules to obtain the ontol-
ogy. From the methodological point of view, along with the classical conversion rules
focused on the hierarchical relations, the proposed framework introduced some addi-
tional conversion rules for thesaurus entities (e.g. facets, thesaurus arrays, partitive
relations) that enable it to provide a stronger formalization.

As stated above, in this paper we focused only on some of the entities introduced
or updated by the new ISO standard. In fact, the framework currently does not support
some semantic relations, like USE+/UF+, and RT, nor it is designed to handle with
interoperability between controlled vocabularies. These features are part of an exten-
sion of the framework currently under development.

Moreover, since at the moment very few example of ISO 25964 fully compliant
thesauri exists (e.g. AAT), another interesting research stream is related to the neces-
sity for new modules for the standardization of existing thesauri into ISO 25964 com-
pliant ones. This will allow for a complete evaluation of the proposed framework.

Acknowledgements

This work is supported by the “Science & Technology Digital Library” (S&TDL)
Project, funded by the Agency for Digital Italy (AgID).

References

1. R. Albertoni, M. De Martino, S. Di Franco, V. De Santis, and P. Plini. EARTh: an Envi-
ronmental Application Reference Thesaurus in the Linked Open Data Cloud. In Semantic
Web Journal, 2012, vol. 5(2): 165-171.

2. ANSI/NISO. Documentation – Guidelines for the construction, format, and management
of monolingual controlled vocabularies. 2005. Report ANSINISO Z3919.

3. N. Aussenac-Gilles, S. Despres, and S.Azulman. The TERMINAE method and platform
for ontology engineering from texts. In Proceedings of the Conference on Ontology Learn-
ing and Population: Bridging the gap between Text and Knowledge, Amsterdam, NL,
2008, pp. 199–223.

4. T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web: a new form of web content
that is meaningful to computers will unleash a revolution of new possibilities. In The Sci-
entific American, 2001, vol. 284(5), pp. 34–43.

5. British Standards Institution (BSI). Documentation - Structured vocabularies for infor-
mation retrieval. Guide. Exchange formats and protocols for interoperability. 2008. Report
BS 8723-5.

6. S.G. Dexter Clarke and M. L. Zeng. From ISO 2788 to ISO 25964: The evolution of the-
saurus standards towards interoperability and data modelling. In Information Standards
Quarterly (ISQ), 2012, vol. 24, n. 1.

7. T. R. Gruber. Toward principles for the design of ontologies used for knowledge sharing?.
In International Journal of Human-Computer Studies, 1995, vol. 43(5–6), pp. 907–928.

8. M. Hepp and J. de Bruijn. GenTax: A Generic Methodology for deriving OWL and RSF-S
Ontologies from Hierarchical Classifications, Thesauri and Inconsistent Taxonomies. In
The Semantic Web: Research and Applications, E. Franconi, M. Kifer, M. Michael and W.
May (eds.) Heidelberg, DE: Springer, 2007, pp. 129–144.

9. D. Kless, L. Jansen, J. Lindenthal, and J. Wiebensohn. A method for re-engineering a the-
saurus into an ontology. In Proceedings of International Conference on Formal Ontology
in Information Systems (FOIS 2012), Gray, AU, 2012, pp. 133-146.

10. D. Kless and S. Milton. Comparison of thesauri and ontologies from a semiotic perspec-
tive. In Proc. of the 6th Australian Ontology Workshop (AOW 2010), T. Meyer, M. A. Or-
gun and K. Taylor (eds.) Adelaide, AU: Australian Computer Society, 2010, pp. 35–44.

11. A. Isaac and J. De Smedt. ISO 25964 SKOS extension. 2013. Available:
http://purl.org/iso25964/skos-thes.

12. International Standard Organization (ISO). Documentation - Thesauri and interoperability
with other vocabularies: Part 1, Thesauri for information retrieval, 2011. Report ISO
25964.

13. International Standard Organization (ISO). Documentation. Thesauri and interoperability
with other vocabularies: Part 2, Interoperability with other vocabularies, 2013. Report ISO
25964.

14. International Standard Organization (ISO). Documentation – Guidelines for the establish-
ment and development of multilingual thesauri, 1985. Report ISO 5964.

15. International Standard Organization (ISO). Documentation – Guidelines for the establish-
ment and development of monolingual thesaurus, 1986. Report ISO 2788.

16. P. Li and Y. Li. On Transformation from the thesaurus into domain ontology. Advanced
Materials Research, 2013, vol. 756 – 759, pp. 2698–2704.

17. S. Mouhim, T. Khalid, C. Cherkaoui, H. Douzi, and D. Mammas. A methodological ap-
proach for converting thesaurus into domain ontology: application to tourism. In Interna-
tional Journal of Engineering and Innovative Technology, 2013, vol. 3(5), pp. 315–319.

18. A. Shiri and C. Revie. Thesauri on the Web: current developments and trends. In Online
In-formation Review, 2000, vol. 24, no. 4, pp. 273–280.

19. D. Soergel, B. Lauser, A Liang, F. Fisseha, J. Keizer, and S. Katz. Reegineering Thesauri
for New Applications: The AGROVOC example. In Journal of Digital Information, 2004,
vol. 4(4).

20. B. M. Villazón Terrazas. A method for Reusing and Re-engineering Non-ontological Re-
sources for Building Ontologies. Ph.D. Disseertation, Departamento de Inteligencia Arti-
ficial, Facultad de Informática, Universidad Politécnica de Madrid, Madrid, ES, 2011.

21. B. M. Villazón Terrazas and Freddy Priyatna. Building Ontologies by using Re-
engineering Patterns and R2RML Mappings. In Eva Blomqvist, Aldo Gangemi, Karl
Hammar and, Marìa del Carmen Suàrez-Figueroa (eds.). Proceedings of the 3rd Workshop
on Ontology Patterns, Boston, USA, November 12, 2012, CEUR WS, vol. 929, pp.109-
120, 2012.

22. B. J. Wielinga, A. T. Schreiber, J. Wielemaker, and J. A. C. Sandberg. From thesaurus to
on-tology”. In Proceedings of the 1st International Conference on Knowledge Capture (K-
CAP '01), Victoria, CA, pp. 194–201, October 2001.

23. L. Will. The ISO 25964 data model for the structure of an information retrieval thesaurus.
In Bulletin of the American Society for Information Science and Technology, 2012, vol.
38(4), pp. 48–51.

Digging Ontology Correspondence Antipatterns

Anselmo Guedes, Fernanda Baião and Kate Revoredo

Department of Applied Informatics. Federal University of the State of Rio de Janeiro –
UNIRIO, Rio de Janeiro, Brazil

{anselmo.guedes, fernanda.baiao, katerevoredo}@uniriotec.br

Abstract. A correspondence antipattern is a set of generic correspondences be-
tween two ontologies that represents an incorrect alignment. It is useful to help
identify incorrect correspondences between two ontologies, thus improving the
Ontology Matching process. The specification of a correspondence antipattern
requires the identification and correct understanding of a relevant alignment
problem, and its representation in a proper modeling language. In this work we
investigate the last three editions of OAEI challenge datasets so as to identify
correspondence antipatterns from frequent and recurring errors; some of the the
resulting antipatterns are presented and discussed.

Keywords: ontology matching, correspondence antipatterns, inconsistent
alignment.

1 Introduction

As the research and practice on Ontology become more popular and evolve, several
ontology artifacts arise for the same universe of discourse. However, they differ
among each other in several perspectives, such as distinct representation languages
(syntactic heterogeneity), variations in names referring to the same entity (terminolog-
ical heterogeneity), different conceptualizations for the same domain (conceptual
heterogeneity) and entities being perceived differently (semiotic heterogeneity) [7].
The Ontology Matching area [7][8] deals with all these problems, being considered by
many authors the key element for heterogeneity reduction between ontologies.

The Ontology Matching task consists in identifying the correct correspondences
among entities of multiple ontologies, which it is a necessary condition for establish-
ing the interoperability among them [8]. A number of techniques can be used to iden-
tify correspondences between the entities of two ontologies, including the analysis of
subsumption between classes and the similarity between the entity names. However,
current results of state-of-the-art techniques are neither complete nor precise, i.e., they
are not able to identify all existing correspondences between two ontologies and
sometimes suggest correspondences that do not exist [9]. With regard to precision
errors, suggesting a correspondence that does not exist may lead to either logical or
ontological incompatibilities.

On the other hand, in the context of software development, antipatterns are consi-
dered a valuable tool for the identification of bad or incorrect practices in the software

development process. Antipatterns prevent or hamper a good execution of the soft-
ware development or maintenance process. In the context of ontology matching, bad
solutions consist of incorrect (including missing) or problematic correspondences. A
correspondence antipattern is a matching model for identifying problematic corres-
pondences that may occur repeatedly in ontology matching processes. A correspon-
dence antipattern may be useful in several scenarios in which Ontology Matching is
applied (such as in ontology merging, ontology comparison, query translation), since
it helps refining an alignment produced by an ontology matching tool.

Looking for correspondence antipatterns, we “dig” the alignments available by
OAEI and apply a methodology previously proposed in [11] for building correspon-
dence antipatterns.

This work is divided as follows: Section 2 shows an overview about ontology cor-
respondence antipatterns, Section 3 presents how we “dig” some correspondence
antipatterns from the data published by OAEI, Section 4 presents related works and,
finally, Section 5 points final considerations of this work.

2 Correspondence Antipatterns

Ontology matching identifies correspondences between the entities of multiple ontol-
ogies, and it is a necessary condition to establish interoperability between them [8].
According to Euzenat [7], technically the ontology matching process occurs by taking
two ontologies O and O' as input, optionally considering a set of resources r, a set of
parameters p and an initial alignment A. The result of this process is an alignment A’
between the ontologies O and O', and may be represented as A’ = f (O, O’, A, p, r).
Basically, ontology matching is a process in which semantic links between entities of
ontologies are established. This process results in a set of semantic links, where each
semantic link is called a correspondence. The set of correspondences is called an
alignment. Correspondences may stand for several relations, such as equivalence or
subsumption [7]. In this work, we consider only equivalence correspondences.

Due to possible precision errors that every ontology alignment tool is subject to, it
may be the case that a correspondence included in an ontology alignment is not cor-
rect. Take, for example, a real problem illustrated in Figure 1, showing an alignment
problem that occurs in the last three OAEI1 editions, between ConfOf and Edas ontol-
ogies. The Ontology Alignment Evaluation Initiative (OAEI) is a coordinated interna-
tional initiative whose goal is to evaluate the strengths and weaknesses of the ontolo-
gy alignment tools. OAEI organizes annual campaigns addressing several domains,
and publishes the results of the evaluated tools. The correspondence between the Con-
fOf.Conference and Edas.Conference classes is a problematic one. Let’s analyze this
case: suppose that x is an instance of Edas.Conference. Since an equivalent relation-
ship between the entities Edas.Conference and ConfOf.Conference has been estab-
lished, we may deduce that there is a possible world w in which x is an instance of
ConfOf.Conference as well. Since ConfOf.Conference is a specialization of Con-

1 http://oaei.ontologymatching.org/

fOf.Event, x is necessarily an instance of ConfOf.Event in w. We also notice that there
is an equivalence correspondence established between ConfOf.Event and
Edas.Conferece_Event. Thus, x is also an instance of Edas.Conference_Event in w.
However, considering that Edas.Conference_Event and Edas.Conference are disjoint
classes, there should be no possible world in which x instantiates both
Edas.Conference and Edas.Conference_Event simultaneously, which leads to a con-
tradiction, thus evidencing an alignment problem.

Fig. 1. Fragment of two ontologies and an alignment problem.

Patterns assist in building a collective experience based on the skills of domain
specialists. On the other hand, an antipattern is a description of a given solution to a
common problem that generates, definitely, negative consequences.

Given two ontologies O and O’ to be aligned, a correspondence antipattern is a set
of generic, domain-independent correspondences and/or non-correspondences be-
tween the entities of O and O´ that lead to a contradiction. The purpose of a corres-
pondence antipattern is, then, to help domain specialists in identifying a mismatch (a
wrong correspondence) within an alignment.

We may generalize the example scenario illustrated in Figure 1 as follows: Consid-
er a class e1 in an ontology o1 that is a subclass of a class e2, which in turn is subclass
of a class e3 in o1. If class e3 in the ontology o1 is equivalently correspondent to class
e2 in ontology o2, and classes e1 (from ontology o2) and e2 (from ontology o2) are
disjoint, then class e1 from ontology o1 cannot equivalently match class e1 from on-
tology o2. As shown in [28], this correspondence antipattern can be represented as
follows:

{(?o1:?e1 ≡ ?o2:?e1) ⊓ (?o1:?e1 ⊑ ?o1:?e2) ⊓ (?o1:?e2 ⊑ ?o1:?e3) ⊓ (?o1:?e3 ≡
?o2:e2) ⊓ (?o2:?e1 ⊓ ?o2:?e2 ⊑ ⊥)} (1)

3 Digging Correspondence Antipatterns

As shown in [11], for the development of correspondence antipatterns, the first step is
to have the correct understanding of the problem being treated. When properly un-
derstood, the identified problem can result in correspondence antipatterns templates.
Figure 2 presents the methodology proposed in [11], which can assist in the construc-
tion of a correspondence antipattern. This methodology focuses on responding to key
issues which are essential for an antipattern identification.

Fig. 2. Methodology to build a correspondence antipattern.

The methodology was applied on the results provided by the OAEI in the last three
editions (2011.5, 2012 and 2013). The identification of correspondence antipatterns
considered recurring incorrect correspondences generated by the evaluated tools. We
identified incorrect correspondences by comparing tool results with the reference
alignment published by OAEI. Each step of this process will now be briefly explained
and illustrated in the OAEI scenario.

First step: Show problematic solution. The first step towards the construction of
correspondence antipatterns is the correct understanding of the problem being treated.
To start the search for correspondence antipatterns, the first step was the identification
of incorrect correspondences, or false positives, in the set of selected alignments.
False positives are the correspondences found by the evaluated tools that are not in
the reference alignments. Within the universe of identified incorrect correspondences,
we selected those that most frequently occurred (i.e., that were identified by many of
the evaluated tools). We selected 40 incorrect correspondences, which were the ones
that occurred over 50% of the analyzed alignments, as shown in Table 1. The columns
Ontology 1 and Ontology 2 denotes the ontologies being aligned and the columns
Entity 1 and Entity 2 denotes the entities involved in the incorrect correspondences
found. The Total Problems column shows the quantity of alignments analyzed in
which the incorrect correspondence was found. The Total Alignments column shows
the quantity of alignments analyzed. Percent is calculated as Total Problems / Total
Alignment.

Table 1. Inconsistent correspondences found in the set of alignments.

Error
Nº Ontology 1 Ontology 2 Entity 1 Entity 2 Total

Problems
Total
Align-
ments

Per-
cent

1 Conference Ekaw Invited talk Invited Talk 53 56 95%

2 Cmt Iasted Document Document 53 57 93%

3 Edas Ekaw Presenter Presenter 53 57 93%

4 Iasted Sigkdd Document Document 53 57 93%

5 Conference Ekaw Conference partic-
ipant

Conference
Participant 52 56 93%

6 Edas Iasted Person Person 52 57 91%

7 Conference Iasted Presentation Presentation 52 56 93%

8 Conference ConfOf Conference Conference 52 56 93%

9 Edas Ekaw Conference Conference 52 57 91%

10 Cmt Conference Reviewer Reviewer 51 56 91%

11 Conference Edas Conference Conference 51 56 91%

12 ConfOf Edas Conference Conference 50 57 88%

13 Conference Ekaw Conference Conference 49 56 88%

14 Edas Ekaw ConferenceSession Conference
Session 48 57 84%

15 Cmt ConfOf Paper Paper 47 57 82%

16 Conference Ekaw Paper Paper 47 56 84%

17 Conference Sigkdd Conference Conference 47 56 84%

18 Cmt Conference Paper Paper 47 56 84%

19 ConfOf Edas hasEmail hasEmail 46 57 81%

20 ConfOf Ekaw Paper Paper 46 57 81%

21 Iasted Sigkdd pay pay 44 57 77%

22 ConfOf Edas hasPhone hasPhone 43 57 75%

23 Cmt Sigkdd name Name 43 57 75%

24 Iasted Sigkdd obtain obtain 42 57 74%

25 Cmt ConfOf writtenBy writtenBy 41 57 72%

26 ConfOf Edas hasPostalCode hasPostalCode 41 57 72%

27 ConfOf Edas hasStreet hasStreet 40 57 70%

28 Cmt Sigkdd date Date 40 57 70%

29 ConfOf Edas hasTopic hasTopic 39 57 68%

30 mouse human MA 0000065 NCI C12685 39 45 87%

31 ConfOf Edas hasCountry hasCountry 39 57 68%

31 mouse human MA 0000323 NCI C12378 39 45 87%

33 Cmt Ekaw writtenBy writtenBy 38 57 67%

34 ConfOf Ekaw writtenBy writtenBy 38 57 67%

35 mouse human UNDEFINED part
of

UNDEFINED
part of 37 45 82%

36 Conference Iasted is given by is given by 37 56 66%

37 mouse human MA 0000003 NCI C12919 36 45 80%

38 Cmt Edas email hasEmail 31 57 54%

39 Conference Edas Call for paper CallForPapers 29 56 52%

40 Conference Edas has an email hasEmail 27 56 48%

Second Step: Evidentiate problematic solution. For a solution to be considered
problematic, this should in fact occur [11]. Table 1 confirms that these errors are re-
current. The Total Problems column of Table 1 shows the total occurrences of the
correspondence in the last three editions of the OAEI.

Third Step: Demonstrate Implications. For each incorrect correspondence, the er-
ror and its implications are analyzed according to the classification of types of infe-
rences examined in [10]. Some of the errors found and their implications are pre-
sented as follows.
o

Fig. 3. Alignment problem between Conference and Ekaw ontologies.

Error Number 16: In the set of alignments analyzed, the correspondence ¢confe-
rence.paper, ekaw.paper, ≡, _² occurs 47 times. By analyzing the correspondence
together with the aligned ontologies we identified the following problem: let e1 be a
class in an ontology o1 which is subclass of a class e2, which in turn is a disjoint class
of a class e3, also in ontology o1. If class e1 in ontology o1 equivalently corresponds
to class e1’ in ontology o2, class e2 in ontology o1 corresponds to class e2 in ontolo-
gy o1 and class e2’ in o2 is a subclass of e1 in ontology o1, then there is a contradic-
tion (more specifically, a disjointness-subsumption contradiction alignment problem
[10]). Figure 3 shows the case identified on the correspondence number 16, where the
above problem occurs.

Error Number 20: In the set of alignment analyzed, the correspondence ¢con-
fof.paper, ekaw.paper, ≡, _² occurs 46 times. By analyzing the correspondence to-
gether with the aligned ontologies we established the follow problem: let e1 be a class
in ontology o1 that is disjoint with class e2 in the same ontology o1, and a class e1’ in
ontology o2 that specializes class e2’ in the same ontology o2. If class e1 in o1 equi-
valently corresponds to class e1’ in o2 and class e2 in o1 equivalently corresponds to
class e2’ in o2, then there is a contradiction (a disjointness-subsumption contradiction

alignment problem [10]). Figure 4 shows the case identified on the correspondence
number 20, where the above problem occurs.

Fig. 4. Alignment problem between ConfOf and Ekaw ontologies.

Error Number 25: In the set of alignment analyzed, the correspondence
¢cmt.writtenBy, confof.writtenBy, ≡, _² occurs 41 times. By analyzing the correspon-
dence together with the aligned ontologies we established the following problem: let
p1 be a property in ontology o1 that has class e1 as its domain and class e2 as its
range, both in ontology o1, and a property p1’ in an ontology o2 that has class e1’ as
its domain class e2’ as its range, both in ontology o2. If p1 in o1 equally corresponds
to the property p1’ in o2, but class e1 in o1 does not correspond to class e1’ in o2 or
class e2 in o1 does not correspond to class e2’ in o2, then there is a domain and range
incompleteness alignment problem. Figure 5 shows the case identified on the corres-
pondence number 25, where the above problem occurs.

Fig. 5. Alignment problem between CMT and ConfOf ontologies.

Error Number 27: In the set of alignment analyzed, the correspondence ¢con-
fof.hasStreet, edas.hasStreet, ≡, _² occurs 40 times. By analyzing the correspondence
together with the aligned ontologies we established the following problem: let p1 be a
property in an ontology o1 that has classes e1 and e2 as its domain, both in ontology
o1, and a property p1’ in an ontology o2 that has as its domain a class e1’ in ontology
o2. If p1 in o1 equally corresponds to the property p1’ in o2 and class e1’ in o2 does
not correspond to any domain class of p1 in o1, then there is a domain and range in-

completeness alignment problem. Figure 6 shows the case identified on the corres-
pondence number 27, where the above problem occurs.

Fig. 6. Alignment problem between ConfOf and Edas ontologies.

Fourth Step: Identification of the Problematic Solution. The formal representation
of how to identify an alignment problem is what gives life to correspondence antipat-
tern. For each problem analyzed was created one correspondence antipattern, as
summarized in Table 2.

Table 2. Antipatterns builded from alignment problems.

Antipattern Item Short Description

Name
OCA02 - Disjointness-subsumption contradiction with disjoint classes
with subclasses.

Antipattern general form
(o1:e1 ≡ o2:e1’) ⊓ (o2:e2’ ⊑ o2:e1’) ⊓ (o1:e1 ⊓ o1:e3’ ⊆ ⊥) ⊓ (o1:e2 ≡
o2:e2’) ⊓ (o1:e2 ⊑ o1:e3)

Name
OCA03 - Disjointness-subsumption contradiction with disjoint classes
without subclasses.

Antipattern general form
(o1:e1 ≡ o2:e1’) ⊓ (o2:e2’ ⊑ o2:e1’) ⊓ (o1:e1 ⊓ o1:e ⊆ ⊥) ⊓ (o1:e2 ≡
o2:e2’)

Name
OCA04 - Domain and range incompleteness with no correspondence in
domains or ranges

Antipattern general form
(o1:p1≡o2:p1’) ⊓ ((o1:e1 ∈ domain(o1:p1) ⊓ o2:e1 ∈ domain(o2:p1’) ⊓
∄(o1:e1≡o2:e1’)) ⊔ (o1:e2 ∈ range(o1:p1) ⊓ o2:e2’ ∈ range(o2:p1) ⊓
∄(o1:e2≡o2:e2’)))

Name
OCA05 - Domain and range incompleteness with no correspondence in
domains

Antipattern general form
(o1:p1≡o2:p1’) ⊓ (o1:e1 ∈ domain(o1:p1) ⊓ o2:e1’ ∈ domain(o2:p1’) ⊓
∄(o1:e1≡o2:e1’))

For the construction and computational representation of a correspondence antipat-

tern, we adopt EDOAL (Expressive Declarative Ontology Alignment Language), an
open and agnostic language [2] [11]. A fragment of the OCA02 - Disjointness-

subsumption contradiction with disjoint classes with subclasses correspondence anti-
pattern EDOAL representation is illustrated as follows:

 <map>
 <cell>
 <entity1><Class rdf:about="?o1:?e1"/></entity1>
 <entity2><Class rdf:about="?o2:?e1"/></entity2>
 <relation rdf:resource="equivalence"/>
 </cell>
 <cell>
 <entity1><Class rdf:about="?o2:?e2" /></entity1>
 <entity2><Class rdf:about="?o2:?e1" /></entity2>
 <relation rdf:resource="subsumedBy"/>
 </cell>
 <cell>
 <entity1><Class rdf:about="?o1:?e1" /></entity1>
 <entity2><Class rdf:about="?o1:?e3" /></entity2>
 <relation rdf:resource="disjoint"/>
 </cell>
 <cell>
 <entity1><Class rdf:about="?o1:?e2" /></entity1>
 <entity2><Class rdf:about="?o2:?e2" /></entity2>
 <relation rdf:resource="equivalence"/>
 </cell>
 <cell>
 <entity1><Class rdf:about="?o1:?e2" /></entity1>
 <entity2><Class rdf:about="?o1:?e3" /></entity2>
 <relation rdf:resource="subsumedBy"/>
 </cell>
 </map>

Fifth Step: Refactored Solution. Refactoring in this case means repairing the

alignment to eliminate logical inconsistencies. This is not a trivial activity, since there
may exist many solutions for a specific scenario. Morevover, the best solution may
also depend on the task, or even point some problem in the semantics of the corres-
pondence. Therefore, this task is currently carried out by the specialist, with no auto-
matic support. Further evolution of this approach will investigate automatic approach-
es for alignment refactoring.

4 Related Work

 In ontology research, Ontology Design Patterns (ODPs) are an emerging approach
that favors the reuse of encoded experiences and good practices. ODPs are modeling
solutions to solve recurrent ontology development problems [1]. Compared with
Software Engineering, where patterns have been used for a long period, patterns in
Ontology Engineering are still in infancy [2]. The earliest works addressing the issue
of patterns in Ontology Engineering are from the beginning of the 2000s. Sales and
colleagues present semantic antipatterns for ontology engineering [3]. These antipat-
terns capture error-prone modeling decisions, which can result in the creation of mod-
els that allow for unintended model instances (representing undesired state of affairs).
The antipatterns presented by [3] have been empirically elicited through an approach

of ontology conceptual models validation via visual simulation. In [12], the authors
collect a list of common antipatterns that can be found in ontologies and that cause a
large percentage of inconsistency problems Besides, their list some antipatterns that
do not have an impact on the logical consequences of the ontology being developed,
but are important to reduce the number of errors in the intended meaning of ontolo-
gies or to improve their understandability.

Correspondence patterns, proposed by [2], are essentially correspondences and sets
of correspondences with generic entities. They act as role models to help find corres-
pondences more precise than simply relate one entity to another one. Each correspon-
dence pattern is a generic solution to a problem of alignment. Author of [2] proposed
a library of correspondence patterns for design that represent solutions to different
recurrent mismatches which are quite hard for matchers using usual matching tech-
niques. Padilha [4] proposes design patterns and antipatterns for ontology alignment
using high-level ontologies. The proposed design patterns were built based on the
OntoUML [5], ontology modeling language which considers the ontological distinc-
tions and axiomatic theories proposed in Foundational Ontology Unified (UFO). The
patterns described are design patterns modeling, and there is no any kind of imple-
mentation thereof.

5 Final Considerations

 Ontology matching is a very active research field in the scientific community, where
various techniques and approaches have been proposed. However, existing tools are
still likely to identify incorrect correspondences between the entities of the ontologies
that are being aligned. The identification of recurrent errors may serve as input for the
construction of correspondence antipatterns. A correspondence antipattern is a set of
generic correspondences between two ontologies that represents an incorrect align-
ment. They assist in identifying incorrect correspondences in a given alignment, and
should be computationally representated in an open and agnostic language.

OAEI is an important initiative that provides the community with the results os
evaluations of several ontology matching techniques and tools. This published data
constitutes a rich environment for analyzing recurrent errors in practical alignments.

In this work, the results provided by OAEI in three evaluation editions (2011.5,
2012 and 2013) were analyzed. The identified recurring alignment problems were
considered and some correspondence antipatterns were specified and codified and
EDOAL, following the methodology proposed in [11].

Future works include the exhaustive analysis and identification of correspondence
antipatterns from other OAEI datasets, and the construction of a framework to make
use of these antipatterns in refining ontology alignments.

Acknowledgment

Fernanda Baião is partially funded by CNPq brazilian research council under the
project 309069/2013-0.

References

1. Presutti, V., Daga, E., Gangemi, A., Blomqvist, E.: eXtreme Design with Content Ontolo-
gy Design Patterns. In: Proc. Workshop on Ontology Patterns, Washington D.C., USA
(2009)

2. Falbo, R., Barcellos, M., Nardi, J., Guizzardi, G.: Organizing Ontology Design Patterns as
Ontology Pattern Languages. In: 10th Extended Semantic Web Conference (2013)

3. Sales, T., Barcelos, F., Guizzardi, G.: Identification of Semantic Antipatterns in Ontology-
Driven Conceptual Modeling via Visual Simulation. 4th International Workshop on Ontol-
ogy-Driven Information Systems (2012)

4. Padilha, N.: Padrões e antipadrões de correspondências para melhoria do alinhamento de
ontologias bem fundamentadas. Dissertação de Mestrado. Universidade Federal do Estado
do Rio de Janeiro (2013)

5. Guizzardi, G.: Ontological Foundations for Structural Conceptual Models, Ph.D. Thesis,
University of Twente, The Netherlands (2005)

6. Buschmann, F., Meunier, R., Rohnert, H., Sornmerlad, P., Stal. M.: Pattern-Oriented Soft-
ware Architecture. A System of Patterns, John'Wiley & Sons Ltd., England (1996)

7. Euzenat, J., Shvaiko, P.: Ontology Matching, 2nd edition, Springer-Verlag, Berlin (2013)
8. Ehrig, M.: Ontology Alignment: Bridging the Semantic Gap, Springer Science + Business

Media, LLC (2007)
9. Grau, B. C., Dragisic, Z., Eckert, K., Euzenat, J., Ferrara, A., Granada, R., Ivanova, V.,

Jiménez-Ruiz, E., Kempf, A. O., Lambrix, P.: Results of the Ontology Alignment Evalua-
tion Initiative 2013, in Proc. 8th ISWC workshop on ontology matching (OM), pp. 61–100
(2013)

10. Jean-Mary, Y., Shironoshita, E., Kabuka, M.: Ontology matching with semantic verifica-
tion. Journal Web Semantics: Science, Services and Agents on the World Wide Web arc-
hive. Volume 7 Issue 3, pp. 235-251 (2009)

11. Guedes, A., Baião, F., Revoredo, K.: On the Identification and Representation of Ontology
Correspondence Antipatterns. 8th International Workshop on Modular Ontologies in 8th In-
ternational Conference on Formal Ontology in Information System. To be appear. (2014)

12. Roussey, C., Corcho, O., Vilches-Blázquez, L.: A catalogue of OWL ontology antipat-
terns. In Proceedings of the fifth international conference on Knowledge capture (K-CAP
'09), pp. 205-206 (2009)

An Ontology Design Pattern for Cooking
Recipes – Classroom Created

Monica Sam, Adila Alfa Krisnadhi, Cong Wang, John Gallagher, Pascal Hitzler

Department of Computer Science and Engineering, Wright State University, USA

Abstract. We present a description and result of an ontology modeling
process taken to the classroom. The application domain considered was
cooking recipes. The modeling goal was to bridge heterogeneity across
representational choices by developing a content ontology design pattern
which is general enough to allow for the integration of information from
di↵erent web sites. We will discuss the pattern developed, and report on
corresponding insights and lessons learned.

1 Introduction

The pattern which we will describe in this paper was developed as part of a class
which the last named author conducted at Wright State University in Spring
2014. The class was called Knowledge Representation for the Semantic Web,
and was an entry-level graduate class, with the goal of conveying to the students
the fundamentals of Semantic Web knowledge representation languages.

The teacher had been experimenting in the past with a rather “classical”
approach to teaching this subject, which essentially followed [1]. In this ap-
proach, topics progressed from light-weight to heavy-weight, starting with RDF
and RDFS, their semantics and completion algorithms, the OWL syntax and
intuitive semantics, followed by the introduction of description logics, their for-
mal semantics and tableaux-based reasoning procedures. Practical modeling ex-
ercises progressed from shallow to deep, essentially starting with taxonomies
which were then step by step (as material in the class progressed) expanded
and adorned with more sophisticated axiomatization. Logical foundations were
conveyed without proofs, as in the textbook, with the goal of allowing the stu-
dents to develop a rough intuition of the logical underpinnings without diving
too deeply into the technical details.

While the classes (and the textbook, for that matter) were well received by
the students, these classes fell short of one particular goal which the teacher
had: most students did not develop an intuition for formal semantics and logical
deduction, i.e. the understanding of the languages remained at an informal and
rather shallow and mostly syntactic level. While this is not necessarily a problem
regarding useful learning outcomes for the students, the teacher was motivated
to pursue alternative routes.

For the class in Spring 2014, contents and approaches were radically modi-
fied. Explicit treatment of RDF and OWL was deferred to a brief overview at

the end of the class, while the bulk of the material taught was on formal logic
around description logics and rules (datalog and logic programming), plus some
existential rules, with full formal proofs of (un)decidability results and of sound-
ness and completeness of the presented algorithms. The main emphasis was thus
to engulf the students in the formal matter, at which point the concrete W3C
standards like RDF and OWL became almost afterthoughts, the syntax and se-
mantics of which could be conveyed very quickly in the end as special cases of
what had been dealt with on a more foundational level over the course of four
months.

A second major change was adopted: The former class project, which was to
built an ontology progressively starting from light-weight (taxonomy) to heavy-
weight (OWL and rules axioms) was completely dropped. Instead, the whole class
met for a 7-hour session (with breaks) to practice collaborative ontology design
pattern (ODP) modeling. In the two previous class sessions, the students had
received a brief introduction to ODPs, as well as a minimalistic primer on RDF
and linked data. The primary examples discussed were the Semantic Trajectory
pattern [2], the Cruise pattern [3] and from Linked MDB (linkedmdb.org). The
students did know that they would collaboratively model a concrete ODP, but
they did not learn before the class session what notion it would be.

For the modeling session, the class was split into two groups, which initially
were to work independently. The charge was as follows.

Design an ontology design pattern which can be used as part of a “recipe
discovery” website. The pattern shall be set up such that content from existing
recipe websites can “in principle” be mapped to the pattern (i.e., the pattern
gets populated with data from the recipe websites). On the discovery website,
detailed graph-queries (using the pattern) shall produce recipes from di↵erent
recipe websites as results.

Students were instructed to first look at some popular recipe websites, then
to formulate, in natural language, some example queries to the website such
as “I have cabbage and potatoes, how can I make that into a nice meal in 45
minutes?” They were then to develop a graph structure as basis for a pattern
and check that their queries work with these.

In a second stage, the groups were mixed, with one representative from each
group changing to the other group. This representative brought the original ques-
tions from his original group and both patterns were modified to accommodate
the additional types of queries. The groups then added axioms in the form of
OWL or rules to constrain the formal semantics. Figures 1 and 2 depict the two
patterns the groups came up with, and we will discuss these further in Section 4.

In a third stage, each group was charged with describing how their pattern
could be mapped to the other pattern, and asked to report on the problem
points, i.e., where and why mapping of parts of the pattern did not really work.

The whole class finally merged all insights into one draft pattern, which is
depicted in Figure 3 with only minor modifications – mostly regarding the choice
of names for classes and properties, and a more detailed axiomatization. This
resulting pattern is laid out in detail in this paper. To the teacher’s own surprise,

the pattern turned out very well, and the class feedbacks were excellent. We will
discuss further aspects of the class pattern modeling experience towards the end
and discuss the resulting pattern.

2 Modeling Recipe

The term recipe has several contextual meanings. It can be defined in a general
sense as a method to obtain a desired end. When used in the context of cooking,
it is generally considered to be a set of instructions on preparing a culinary dish.
As such, it could be viewed as an object with properties such as ingredients and
time needed. Alternatively, it could be viewed as a process, which takes in some
input, has a series of steps to be executed, and produces some output. The time
taken to execute the steps and the utensils needed also help describe the recipe.

A cooking recipe, apart from the instructions and ingredients, sometimes con-
tain information that help categorize it better for various needs. A recipe could
be described as vegetarian or belonging to a particular course and appropriately
categorized. Application-specific information may also be needed to tailor the
recipe for specific purposes.

Modeling a piece of particular domain knowledge as an ODP typically re-
quires involvement of domain experts. In modeling recipes for this paper, how-
ever, the presence of domain experts is not strictly required since information
about recipes is widely available online and easily understandable by most lay
people. Moreover, we are not so much interested in the actual resulting pattern,
but rather on the experience of using ODP as a pedagogical element for teach-
ing Semantic Web knowledge representation languages. In place of sessions with
domain experts, a brainstorming session in the class was carried out to gather
the information necessary to model recipe in this paper. The resulting pattern
was obtained from scratch since the participants were not exposed to previous
attempts for modeling cooking recipe or, in general, food and the related notions,
some of which we survey below.

Cantais et al. [4] presented a Food ontology, which works together with the
Diets and Product ontologies to provide a recommendation to users on a healthy
choice of food in accordance to their health condition. They proposed a formal-
ization based on a use case scenario over diabetic patients. Recipe is not modeled
explicitly in these ontologies, although the recommender system that uses them
can suggest combination of ingredients appropriate to the dieting requirements.

Mota and Agudo [5] presented an ontology of ingredients, which was used as
a part of a recipe adaptation system. Recipe is not modeled as a process as in
our pattern, but rather, as a simple collection of those ingredients that can be
added when needed or removed when unwanted.

Ribeiro et al. [6] described a Cooking ontology as an example how a spoken
dialogue system can be enriched with a domain knowledge. The ontology itself
is very fine-grained and complex containing more than 1000 classes divided into
seven ontology modules. Recipe is modeled here as a combination of preparation,
cooking, and presentation phases, each of which consists of a sequence of tasks.

Other relevant notions such as ingredient, utensil, measure, and unit are also
included to model various situations, which may involve variation of measures
and units, classification of food items (e.g., alcoholic and non-alcoholic), and
di↵erences in courses of the food item due to geographical locations. Recipe can
thus be seen as a process like in our pattern, although in our case, the pattern is
not as fine-grained as this one to retain a relatively high degree of extensibility.

To populate our pattern (or suitable extension thereof) with data, one can
in principle use an approach using indentation and tagging structures in XML
documents to learn to extract recipe information in the form of semantic anno-
tations from web pages [7].

3 Competency Questions

The two groups were first asked to look at existing recipe websites and formulate
the kind of questions the information in the websites helped answer. Group A
made the assumption that recipe websites would contain information in stan-
dard data types and tried to drill down information to the most primitive level.
Accordingly, their questions were also more specific. In the following section,
we will look at some of the questions each group came up with, and how the
two groups modeled similar information di↵erently. Some of the questions that
Group A came up with were as follows:

Question 1 “Breakfast dishes I can prepare with 2 potatoes and 100 grams of
wheat flour.”

Here, group A assumed that quantities such as 2 potatoes and 100 grams of
wheat flour should be clearly and unambiguously presented in each website.
Group A modeled this information using the FoodItem and quantityOfFood
classes. Group B had included ingredient information in their Ingredient and
Quantity classes.

Question 2 “Gluten-free desserts with less than 100 calories.”

Group A modeled all food categorization in a single class called FoodClass.
Food classifications such as vegetarian, gluten-free; flavor information such as
spicy, sweet; foods with classifications such as Easter eggs, cuisine and course
information are modeled by this class. The above question would be answered
by Group A’s model using the FoodClass and NutritionInfo classes, and may be
answered by the Keyword class in Group B’s model.

Question 3 “Mexican dishes which do not use chili.”

An interesting aspect of the model of Group A is that both ingredients and food
products are modeled as foods with quantities. This will be discussed later in
detail. The above question would be answered by the FoodClass and isOptional
property of the Ingredient class in Group A’s model. Group B modeled this
information using their Cuisine class. It might have been more di�cult to query

for the absence of an ingredient using Group B’s model.1 Group A was certain
that there should be a di�culty level associated with each recipe and included
that in their model. They also associated an Author pattern with each of their
recipes. This would help answer questions such as the following:

Question 4 “Easy Gordon Ramsey breakfast dishes.”

It was noted that the problem of uniformity in representing levels of di�culty
across websites might show up when modeling this concept. Whereas Group A
had an Author associated with each recipe, Group B did not. Therefore the
above question couldn’t be answered by their model. Cooking utensils needed
and time to cook were some information that was agreed to be vital to answer
questions such as the following:

Question 5 “Grilled meat in less than 1 hour.”

The above utensil and time information were modeled by both groups. Group
A used the utensil and Time classes for this and Group B used CookingTool
and OWL:Time classes for this. Group B also had some similar ideas as to
what ought to be included in a model for recipe websites. They identified flavor,
texture, cuisine and serving temperature as essential attributes of any recipe, to
answer questions such as the following:

Question 6 “Spicy Korean beef dishes.”

For the above question, Group B’s Cuisine, Flavor and Ingredient classes were
modeled. Group A would have answered this question with the FoodClass and
Ingredient classes.

Question 7 “Crunchy brownie recipes.”

Group B modeled the Texture class and Keyword class to answer queries such
as the above, whereas Group A modeled this information using the FoodClass
and Keyword classes.

Question 8 “Cold appetizers.”

Group B had a specific ServingTemperature class to answer queries on the tem-
perature the dish should be served at, while Group A modeled such information
only with FoodClass and Keyword classes. They also included cooking utensil
and di�culty level:

Question 9 “Baked/Mashed potatoes.”

The above question would need information on the utensil to be used to prepare
the recipe, since baking involves an oven and mashing presumably requires a
masher or some similar utensil, and this information is modeled using the Utensil
class by Group A and CookingTool class by Group B.

1 (Local) closed world reasoning is of course also required for this type of query.

Fig. 1: Recipe modeled by group A.

Question 10 “Easy desserts with less than 100 calories.”

Both the groups had modeled a Di�cultyLevel class and NutritionalInfo class.
The above query would be answered by these classes. Some information such
as nutritional information, time to cook, utensils needed, di�culty level were
identified and modeled similarly by both groups.

4 In-class Modeling – A Discussion

Based on these competency questions, the two groups of students came up with
two rather di↵erent drafts of a recipe pattern. These drafts are depicted in Fig-
ures 1 (Group A) and 2 (Group B).

Initially, both the groups modeled recipe as a class with relationships to other
classes. So they defined properties that objects of the class would have. There
were ingredients which became a property of the class and there were instructions
that was also a property of the class, as was the dish that was produced. With
this approach instructions were just another property of the recipe. An alternate
way was proposed by the teacher, in which the recipe became a process, and
therefore a description of the procedure became now a defining characteristic of
it. The students then modified their patterns based on this thinking.

While Group A connected both ingredients and food products as belonging
to a single category, which they called FoodItem, Group B continued to view

Fig. 2: Recipe modeled by group B.

them separately and modeled them as Product and Ingredient. Both the groups
independently came to the conclusion that there had to be some modeling of
the concept of quantity to be associated with FoodItems. Group A decided that
quantity would in turn have a unit and a value associated with it, whereas Group
B did not make that decision. Group A associated all the information related
to categorization – based on spice levels, based on cuisine, based on dietary
content as all belonging to a single class they called FoodClass. They had a
separate class for the course of the dish the recipe was for. Group B decided to
maintain separate, the notions of Cuisine, Flavor and Texture. Both the groups
independently came up with the idea of NutritionalInfo that had nutritional
information about the FoodItem produced as a result of the recipe. Both the
groups came up with ideas of time associated with preparation and cooking and
the appliances used to make the food item. Both the groups also came up with
the idea of a di�culty level associated with the procedure. While the ingredient
had an associated property which marked whether it was optional in the design
of Group A, Group B had not modeled that information. Also Group A had an
author associated with the recipe which Group B did not, while Group B had
a Photo associated with the recipe that Group A did not. Group A also had a
Rating associated with the recipe that Group B did not.

Of course, the two groups made di↵erent modeling choices, and as part of the
class session, after producing the initial drafts just discussed, the two groups were
asked to attempt to develop mappings, one group from version A to version B,
and one group vice versa as the third stage of the class modeling session (see the
overview in Section 1). They were charged with developing a loss-less mapping,

if possible, and to report on issues where such a mapping was not possible. This
task aligned with the general charge for the modeling session (see Section 1):
the charge called for a very general pattern to which content could always be
mapped. So di�culties found in the mapping exercise would indicate too specific
modeling choices.

A direct mapping could indeed be made between the two models for the fol-
lowing concepts pairs (and corresponding properties): Recipe – Recipe; Ingredi-
ent as QuantityOfFood – Ingredient with IngredientQuantity; Quantity – Quan-
tity; Appliance – CookingTool; Di�cultyLevel – Di�cultyLevel; Name – Name;
Directions – Procedure; NutritionalInfo – NutritionalInfo; Time – OWL:Time;
FoodClass – Cuisine.

The individual pieces of information about the recipe that each model had
which was not in the other model could not be accomodated unless the model was
expanded. The author modeled in Group A’s version, the photograph modeled
in Group B’s version could not be mapped directly. The unit and value asso-
ciated with Quanitity in Group A’s model would need an expansion of Group
B’s model. The Temperature modeled in Group B’s model could not be acco-
modated in Group A’s model. The Optional Concept associated with Group A’s
model could not be directly mapped into Group B’s model. The Rating associ-
ated with Group A’s model had no equivalent in Group B’s model. The Course
associated with Group A’s model had no equivalent in Group B’s model. The
choice of Group A to use a class QuantityOfFood which can act both as recipe
ingredient and as recipe product found general agreement, partially because of
the perceived conceptual clarity of the modeling, partially because it was real-
ized that sometimes the recipe product becomes in turn an ingredient in another
recipe. So the approach by Group A was adopted for the final version.

The mapping attempts furthermore exposed strong ontological commitments
regarding some classes used as the range for properties, e.g. demanding a Float
as quantity value. In the ensuing discussion it was realized that the quantity
value class may be a complex entity, i.e. a pattern in its own right. E.g., recipes
may specify a “pinch of salt”, or “salt and pepper to taste”.

Missing information about Photograph in Group A’s model and Author,
Rating in Group B’s model was filled by creating a new class called Informa-
tionObject which conceptualized information associated with the Recipe. The
missing information in Group A’s model about serving temperature, flavor and
cuisine and in Group B’s model about course and food class were modeled into
another object called FoodClass. By associating a quantity with ingredient, it
was decided that the need for an optional indicator field was removed.

The in-class discussion, in particular seeing the di↵erent modeling choices,
the attempt and failure to produce mappings, and the final consensus to establish
the final pattern draft (Figure 3) provided the students with an understanding
of the di�culties of making, using, and reusing conceptual models, which would
have been much more di�cult to convey without a group modeling exercise.

Name Type Explanation

hasIngredient Recipe ⇥ QuantityOfFood An ingredient of the recipe

produces Recipe ⇥ FoodItem A dish produced by the recipe

consistsOf QuantityOfFood ⇥ FoodItem The quantity of either an ingredi-

ent or dish

classifiedAs FoodItem ⇥ FoodClassifica-
tion

The classification of an ingredient

or disth

hasName FoodItem ⇥ String The name of an ingredient or dish

hasProcessDescription Recipe ⇥ ProcessDescription the description of the recipe pro-

cess

hasTextualDescription ProcessDescription ⇥ Docu-
ment

The text description of the recipe

process

preparationTime,cookingTime Recipe ⇥ timeInterval The duration of the recipe process

requires Recipe ⇥ Utensil A utensil needed for the recipe

hasName Recipe ⇥ String The name of a recipe

hasInformationObject Recipe ⇥ InformationObject The information object of a recipe

hasURL InformationObject ⇥ URL The URL information of a recipe

hasKeyword InformationObject ⇥ String The keyword information of a

recipe

hasAuthor,hasRecommender InformationObject ⇥ Person The author information of a recipe

hasDi�cultyLevel InformationObject ⇥ Di�-
cultyLevel

The di�culty level information of

a recipe

hasRating InformationObject ⇥ Rating The rating of a recipe

Table 1: Basic relations present in the finalized model.

5 Finalized Pattern and OWL Formalization

We now present the finalized design pattern, based on the previously described
conceptual foundations. The concrete OWL ontology, which was created using
Protégé, can be found at http://www.pascal-hitzler.de/data/RecipeODP.

owl. In order to answer the competency questions, an ontology design pattern
needs to distinguish a number of relations. We introduce these abstract relations
in Table 1, before formalizing them.

In the following, we respectively discuss the classes and properties within the
pattern and formally encode them using the Web Ontology Language (OWL)
[8]. We make use of Description Logics (DL) [1] notation, as we believe this
improves the readability and understandability of the axioms presented. Note
that tractable reasoning is important for producing an e�cient implementation
of the pattern. A schematic view of the pattern is shown in Figure 3.

Recipe. A Recipe is a class which is described as a process. It may take as
ingredients instances of QuantityOfFood and also produce instances of Quan-
tityOfFood. The instructions on how to execute the recipe is provided in the
ProcessDescription pattern which is assumed to have steps in a time-ordered
fashion. A recipe also requires some utensils for execution which is modeled as a
Utensil pattern, and requires some amount of time for execution described by a
pattern named TimeInterval. These patterns are already assumed to exist in the
domain and are left as conceptual elements that are not drilled down in detail
for this exercise. Each instance of the recipe class also has a name which is of
the String data type.

http://www.pascal-hitzler.de/data/RecipeODP.owl
http://www.pascal-hitzler.de/data/RecipeODP.owl

Fig. 3: Recipe as a process modeled along with other patterns (marked grey)
needed to describe a recipe.

QuantityOfFood. QuantityOfFood is a class that models the quantity of both
ingredients and food products produced by the recipe. It can be described as
serving a number of people which is of data type positive integer. It also has
some nutritional information associated with it, which is modeled as a pattern
called NutritionalInfo. The quantity it has is described using a pattern called
quantity which is some quantity along with a unit.

FoodItem. FoodItem is a class that models an ingredient or food product which
in turn has its quantity described by QuantityOfFood. The FoodItem has a name
which is modeled using a String data type and has a food classification which
in turn is defined as a pattern named FoodClassification. FoodClassification has
been modeled in a very broad sense to include such classification as vegetarian,
vegan, gluten-free to seasonal, or occassion-specific information such as thanks-
giving meals or even meals for a purpose such as lunch-box meals.

InformationObject. InformationObject is a class that contains information
needed to describe a recipe. Some of its properties are hasURL, hasKeyword
(of String data type), hasAuthor, hasPoster, hasRecommender - which is a Per-
son described by an external pattern, and a di�culty level, also modeled as
an external pattern. It also includes Rating information, which also could pose
challenges, if the rating systems are all not normalized.

OWL Profile. Full list of axioms for the pattern are given in Appendix A
of the extended technical report available from http://www.pascal-hitzler.

de/pub/2014-recipe-tr.pdf. From these axioms, we know our recipe pat-
tern falls into the Description Logic ELIF(D). An ELIF-Tbox can be re-
duced to an ELI-Tbox whose size is linear in the size of the original one [9].

http://www.pascal-hitzler.de/pub/2014-recipe-tr.pdf
http://www.pascal-hitzler.de/pub/2014-recipe-tr.pdf

In ELI, subsumption w.r.t. GCIs is ExpTime-complete [10], and ELI knowl-
edge bases can be classified by a completion-rule based algorithm2 [11,9]. How-
ever, if we rewrite range restrictions of properties to be of universal scope, e.g.,
9hasIngredient�.> v QuantityOfFood, ELI can even reduced to EL [12], such
that the subsumption checking can be done in polynomial time [10].

6 Informal Evaluation

In this section, we illustrate how our pattern can be specialized to the content
of specific websites.

For the website www.allrecipes.com, most of the information given for recipes
can be modeled based on our pattern, except for the addition of a couple of
InformationObjects of type image and video. The recipes also have a Review
associated with them, but do not contain information on di�culty level.

Another example is the website www.bettycrocker.com. The information on
this website can be modeled by a slight extension of our pattern to include expert
tips to the process description. Also, this website has review information, and
no di�culty level.

A third example is taken from www.epicurious.com. This website uses infor-
mation such as the main ingredients, the dietary considerations this recipe would
meet – for example, being vegan or high fiber and the season associated with the
dish to tag the recipe. Recipes are also categorized. The information in this web-
site could be modeled by of course adding the Review InformationObject, remov-
ing the Di�cultyLevel and adding in another InformationObject for popularity
which lists the number of times the recipe had been downloaded. In all cases,
the key page contents can be captured with specializations of our recipe pattern.
Further details are provided in Appendix B of the extended technical report
available from http://www.pascal-hitzler.de/pub/2014-recipe-tr.pdf.

7 Conclusions

The class exercise produced a reasonable outcome in terms of the resulting con-
tent pattern. The students experienced the power of collaborative modeling to
obtain versatile patterns, and overall the experience was resulted in very positive
feedbacks.

A lesson learned (for the teacher) is that it seems necessary to convey some
amount of thorough logical underpinnings in order to e↵ectively teach introduc-
tory ontology modeling: An understanding of logical reasoning with ontology
axioms seemed to have helped in avoiding typical beginner’s mistakes regarding
ontology modeling, such as confusing part-of relationships with subclass rela-
tionships or mistakes arising from vacuous truth via the universal quantifier.

2 A practical reasoner for this fragment, called CB reasoner, can be found at https:
//code.google.com/p/cb-reasoner/.

http://www.pascal-hitzler.de/pub/2014-recipe-tr.pdf
https://code.google.com/p/cb-reasoner/
https://code.google.com/p/cb-reasoner/

Acknowledgements This work was partially supported by the National Sci-
ence Foundation under award 1017225 ”III: Small: TROn – Tractable Reasoning
with Ontologies.”

References

1. Hitzler, P., Krötzsch, M., Rudolph, S.: Foundations of Semantic Web Technologies.
CRC Press (2010)

2. Hu, Y., Janowicz, K., Carral, D., Scheider, S., Kuhn, W., Berg-Cross, G., Hitzler,
P., Dean, M., Kolas, D.: A geo-ontology design pattern for semantic trajectories.
In Tenbrink, T., Stell, J.G., Galton, A., Wood, Z., eds.: Spatial Information Theory
– 11th International Conference, Conference on Spatial Information Theory 2013,
Scarborough, UK, September 2-6, 2013. Proceedings. Volume 8116 of Lecture Notes
in Computer Science., Heidelberg, Springer (2013) 438–456

3. Krisnadhi, A., Arko, R., Carbotte, S., Chandler, C., Cheatham, M., Finin, T.,
Hitzler, P., Janowicz, K., Narock, T., Raymond, L., Shepherd, A., Wiebe, P.: An
ontology pattern for oceanographic cruises: Towards an oceanographer’s dream
of integrated knowledge discovery. OceanLink Technical Report 2014.1, available
from http://www.oceanlink.org/ (2014)

4. Cantais, J., Dominguez, D., Gigante, V., Laera, L., Tamma, V.: An example of food
ontology for diabetes control. In: Proceedings of the International Semantic Web
Conference 2005 workshop on Ontology Patterns for the Semantic Web. (2005)

5. Mota, S.G., Agudo, B.D.: ACook: Recipe adaptation using ontologies, case-based
reasoning systems and knowledge discovery. In Cordier, A., Nauer, E., eds.: Pro-
ceedings of the Cooking With Computers workshop. (2012) 41–45

6. Ribeiro, R., Batista, F., Pardal, J.P., Mamede, N.J., Pinto, H.S.: Cooking an
ontology. In: Artificial Intelligence : Methodology, Systems, Applications, Springer
(2006) 213–221

7. Ciancarini, P., Iorio, A.D., Nuzzolese, A.G., Peroni, S., Vitali, F.: Semantic an-
notation of scholarly documents and citations. In Baldoni, M., et al., eds.: AI*IA
2013: Advances in Artificial Intelligence – XIIIth International Conference of the
Italian Association for Artificial Intelligence, Turin, Italy, December 4-6, 2013.
Proceedings. Volume 8249 of Lecture Notes in Computer Science., Springer (2013)

8. Hitzler, P., Krötzsch, M., Parsia, B., Patel-Schneider, P.F., Rudolph, S., eds.: OWL
2Web Ontology Language: Primer. W3C Recommendation 27 October 2009 (2009)
Available from http://www.w3.org/TR/owl2-primer/.

9. Vu, Q.H.: Subsumption in the Description Logic ELHIFR+ w.r.t. General
TBoxes. PhD thesis, Technical University Dresden (2008)

10. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope. In Kaelbling, L.P.,
Sa�otti, A., eds.: Proceedings of the Nineteenth International Joint Conference on
Artificial Intelligence, Edinburgh, Scotland, UK, July 30-August 5, 2005, Profes-
sional Book Center (2005) 364–369

11. Kazakov, Y.: Consequence-driven reasoning for Horn SHIQ ontologies. In Boutilier,
C., ed.: Proceedings of the 21st International Joint Conference on Artificial Intel-
ligence, Pasadena, California, USA, July 11-17, 2009. (2009) 2040–2045

12. Carral, D., Feier, C., Grau, B.C., Hitzler, P., Horrocks, I.: EL-ifying ontologies. In
Demri, S., Kapur, D., Weidenbach, C., eds.: Automated Reasoning – 7th Interna-
tional Joint Conference, Vienna, Austria, July 19-22, 2014. Proceedings. Volume
8562 of Lecture Notes in Computer Science., Springer (2014) 464–479

Ontology Patterns for Clinical Information Modelling

Catalina Martínez-Costa1, Daniel Karlsson2, Stefan Schulz1

1Institute for Institute for Medical Informatics, Statistics and Documentation,
Medical University of Graz, Austria

2Department of Biomedical Engineering, Linköping University, Sweden

{catalina.martinez,stefan.schulz}@medunigraz.at,
Daniel.Karlsson@liu.se

Abstract. Motivated by our experiences of representing clinical information us-
ing OWL DL, which often resulted in highly complex expressions, we propose
the use of ontology content patterns to facilitate this task. They are based on a
set of formal ontologies, constrained by the concepts and relations of a top-level
one, which reduces arbitrariness in ontology design. We propose their applica-
tion to information encoded by electronic health records specifications and on-
tology-based terminologies, in order to provide semantic interoperability across
heterogeneously represented data, and to guide the creation of clinical models
and detect semantic inconsistencies across them. We provide examples of their
application to achieve the above mentioned tasks and discuss the limitations and
further research issues.

Keywords: ontology content patterns, electronic health standards, SNOMED
CT

1 Introduction

Despite a wide-spread use of computers in clinical documentation, the semantic in-
teroperability of information kept in electronic health record (EHR) systems is insuf-
ficient [1]. A plurality of EHR representations together with medical terminologies
like SNOMED CT [2], have been proposed in recent years to structure clinical infor-
mation and to provide standardized codes for frequently used medical terms, respec-
tively.

Existing EHR standards and medical terminologies were developed in isolation and
major problems exist when they are combined. Projects such as the HL7 TermInfo [3]
or more recently the Clinical Information Modeling Initiative (CIMI) [4] and the Eu-
ropean network SemanticHealthNet [5], have attempted to provide solutions by ad-
dressing the lack of division between ontology-based medical terminologies and in-
formation models (provided by EHR representations). This is commonly known as
the boundary problem [6].

TermInfo provides a set of rules for the combined use of the HL7 information
model and SNOMED CT; CIMI proposes a set of modelling patterns, defined as clin-

ical models that are intended to act as guide for the creation of new ones. Clinical
models constrain information model structures to represent particular data capture and
communication use cases. In medicine it is often not possible to impose one universal
data form, such as for recording diagnostic information. Thus, CIMI associates each
clinical model with a set of iso-semantic models (models heterogeneously structured
but with the same meaning), from which one is selected as the preferred one and
mappings are established across them.

CIMI or HL7 based models that implement the TermInfo specification might work
well in isolation, but semantic interoperability issues arise when interacting with oth-
ers, which are not necessarily compatible, whilst the anticipation of all possible iso-
semantic representations will lead to an explosion of models. The European network
SemanticHealthNet addresses this problem by providing clinical model information
structures with a set of expressions, based on a shared ontological framework. This
framework allows representing both (ontology-based) medical terminologies and
information models, and implements the classical distinction between ontology [7]
(what exists – independently of being known or observed) and epistemology [8] (what
is known, suspected, planned, etc.).

The inherent complexity of this representation is addressed by using semantic pat-
terns as intermediate representations, which is the focus of this paper.

2 Background

2.1 EHR Structured Clinical Models

 Several EHR standards and specifications propose representing clinical infor-
mation by using clinical models based on a reference information model (RM). Clin-
ical models, also known as archetypes (e.g. openEHR/ISO 13606 archetypes) [9,10]
or HL7 CDA documents [11], constrain a set of standardized information structures
provided by some reference model (RM), to represent EHR data. They are used for
modeling particular use cases for clinical data capture and communication. As an
example, the ISO 13606 archetype of Fig. 1 constrains information structures (e.g.
CLUSTER, ELEMENT, etc.) to represent a medical questionnaire consisting of ques-
tions groups. The use of terminologies and ontologies within clinical models is known
as terminology binding. Fig. 1 shows how the information structure
ELEMENT[at0003] is bound to the SNOMED CT concept Past history of diabetes
mellitus. Interpreted within the context of the clinical model, it is a question, and its
allowed answers are yes / no.

In practice, the division line between ontologies and information models is often
crossed both by ontologies (where they represent epistemic and temporal information
aspects, such as “known present” or “past history of”) and by RMs and clinical mod-
els (where they carry their own ontology without reference to external standards, here
the fact that it is a question).

Fig. 1. (Left) ISO 13606 archetype excerpt to record questionnaire; (Right) Binding of an in-
formation structure to a SNOMED CT concept.

2.2 Ontology-based medical terminologies: SNOMED CT

Ontologies formally describe properties and relations of types of entities. Domain-
independent categories, relations and axioms are typically provided by top-level on-
tologies [12], whereas the types of things that make up a domain are represented by
domain ontologies. In the former one we find categories like Process, Material entity,
Quality, etc., whereas in a clinical domain ontology we would find Diabetes mellitus
type 1, Left index finger, or Aspirin, i.e. the classes of entities corresponding to the
terms used in clinical documentation and reporting, and defined by the properties
shared by all of their individual members.

Medical terminologies have evolved in the last years to include definitional
knowledge about their terms, by using an ontological framework in order to help hu-
mans and computers to recognize the intended meaning of their terms, for proper
coding of, retrieval of, and inferencing about biomedical data, as well as for mainte-
nance of the terminology itself [13]. An example is SNOMED CT, a clinical termi-
nology covering all aspects of clinical medicine, with about 300,000 representational
units (called SNOMED CT concepts) and terms in several languages.

Due to the legacy of its predecessors, SNOMED CT does not only provide codes
for clinical terms proper but also for contextual statements, which are often represent-
ed in information models. An example of this is the Situation with explicit context
concept hierarchy (i.e. context model), in which we find terms such as Suspected deep
vein thrombosis or No past history of venous thrombosis. We have largely harmonized
the SNOMED CT content with basic top-level classes and relations of BioTopLite
upper ontology [14] (e.g. btl:Process, btl:Quality, btl:Condition, btl:Situation, etc), in
order to better distinguish clinical from information entities. Based on [15] we inter-
pret SNOMED CT concepts from the clinical finding hierarchy as clinical situations
and reinterpreted the SNOMED CT context model [16]. Fig. 2 shows the OWL DL
representation of a post-coordinated1 expression that follows the context model and
represents past history of diabetes. Past history is a temporal aspect that specializes
the meaning of the finding diabetes mellitus.

1 Post-coordination describes the representation of a term using a combination of two or more

of them (e.g. past history of clinical finding and diabetes mellitus)

ENTRY[at0000] matches { -- Question group
 items matches{
 CLUSTER[at0001] matches { -- Question group
 items matches {
 CLUSTER[at0002] matches { -- Question
 items matches {
 ELEMENT[at0003] matches{ -- Answer
 value matches {
 BL matches {True, False}
…}}}}}}}}

417662000 | past history of clinical finding | : {
 246090004 | associated finding | =

 73211009 | diabetes mellitus | }

 terminology binding

Fig. 2. OWL DL SNOMED CT representation of an expression based on the post-coordination
of two terms (past history of clinical finding and diabetes mellitus linked by the linkage
concept associated finding). Terms using italics represent ontology classes, bold face repre-
sents ontology object properties.

3 Methods

A shared OWL DL [17] ontological framework is proposed that allows relating EHR
information models with medical terminologies [18] in an unambiguous way. It is
supported by a the use of semantic patterns in order to provide semantic interoperabil-
ity across heterogeneously represented data and to guide the creation of clinical mod-
els and detect semantic inconsistencies across them.

3.1 Clinical Information Semantic Patterns

The semantic patterns we propose represent recurrent clinical information model-
ling aspects and can therefore be considered ontology design content patterns applied
to clinical information. They are inspired by the experience of modelling clinical in-
formation based on ontologies. As ontology patterns they help to reduce the arbitrari-
ness that exists when representing clinical information, by using a set of OWL DL
formal ontologies as standard modelling framework [19].

Two ontologies, the SNOMED CT ontology (prefix sct) and an information ontol-
ogy (prefix shn) are rooted in the biomedical top-level ontology BioTopLite (prefix
btl). The use of BioTopLite standardizes the ontology development process, by
providing a set of logical axioms which constrain how both ontologies are related. We
use SNOMED CT as common reference point for representing the healthcare domain.
The information ontology provides a set of classes that represent contextual and tem-
poral information aspects (e.g. diagnostic information, past history, provisional, etc.)
and refer to the SNOMED CT concepts.

Each pattern can be considered a small ontology based on the previous framework,
to be used as a building block for a particular modelling use case. For that, they can
be specialized and composed by following similar principles to object oriented lan-
guages [20].

According to [21], content patterns are language-independent and should be en-
coded in a high order representation language. Nevertheless, their representation in a
logic-based language allows the use of DL reasoning [22], which can be used to en-
sure the consistency of the patterns and to allow inference-related tasks. On the left

‘past history of clinical finding (situation)’
 and RoleGroup some (
 (‘Associated finding (attribute)’ some ‘Diabetes mellitus (disorder)’) and
 (‘Finding context (attribute)’ some ‘Known present (qualifier value)’) and
 (‘Temporal context’ some ‘In the past (qualifier value)’) and
 (‘Subject relationship context’ some ‘Subject of record (person)’))

side, Fig. 3 shows the graphical representation of a pattern that represents the past
history of some patient clinical situation. The right side, shows a concrete instance of
that pattern that represents the statement “Past history of diabetes mellitus”. Other
examples of patterns are “Family history of clinical situation” or “Plan to perform
some clinical process”.

Fig. 3. (Left) Graphical representation of the history-situation pattern; (Right) Instance of the
history-situation pattern; Squares represent ontology classes and unidirectional arrows predi-
cates enhanced by cardinality constraints.

Within SemanticHealthNet, we have elaborated two representations of semantic
patterns: an OWL 2 DL and a RDF [23] representation. The OWL-based representa-
tion describes a pattern as a set of logical axioms. Table 1 shows the OWL rendering
of the history-situation pattern as pieces of information (shn:InformationItem) that are
acquired by performing some clinical process (shn:ClinicalProcess) and that refer to
clinical situations (shn:ClinicalSituation) of a given type (if any), which happened in
the past (sct:InThePast). Additionally, it allows expressing epistemic information
aspects (shn:InformationAttribute) that indirectly refer to the situation (e.g. severe,
present, etc.).

shn:InformationItem
and shn:isAboutSituation only shn:ClinicalSituation
and btl:isOutcomeOf some shn:ClinicalProcess
and shn:hasInformationAttribute some shn:InformationAttribute

 and shn:hasInformationAttribute some sct:InThePast
 and shn:hasInformationAttribute some sct:FindingContextValue

Table 1. OWL DL representation of history-situation pattern; Terms using italics represent
ontology classes, bold face represents ontology object properties.

Table 2 shows the RDF representation, which consists of a set of Subject-Predicate-
Object (SPO) triples. Both representations are connected as follows: The subject and
object parts of a triple correspond to ontology classes, and the predicates to ontology
expressions. Table 3 provides the OWL DL translation of the RDF predicates. This
allows the implementation of automatic translations from a ‘closer to user’ RDF rep-
resentation into a representation in OWL DL, which would require a more in-depth
understanding of DL syntax and semantics. In the following we will describe the use

of semantic patterns regarding EHR clinical models and ontology-based terminologies
as SNOMED CT.

shn:InformationItem ´describes situation´ shn:ClinicalSituation
shn:InformationItem ´results from process´ shn:ClinicalProcess
shn:InformationItem ´has attribute´ shn:InformationAttribute
shn:InformationItem ´has temporal context´ sct:InthePast
shn:InformationItem ´has situation context´ sct:FindingContextValue

Table 2. Subject-Predicate-Object (SPO) triple representation; Italic terms represent ontology
classes and terms in quotes represent predicates. Note that predicates are not equivalent to

OWL object properties.

Predicate OWL DL expression
‘describes situation’ SUBJ subClassOf shn:isAboutSituation only OBJ
‘results from process’ SUBJ subClassOf btl:isOutcomeOf some OBJ
‘has attribute’ SUBJ subClassOf shn:hasInformationAttribute some OBJ
‘has temporal context’ SUBJ subClassOf shn:hasInformationAttribute some OBJ
´has situation context´ SUBJ subClassOf shn:hasInformationAttribute some OBJ

Table 3. Translations of RDF predicates into OWL DL axioms within the shared ontology
framework

3.2 The role of semantic patterns regarding EHR clinical models and medical
domain ontology-based terminologies

Assuming that a limited set of top-level semantic patterns that can be specialized
and composed is sufficient to represent a great variety of clinical information, we
propose the use of semantic patterns as proxy to the semantic representation of clini-
cal information encoded by EHR structured clinical models and ontology-based med-
ical terminologies. They act as a template, with fix and variable parts, and guide the
mapping process in which the correspondences between information model structures
and their values are defined with regards to the ontology. Dashed arrows in Fig. 4
indicate the correspondences between the clinical model from Fig. 1 and the history-
situation pattern.

As observed, the pattern is applied to both, the SNOMED CT term used as binding
and the clinical model information structures. Three correspondences have been pro-
vided. Two between the CLUSTER[at0002] binding and the pattern triples that repre-
sent the situation and its temporal context. Diabetes mellitus is placed as subclass of
shn:ClinicalSituation. One between the value of ELEMENT [at0003] and the pattern
triple that represents if the situation is present (sct:KnownPresent) or absent
(sct:KnownAbsent). Both are represented as subclasses of sct:FindingContextValue,
and will be selected depending of the value of the model instance (True or False).

ENTRY[at0000] matches { -- Question group
 items matches{
 CLUSTER[at0001] matches { -- Question group
 items matches {
 CLUSTER[at0002] matches { -- Question
 items matches {
 ELEMENT[at0003] matches{ -- Answer
 value matches {
 BL matches {True, False}
…
}}}}}}}}

Fig. 4. (Left) ISO 13606 archetype and SNOMED CT binding to record the question “past
history of diabetes” (Y/N); (Right) Graphical representation of the history-situation pattern

4 Results

In the following we will describe the potential of semantic patterns for each of the
tasks introduced in the Methods section. We will use the history-situation pattern as
example.

4.1 Semantic patterns provide interoperability across heterogeneously
represented data

We will use the history-situation pattern to provide semantic interoperability across
two past history data instances captured by two heterogeneous fictitious applications
used at a GP consultation and at a hospital. Fig. 5 shows their interfaces. They have
been designed attending to different requirements and therefore record the infor-
mation at different levels of detail. At the hospital (right), the specialist records addi-
tional information about the patient past situation (i.e. cause and severity). However,
the GP only records the situation itself (left).

Fig. 5. (Left) Past history recording at the GP; (Right) Past history recording at the specialist.

Each of the above applications is based on a different ISO 13606 clinical model. The
GP application is based on the questionnaire model introduced in Section 2.1. The left
part of Fig. 6 shows the model used by the hospital application. Both are different in
terms of structure but not syntax, since both implement the same standard.

417662000 | past history of clinical finding | : {
 246090004 | associated finding | =

 73211009 | diabetes mellitus | }

 terminology binding

In order to access information recorded by both applications, independently of their
source representation, the correspondences between each clinical model and the histo-
ry-situation pattern are defined. Fig. 4 depicted the correspondences between the
questionnaire model and the pattern. Following, dashed arrows in Fig. 6 show the
correspondences for the hospital model. This model allows recording the severity of
the past disease and its cause, requiring the use of the situation pattern, by composi-
tion. The situation pattern, allows providing more detail information such as when it
occurs, where, associated situations, etc.

Once the correspondences between the models and the patterns are established,
when the former ones are instantiated with patient data, the instances of the patterns
are also created, in a similar way to the one shown in Fig. 3. If OWL DL instances are
created, it is possible to perform homogeneous queries on instances from both appli-
cations and retrieve their results [24].

Fig. 6. ISO 13606 clinical model that records past history of condition, its cause and severity

Besides, the use of the ontology framework and DL reasoning allows performing
queries at different granularity level: E.g. “Information about all patients with past
history of some endocrine disease”, without specifying whether diabetes or a different
one.

4.2 Semantic patterns guide the creation of clinical models and detect
semantic inconsistencies

Semantic patterns can guide the development of new clinical models if the latter
are created by following the constraints dictated by a set of limited top-level patterns.

Top-level patterns are based on a set of generic ontology classes and predicates
that can be specialized and composed by following the ontology constraints. These
constraints can be used to determine which elements include in a clinical model or in
a terminology binding.

ENTRY[at0000] matches {-- Past history
 items matches{
 ELEMENT[at0001] matches{ -- Condition
 value matches {
 CODED_TEXT matches {*} }
 CLUSTER[at0002] matches { -- Details
 items matches {
 ELEMENT[at0001] matches{ -- Cause
 value matches {
 CODED_TEXT matches {*} }}}
 ELEMENT[at0001] matches{ -- Severity
 value matches {
 CODED_TEXT matches {*} }
}}

As a difference with clinical models, where their elements are only structurally re-
lated (e.g. list, tree, etc.), within patterns they are connected by semantic relationships
(e.g. shn:isAboutSituation, btl:isOutcomeOf, etc.). These relationships can be used to
guide the decision of the elements to include in a model, reducing the existing arbi-
trariness. Now this is mainly a non-constrained modeller decision that might lead to
the creation of non-interoperable models even for the same use case.

If semantic patterns are not applied at clinical models design time, they still can be
used to detect semantic inconsistencies across them. As an example, Fig. 7 shows an
excerpt of a CIMI model that records observation results. It records: (i) what is ob-
served, ELEMENT[at0001] (e.g. color of the eye); (ii) the reason to perform the ob-
servation, ITEM[at0002] (e.g. problem wearing contact lens); (iii) the method used to
observe, ITEM[at0003] (e.g. eye examination); (iv) the status of the observation,
ELEMENT[at0004] (e.g. performed, planned); and (v) the priority to perform the
observation, ELEMENT[at0005] (e.g. high, normal).

Fig. 7. Excerpt of the CIMI model (CIMI-CORE-CLUSTER.observable.v1.0.0) to record ob-
servation results

Fig. 8 shows another CIMI model that records observation requests and references the
above model by composition (keyword “use_archetype”). Besides, it also references a
model to record observation actions. Within this last model we have found a content
overlapping with the observation result one, since it also provides elements for re-
cording the reason, method, status and priority of the observation.

Fig. 8. Excerpt of the CIMI model (CIMI-CORE-ENTRY.observation.v4.0.0) to record an
observation request and its result

CLUSTER[at0000] matches { -- Observable
 item matches {
 ELEMENT[at0001] occurrences matches {1} matches { -- Name
 value matches { TEXT matches {*}}}
 ITEM[at0002] occurrences matches {0..*} -- Reason
 ITEM[at0003] occurrences matches {0..*} -- Method
 ELEMENT[at0004] occurrences matches {0..1} matches { -- Status
 value matches { CODED_TEXT matches {*}}}
 ELEMENT[at0005] occurrences matches {0..1} matches { -- Priority
 value matches { TEXT matches {*}}}
 }}

ENTRY[at0000.1] matches { -- Observation
 link matches {LINK[at0.1] occurrences matches {0..*} -- Associated request}
 data matches {
 use_archetype CLUSTER [CIMI-CORE-CLUSTER.observable.v1] -- Observable
 use_archetype CLUSTER [CIMI-CORE-CLUSTER.finding.v1] -- Results
 use_archetype CLUSTER [CIMI-CORE-CLUSTER.observe_action.v1] -- Observe action
 …

Semantic patterns could avoid such an overlapping situation, by providing formal
modelling guidelines, based on the ontological framework, to distinguish across what
is observed, the observation procedure and the result of the observation.

Additionally, as already mentioned, they can help to guide or detect inconsistencies
regarding terminology bindings. For instance, the pattern logic axiom
(shn:InformationItem and shn:isAboutSituation only shn:ClinicalSituation), relates
an information entity (i.e. shn:InformationItem) with a clinical entity
(shn:ClinicalSituation) and the latter is equivalent to SNOMED CT clinical findings.
Therefore, if a model information structure is mapped to that axiom, its value is only
valid if it is of the type clinical finding.

When clinical models are instantiated with patient data, semantic patterns can also
be used to check that the data entered complies with the constraints defined at the
model level.

5 Discussion and conclusions

In this work we have proposed semantic patterns as ontology design content pat-
terns applied to the representation of clinical information. They were motivated by
our experiences of representing clinical information using OWL DL, which often
resulted in highly complex expressions.

The EHR standards community has put a lot of effort in providing standardized
means to represent the EHR. However, the complexity of the medical domain and
their heterogeneous data capture and re-use needs does not make it easy. One of the
reasons might be the high degree of freedom provided when modelling clinical infor-
mation, which is mainly formally constrained in terms of structure but without con-
sidering the meaning of what is being represented.

Aware of this gap, and concerned about the need of providing standardized model-
ling means, we propose an ontological framework, in order to represent both infor-
mation and medical entities, constrained by a top-level ontology which reduces arbi-
trariness in ontology design. Semantic patterns are based on this framework and there-
fore constrained by their concepts and relations. In [25], the advantages of using a
top-level ontology for creating ontology design content patterns were described, stat-
ing that it provides it with an existing backbone structure and well-defined relations.

Semantic patterns provide a more intuitive representation and standardize their de-
velopment process, yet allowing flexibility through specialization and composition.
We have proposed their representation in OWL DL and in RDF. The former one al-
lows logical reasoning and therefore more advanced exploitation of information, alt-
hough it might be more difficult to implement in a real system, due to performance
issues. In the latter case, the RDF representation although less expressive and there-
fore more limited in terms of information exploitation, might be more adequate. Cor-
respondences between both representations exist, what might allow using the most
suitable one for each use case.

In this work we have demonstrated how semantic patterns can be applied to EHR
clinical models and ontology-based terminologies (1) to provide semantic interopera-

bility across heterogeneously represented data and (2) commented their potential use
to guide the creation of clinical models and detect semantic inconsistencies across
them.

By looking at the content patterns available at the NeOn repository [26], we did not
find specific patterns for the modelling of clinical information. However, patterns
such as the agent-role or the action ones can be applied.

There are numerous new issues that arise from the use of semantic patterns for
EHR modelling that still have to be investigated. These include the selection of the
right set of patterns to be used for modelling specific pieces of clinical information,
who would create and maintain the patterns and who would manage and validate
them.

Other issues must be further investigated, such as providing evidence that a set of
top-level semantic patterns for modelling clinical information can be rather small,
with increasing complexity and expressiveness coming from specialization and com-
position. So far we have only worked with limited modelling examples and we need
more evidence of the real benefit of using patterns; what is hard to obtain without
appropriate tools that implement them.

Further research should include the potential of semantic patterns for detecting se-
mantic inconsistencies across existing clinical models, considering their specializa-
tion, composition and cardinality constraints. Languages such as SPIN [27] or RDF
shapes [28] could be helpful for their representation and are subject of our research.

Acknowledgements. This work has been funded by the SemanticHealthNet Net-

work of Excellence within the EU 7th Framework Program, Call:FP7-ICT- 2011-7,
agreement 288408. http://www.semantichealthnet.eu/

References

1. Stroetmann, V.N., Kalra, D., Lewalle, P., et al: Interoperability for better health and safer
healthcare. Deployment and research roadmap for Europe. (2009);
http://www.empirica.com/publikationen/documents/2009/semantic-health-report.pdf

2. International Health Terminology Standards Development Organisation (IHTSDO).
http://www.ihtsdo.org/ (accessed August 2014).

3. HL7 TermInfo Project Wiki. Guidance on Overlap between RIM and SNOMED CT Se-
mantics. http://wiki.hl7.org/index.php?title=TermInfo_Project# (accessed August 2014).

4. Clinical Information Modeling Initiative (CIMI).
http://informatics.mayo.edu/CIMI/index.php/Main_Page (accessed August 2014)

5. Semantic Interoperability for Health Network. http://www.semantichealthnet.eu/ (accessed
August 2014).

6. Rector, A., Qamar, R., Marley, T.: Binding Ontologies & Coding systems to Electronic
Health Records and Messages, (2009) Appl Ontol 2009;4:51-69.

7. Quine, W.V.: On what there is. Quintessence-Basic Readings from the Philosophy of
W.V.Quine. Belknap Press, Cambridge 2004; Gibson, R. (ed.).

8. Bodenreider, O., Smith, B., Burgun, A.: The Ontology!Epistemology Divide: A Case
Study in Medical Terminology. Third International Conference on Formal Ontology in In-
formation Systems (FOIS 2004). IOS Press; 2004:185–95.

9. Beale, T. Archetypes: Constraint-based domain models for future-proof information sys-
tems. Eleventh OOPSLA Workshop on Behavioral Semantics: Serving the Customer. Se-
attle, Washington, USA: Northeastern University; 2002:16-32.

10. ISO EN13606 Electronic Health Record Communication Part 2: Archetype interchange
specification. CEN TC/251, 2008

11. Dolin, R.H., Alschuler, L., Boyer, S., et al.: The HL7 Clinical Document Architecture, re-
lease 2. J Am Med Inform Assoc 2006;13:30-39

12. Schulz, S., Jansen, L.: Formal ontologies in biomedical knowledge representation. Year-
book of Medical Informatics 2013;8(1):132-46

13. Cimino, J.J., Zhu, X.: The practical impact of ontologies on biomedical informatics. Yearb
Med Inform [Internet] .2006;124–35. http://www.ncbi.nlm.nih.gov/pubmed/17051306

14. Schulz, S., Boeker, M.: BioTopLite: An Upper Level Ontology for the Life Sciences. Evo-
lution, Design and Application. Informatik 2013. U. Furbach, S. Staab; editors(s). IOS
Press; 2013

15. Schulz, S., Rector, A., Rodrigues, J.M., Spackman, K.: Competing interpretations of disor-
der codes in SNOMED CT and ICD. AMIA Annu Symp Proc. 2012;2012:819-27. Epub
2012 Nov 3. PubMed PMID: 23304356; PubMed Central PMCID: PMC3540515.

16. Martínez-Costa, C., Schulz, S.: Ontology-based reinterpretation of the SNOMED CT con-
text model. Proceedings of the 4th International Conference on Biomedical Ontology.
CEUR Workshop Proceedings 2013; 1040:90-95.

17. W3C OWL working group. OWL 2 Web Ontology Language, Document Overview. W3C
Recommendation 11 December 2012. http: //www.w3.org/TR/owl2-overview (accessed
August 2014).

18. Schulz, S., Martínez-Costa, C.: How Ontologies Can Improve Semantic Interoperability in
Health Care. In: Riaño, D; Lenz, R; Miksch, S; Peleg, M; Reichert, M; Teije, A editors(s).
Lecture Notes in Computer Science. 8268: Berlin Heidelberg: Springer International Pub-
lishing; 2013;1-10

19. Presutti, V., Gangemi, A.: Content Ontology Design Patterns as Practical Building Blocks
for Web Ontologies. In Proceedings of the 27th International Conference on Conceptual
Modeling (ER '08), Springer-Verlag 2008, Berlin, Heidelberg, 128-141.

20. Gangemi, A.: Ontology Design Patterns for Semantic Web Content. In Proceedings of the
Fourth International Semantic Web Conference, 2005:262-276

21. Gangemi, A., Presutti, V.: Ontology Design Patterns. In: Staab, S., Studer, R. (eds.) Hand-
book on Ontologies, Second edition, pp. 221 – 243, Springer (2009)

22. Baader, F., Calvanese, D., McGuinness, D.L., et al. The Description Logic Handbook,
Cambridge University Press, New York, NY; 2007

23. W3C Resource Description Framework (RDF). http://www.w3.org/RDF/ (accessed Au-
gust 2014).

24. Martínez-Costa, C., Schulz, S.: Ontology Content Patterns as Bridge for the Semantic Rep-
resentation of Clinical Informatics. Applied Clinical Informatics eHealth special issue.
2014; 5(3): 660-669

25. Seddig-Raufie, D., Jansen, L., Schober, D., Boeker, M., Grewe, N., Schulz, S. Proposed
actions are no actions: re-modeling an ontology design pattern with a realist top-level on-
tology. J Biomed Semantics. 2012;5(Suppl 2):S2.

26. NeOn repository Ontology Design Patterns.org (ODP) http://ontologydesignpatterns.org
(accessed August 2014).

27. SPARQL Inference Notation (SPIN) http://spinrdf.org/ (accessed August 2014).
28. Shape Expressions 1.0 Definition. http://www.w3.org/Submission/2014/SUBM-shex-defn-

20140602/ (accessed August 2014).

An Ontology Design Pattern for Material
Transformation

Charles Vardeman1, Adila A. Krisnadhi2,3, Michelle Cheatham2, Krzysztof
Janowicz4, Holly Ferguson1, Pascal Hitzler2, Aimee P. C. Buccellato1,

Krishnaprasad Thirunarayan2, Gary Berg-Cross5, and Torsten Hahmann6

1 University of Notre Dame,
2 Wright State University,
3 University of Indonesia

4 University of California, Santa Barbara
5 Spatial Ontology Community of Practice (SOCOP), USA

6 University of Maine

Abstract. In this work we discuss an ontology design pattern for mate-
rial transformations. It models the relation between products, resources,
and catalysts in the transformation process. Our axiomatization goes
beyond a mere surface semantics. While we focus on the construction
domain, the pattern can also be applied to chemistry and other domains.

1 Introduction & Motivation

According to the United Nations, the construction industry and related support
industries are leading consumers of natural resources. Consumption of these
natural resources result in the emission of energy, and thus carbon and other
greenhouse gases, which are then“embodied” in the consumption process. Ef-
forts have been made to quantify these emissions through measures of embodied
energy, carbon and water but are lacking due to poor quality of data sources,
lack of understanding of uncertainty in the data, lack of geospatial attributes
necessary for proper calculation of embodied properties, understanding regional
and international variation in data, incompleteness of secondary data sources
and variation in manufacturing technology that lead to significant variation cal-
culated values [2]. One methodology for quantification of embodied energy is
through input-output life cycle analysis utilizing process data that compile a
life cycle inventory of a construction product. By analyzing a “cradle to grave”
path of individual building components, the embodied energy sequestered in all
building materials during all processes of construction, in on-site construction
and final demolition and disposal of a buildings constituent components gives a
measure of total embodied energy for a given structure. Sources of embodied en-
ergy include the amount of the energy consumed in construction, prefabrication,
assembly, transportation of materials to a building structure, initial manufactur-
ing building materials, in renovation and refurbishment of the structure through
it’s lifetime [1]. The Green Scale Project1 is studying the feasibility of creating a

1 http://www.greenscale.org

geospatial-temporal knowledge base (KB) which facilitates mapping of national
energy and fuel production to individual construction site localities and con-
struction material manufacture localities as linked open data. Such a knowledge
base would facilitate the calculation of embodied energy for a given construc-
tion component as a query of the embodied energy required for manufacture
and transportation of it’s constituent parts. This KB will use ontology design
patterns to formally describe the transportation and transformation processes.

Transportation of a manufacturing component from location to location and
the energies associated with that transportation can be modeled via the Seman-
tic Trajectory pattern (STODP) [3]. The remaining contribution to the total
embodied energy is the energy required for transformation or assembly of one
or more components into the desired manufactured artifact.

In this work we discuss the development of a Material Transformation pat-
tern2 to contextualize this transformation process from raw components and the
required equipment to a final manufactured artifact. Chaining this pattern with
STODP will facilitate understanding of a complete manufacturing process from
raw material extraction to assembly of all components needed for that product.
The presented work was done in two 2-day sessions involving domain experts
from architecture, computational chemistry, and geography, as well as ontology
engineers at GeoVoCampDC20133 and GeoVoCampWI20144. We present a full
axiomatization that goes beyond mere surface semantics [4] (e.g., a simple type
hierarchy). During the development, several competency questions that a domain
expert may ask were discussed. These include:

– “What material resources were required to produce a product?”

– “Where did the transformation take place?”

– “What was the time necessary for the transformation?”

– “What materials or conditions were necessary for the transformation to occur?”

2 Material Transformation Pattern

The Material Transformation pattern is visualized in Fig. 1, including the ex-
tension with entities relevant for representing energy information, which are
green-colored and use dashed line. For formalization, we use the Description
Logic (DL) notation, which can easily be encoded using syntax of the OWL
2. The core part of the pattern is intended to describe change(s) that occur
between the input material of the transformation and its output. In this core
part, the MaterialTransformation class represents concrete instances of ma-
terial transformation. We distinguish inputs of a material transformation into
Resource, which represents types of material that may undergo a change (into
a di↵erent type of material) in the transformation, and Catalyst, which rep-
resents types of material needed by the transformation, but remain unchanged
by it. A MaterialTransformation has some Resource as input (1), and some
Product, which is also some type of material, as output (2). Axiom (5) asserts

2 http://ontologydesignpatterns.org/wiki/Submissions:Material Transformation
3 http://vocamp.org/wiki/GeoVoCampDC2013
4 http://www.ssec.wisc.edu/meetings/geosp sem/

Fig. 1. Material Transformation Pattern with Energy Information

that every Resource, Catalyst and Product is some MaterialType, while (6)
and distinguishes Resource from Catalyst. Axiom (3) and (4) assert that a
MaterialTransformation occurs in a spatial Neighborhood5 and a time inter-
val, modeled using the Interval class from the W3C’s OWL Time ontology6.

MaterialTransformation v 9hasInput.Resource (1)

MaterialTransformation v 9hasOutput.Product (2)

MaterialTransformation v 9occursInNeighborhood.Neighborhood (3)

MaterialTransformation v 9occursAtTimeInterval.time:Interval (4)

Resource t Catalyst t Product v MaterialType (5)

Resource u Catalyst v ? (6)

We express changes occurring within a material transformation, using first-order
logic, that it has an input that is not part of the output (7); and an output that
is not part of the input, in a formula analogous to (7).

8x(MaterialTransformation(x) ! 9y(hasInput(x, y) ^ ¬hasOutput(x, y))) (7)

These formulas, however, cannot be expressed in the OWL framework, but
there are extensions of DL that can express them. For example, using boolean
constructors on properties [5], axiom (7) is expressed in DL as:

MaterialTransformation v 9(hasInput u ¬hasOutput).>

Meanwhile, for the remaining properties of the core part of the pattern, we
assert the guarded domain and range restrictionsas exemplified for the hasInput
property in (8) and (9) below. Such guarded restrictions are preferable over the
unguarded versions (i.e., of the form dom(P) v A and range(P) v B) as they
introduce weaker ontological commitments and thus foster reuse.

9hasInput.Resource v MaterialTransformation (8)

MaterialTransformation v 8hasInput.Resource (9)

5 Neighborhood provides a toplogical definition for specifing nearness. This could be
specified in di↵erent ways such as using positional coordinates, a bounded area on
a map, or a named region such as a place, city or factory.

6 http://www.w3.org/TR/owl-time/

For the scenario where we need to calculate the embodied energy in the
output of a material transformation, we can extend the pattern with additional
energy information as depicted in Fig. 1. In the axiomatization, we then assert
that a MaterialTransformation needs some Energy (10), while each material
type has some embodied energy (11). Energy itself is abstracted as an instance
of the Energy class, which has some energy value and unit.

MaterialTransformation v 9needsEnergy.Energy (10)

MaterialType v 9hasEmbodiedEnergy.Energy (11)

Energy v 9hasEnergyValue.EnergyValue (12)

EnergyValue v 9hasEnergyUnit.EnergyUnit (13)

u 9asNumeric.xsd:double
EnergyUnit v 9asLiteral.xsd:string (14)

Embodied energy in the output as a result of a material transformation can be
calculated by aggregating embodied energy of the input and catalyst, together
with energy requirement of the material transformation itself. This cannot be
done within OWL, but is relatively straightforward to implement in the appli-
cation as all the necessary information are easily retrievable from the populated
pattern. Furthermore, if the application allows updates on the data populating
the pattern, we can chain two instantiations of this pattern and include STODP.

3 Conclusion and Future Work

Although it is beyond the scope of the present work, the Material Transformation
pattern should be su�ciently generic to describe other types of transformation
processes ranging from chemical reactions to creation-annihilation events in high
energy physics. We believe the pattern to be of general use to broader product
life cycle inventories outside the construction domain.

Acknowledgements. We are grateful for the inputs from Lamar Henderson, Deb-
orah MachPherson, Laura Bartolo, and Damian Gessler to improve the pattern.
Vardeman, Buccellato and Ferguson would like to acknowledge funding from
the University of Notre Dame’s Center for Sustainable Energy, School of Ar-
chitecture, College of Arts and Letters and Center for Research Computing in
support of this work. Gary Berg-Cross acknowledges funding from the NSF grant
0955816, INTEROP-Spatial Ontology Community of Practice. Vardeman would
like to acknowledge funding from NSF grant PHY-1247316 “DASPOS: Data and
Software Preservation for Open Science.” Adila Krisnadhi, Michelle Cheatham,
and Pascal Hitzler acknowledge support by the National Science Foundation un-
der award 1017225 “III: Small: TROn – Tractable Reasoning with Ontologies.”

References

1. Dixit, M.K., Fernández-Soĺıs, J.L., Lavy, S., Culp, C.H.: Need for an embodied
energy measurement protocol for buildings: A review paper. Renewable and Sus-
tainable Energy Reviews 16(6), 3730–3743 (2012)

2. Dixit, M.K., Fernández-Soĺıs, J.L., Lavy, S., Culp, C.H.: Identification of parameters
for embodied energy measurement: A literature review. Energy and Buildings 42(8),
1238–1247 (2010)

3. Hu, Y., Janowicz, K., Carral, D., Scheider, S., Kuhn, W., Berg-Cross, G., Hitzler,
P., Dean, M., Kolas, D.: A geo-ontology design pattern for semantic trajectories. In:
Spatial Information Theory, pp. 438–456. Springer (2013)

4. Janowicz, K., Hitzler, P.: Thoughts on the complex relation between linked data,
semantic annotations, and ontologies. In: 6th international workshop on Exploiting
semantic annotations in information retrieval. pp. 41–44. ACM (2013)

5. Rudolph, S., Krötzsch, M., Hitzler, P.: Cheap boolean role constructors for de-
scription logics. In: Hölldobler, S., Lutz, C., Wansing, H. (eds.) Logics in Artificial
Intelligence, 11th European Conference, JELIA 2008, Proceedings. Lecture Notes
in Computer Science, vol. 5293, pp. 362–374. Springer (2008)

An Ontology Design Pattern for Activity Reasoning

Amin Abdalla1, Yingjie Hu2, David Carral3, Naicong Li4, Krzysztof Janowicz2

1 Institute for Geoinformatics,Vienna University of Technology, Austria
2 Department of Geography, University of California Santa Barbara, USA

3 Kno.e.sis Center, Wright State University, USA
4 University of Redlands, USA

Abstract. Activity is an important concept in many fields, and a number of
activity-related ontologies have been developed. While suitable for their desig-
nated use cases, these ontologies cannot be easily generalized to other applica-
tions. This paper aims at providing a generic ontology design pattern to model
the common core of activities in different domains. Such a pattern can be used as
a building block to construct more specific activity ontologies.

1 Introduction
Activity is an important research topic in many fields, such as artificial intelligence, hu-
man geography, transportation research, psychology, and human-computer interaction.
As a result, there are a number of conceptual models that attempt to capture the se-
mantics of activities. Existing activity ontologies (e.g.,[5] and [3]), however, are often
designed for specific use cases and cannot be easily generalized to applications in other
domains. This makes reuse difficult and raises the question whether there is a common,
domain-independent core.

Two main perspectives on activity modeling can be identified from the literature: a
spatiotemporal-centric and a workflow-centric perspective. The first one treats activities
as a set of temporally-ordered entities in space and time. This perspective has often
been found in the literature on time geography [8], which attempts to capture human
activities in the form of spatiotemporal constraints. This perspective has been translated
into software systems capable of computing and analyzing spatial and temporal activity
properties. However, this perspective does not consider the logical relations between
activities, such as dependency or component relations.

The second perspective treats activities as a workflow. This view is often found
in planning-related applications, in which preconditions and effects of activities are
important. Representative examples include the Planning Domain Definition Language
(PDDL), or the Process Specification Language (PSL-core) [7]. Some patterns (e.g.,
Action ODP, Planning ODP, and Event ODP) accessible via the ODP portal5, as well as
the TOVE (Toronto Virtual Enterprise) ontology [5], also share this workflow-centric
perspective, with an emphasis on activities that consume or occupy limited resources.

This work aims at developing a more generic ontology design pattern (ODP) that
incorporates parts of both perspectives. Such a generic ODP can be employed as a
building block or strategy for designing more specific activity ontologies. While the
PROV ontology6 also models activities and the associated entities, it focuses on record-
ing the changes of entities and the representation of provenance information. Given the

5 http://ontologydesignpatterns.org
6 http://www.w3.org/TR/prov-o/

2

fast development of ubiquitous sensor networks and the Internet of Things, more data
about human activities are becoming available. These rich amount of data enable new
applications, such as activity-based personal information management [1] and human
trajectory modeling [9]. Thus, a generic activity ODP can help semantically annotate
human activity data, thereby facilitating information retrieval as well as automatic rea-
soning.

Deriving an ontology design pattern requires a generic use case which can capture
the recurring problems in different application domains [6]. Competency questions have
been recognized as a good approach to detect and generalize the modeling requirements
from multiple domains. They are queries that a domain expert would be expected to run
against a knowledge base. For the proposed activity ODP, such competency questions
include:

– Question 1: "What are the requirements (or outcomes) of an activity?"

– Question 2: "What is the place (or deadline) of an activity?"

– Question 3: "What activities need to be completed first in order to start this activity?"

– Question 4: "What are the other activities which can be started after this activity?"

– Question 5: "What are the activities supported by this place?"

– Question 6: "What activities happen before (or in parallel, or after) this activity?"

2 Pattern Description and Formalization
This section presents the activity pattern by discussing the more interesting classes,
properties, and axioms. Description Logics (DL) notation has been used to present
the axioms. To encode the pattern, we use the logic fragment DLP9 as defined in
[2], which allows for polynomial time reasoning. The proposed activity ODP has
also been formally encoded using the Web Ontology Language (OWL). It is available
at http://descartes-core.org/ontologies/activities/1.0/Activi
tyPattern.owl . A schematic view of the pattern is shown in Figure 1 .

Fig. 1. A schematic view of the Activity ODP.

Activity: In accordance with PSL, our pattern allows activities to potentially con-
sist of several component activities (which can yet again be associated with further
component activities). In this way, aggregation over a set of activities into higher level
activities is possible. We make use of the properties hasPart and isPartOf to formally
denote this relation. These two roles, which are inverse roles with respect to each other,
are declared both transitive and reflexive. Also, the Activity class is declared as disjoint
with the classes of Requirement and Outcome.

3

We make use of the following axioms to enforce these characteristics 7

hasPart� ⌘ isPartOf (1)
hasPart � hasPart v hasPart (2)

> v 9hasPart.Self (3)

Requirements and Outcomes: Dependency relations are important to model mul-
tiple activities. To capture these relations, we make use of Requirements and Out-
comes, i.e., the required inputs and resulting outputs of any given activity. In some
cases, the outcome of one activity might be a requirement of another. If this is the case,
we say the former activity precedes the latter, assuming that an outcome is only pro-
duced after an activity was finished. Thus precedes does depict a logical relation that
requires temporal precedence. We define the properties precedes and isPrecededBy
as inverse roles, and declare them as transitive and irreflexive.

hasOutcome � isRequirement v precedes (4)

Agent: The class of foaf:Agent from the FOAF ontology8 has been employed
to represent an actor or an autonomous agent whose behavior is intentional. The
foaf:Agent class can also be substituted by its sub classes, such as foaf:Group or
foaf:Person, and therefore allows ontology engineers to further specify what type of
participant is involved in the activity. The hasParticipant property depicts the involve-
ment of an foaf:Agent in an activity.

Spatiotemporal Relations: The spatiotemporal information associated to activities
is captured through the following properties.

– takesPlaceAt. This property indicates the place where an activity takes place. It
can be used as a hook to align to other ODPs, e.g., the POI pattern.

– hasStart. This property indicates the time an activity starts.
– hasEnd. This property indicates the time an activity ends.
– hasDuration. This property indicates the time period that an activity lasts. The

value of duration should be equal to the difference between the start and end time
of an activity.

It is worth to note that the above spatiotemporal properties can be used to repre-
sent not only past activities (i.e., activities that have already happened) but also future
activities (i.e., activities scheduled in the future).

The proposed activity ODP also distinguish two types of activities, namely Fixed
Activity and Flexible Activity, as defined in the time geography literature [8,4]. These
two types of activities can often be found in our daily life. Fixed activities refer to the
activities that must be completed at a particular point in space and time (e.g., attending
a meeting at the conference room at 3:30 pm). Flexible activities are activities which
can be completed at a time and space range. For example, buying grocery after work
is a flexible activity since it can be completed at any time after work and in different

7 The full axiomatization is not presented here due to lack of space. However, a complete OWL
version is available online at Descartes-Core.

8 http://xmlns.com/foaf/0.1/

4

stores. We define the following axioms to formally encode and automatically classify
these two types of activities.

9hasStart.> u 9hasEnd.> v FixedActivity (5)
9hasStart.> u 9hasDuration.> v FixedActivity (6)
9hasEnd.> u 9hasDuration.> v FixedActivity (7)

FlexibleActivity u 9hasStart.> u 9hasEnd.> v ? (8)
FlexibleActivity u 9hasStart.> u 9hasDuration.> v ? (9)
FlexibleActivity u 9hasEnd.> u 9hasDuration.> v ? (10)

3 Conclusions
This paper proposed a generic ODP to capture the common core of activities in differ-
ent domains. Specifically, it incorporates two perspectives towards activity modeling,
namely the spatiotemporal perspective and the workflow perspective, which can often
be found in existing work. Such a pattern can be used as a building block to design more
domain specific ontologies.

Acknowledgement
This work is supported by the NSF under award 1017255 and "La Caixa" Foundation.

References

1. Abdalla, A., Weiser, P., Frank, A.U.: Design principles for spatio-temporally enabled pim
tools: A qualitative analysis of trip planning. In: Geographic Information Science at the Heart
of Europe, pp. 323–336. Springer (2013)

2. Carral, D., Scheider, S., Janowicz, K., Vardeman, C., Krisnadhi, A.A., Hitzler, P.: An ontology
design pattern for cartographic map scaling. In: The Semantic Web: Semantics and Big Data,
pp. 76–93. Springer (2013)

3. Catarci, T., Habegger, B., Poggi, A., Dix, A., Ioannidis, Y., Katifori, A., Lepouras, G.: Intelli-
gent user task oriented systems. In: Proceedings of the Second SIGIR Workshop on Personal
Information Management (PIM) (2006)

4. Chen, X., Kwan, M.P.: Choice set formation with multiple flexible activities under space–time
constraints. International Journal of Geographical Information Science 26(5), 941–961 (2012)

5. Fox, M.S., Chionglo, J.F., Fadel, F.G.: A common-sense model of the enterprise. In: Proceed-
ings of the 2nd Industrial Engineering Research Conference. vol. 1, pp. 425–429 (1993)

6. Gangemi, A.: Ontology design patterns for semantic web content. In: The Semantic Web–
ISWC 2005, pp. 262–276. Springer (2005)

7. Gruninger, M., Menzel, C.: The process specification language (psl) theory and applications.
AI magazine 24(3), 63 (2003)

8. Hägerstraand, T.: What about people in regional science? Papers in regional science 24(1),
7–24 (1970)

9. Hu, Y., Janowicz, K., Carral, D., Scheider, S., Kuhn, W., Berg-Cross, G., Hitzler, P., Dean,
M., Kolas, D.: A geo-ontology design pattern for semantic trajectories. In: Spatial Information
Theory, pp. 438–456. Springer (2013)

	fullproceedings
	preface
	invited
	paper1
	paper2
	paper3
	paper4
	paper5
	paper6
	paper7
	paper8
	An Ontology Design Pattern for Activity Reasoning
	Introduction
	Pattern Description and Formalization
	Conclusions

