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Triple Graph Grammars (TGGs) are a bidirectional model transformation language, which has been
successfully used in different application scenarios over the years.

Our solution for the FIXML case study of the Transformation Tool Contest (TTC 2014) is imple-
mented using TGGs and eMoflon (www.emoflon.org), a meta-modelling and model transformation
tool developed at the Real-Time Systems Lab of TU Darmstadt.

The solution, available as a virtual machine hosted on Share [5], includes the following: (i) an
XML parser to a generic tree model called MocaTree (already a built-in feature of eMoflon), (ii) a
target meta-model specification, (iii) TGG rules describing a bidirectional transformation between
MocaTree and the target meta-model, and (iv) a StringTemplate-based (www.stringtemplate.org)
code generator for Java, C# and C++.

1 Introduction

Triple Graph Grammars (TGGs) [4] are a rule-based, declarative language, used for specifying transfor-
mations, where both directions (forward and backward) can be derived from the same specification.

The FIXML case study [3] is a text-to-text transformation based on the FIX (Financial Information
eXchange) message format and its XML representation. The target format of the transformation is object-
oriented code representing the same data structure originally expressed by the input FIXML data.

Such applications, where an input (tree- or graph-like) model should be transformed to another struc-
ture according to some mapping between the elements, are effectively solved using TGGs. Additionally,
given such a transformation, consisting of a set of TGG rules, a correspondence model representing
traceability links between the source and target model instances is also maintained.

In this paper, we present the latest TGG-features provided by eMoflon by solving the FIXML case
study of TTC 2014 and evaluating our solution. Using the solution, we demonstrate a relatively new
TGG modularity concept, rule refinement and show what can be achieved with it.

2 Solution With Triple Graph Grammars

The case study consists of the following steps: (i) parsing the XML input data into an instance of a source
meta-model for a tree of nodes with attributes, (ii) transforming the source model using TGGs into an
instance of a self-specified target meta-model tailored to the needs of object-oriented languages, and
(iii) generating code in Java, C# and C++ from the target model using StringTemplate. In the following,
details of the implementation of each step are given.

www.emoflon.org
www.stringtemplate.org
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Figure 1: Target meta-model Figure 2: First rule

2.1 Step I: XML to Source

For this transformation, eMoflon already provides an XML adapter (a parser and an unparser) which,
given an XML tree, can create an instance of a generic tree meta-model called MocaTree. The structure of
a MocaTree is the following: (i) it may have a Folder as root element (not obligatory), (ii) a Folder can
contain Files (a File can be root as well), (iii) a File is a container of Nodes, and (iv) a Node can have
Attributes. In our transformation, there is always a single File root representing the file containing
the XML data, the XML tags are the Nodes of the tree and XML attributes become Attributes of the
corresponding Node.

2.2 Step II: Source to Target

This part of the transformation is implemented with TGGs. A TGG consists of a set of rules which
describe how two models (instantiating two different meta-models) are built up simultaneously. The me-
diator graph describing the mapping between source and target model elements is called correspondence
graph. Such a rule set immediately defines both source-to-target and target-to-source transformations.
A rule prescribes the context (model parts that have to exist before rule application) and the elements
that are added to the models and the correspondence graph during rule application. In this sense, TGG
transformations are monotonic (do not delete).

Our target meta-model, chosen to fit the object-oriented structure of our desired output is depicted
in Fig. 1. Our CompilationUnit class serves as the root container can contain FixmlClasses and
FixmlAttributes referencing each other. Those class attributes, which are not single variables but
are also objects themselves are contained by the corresponding class as FixmlObjectAttribute. Be-
sides this containment reference, they also need another one showing which class they instantiate. They
also have a containment self-reference as an object containment chain can be arbitrarily long. Finally,
FixmlObjectAttribute can contain FixmlObjectAttributeAttributes – although classes already
contain the attribute list, actual member object instances may have different values which we have to in-
clude in the model. (FixmlAttributes and FixmlObjectAttributeAttributes are technically the
same - they have been separated only for the purpose of code generation as they are handled differently.)

Designing a TGG begins by identifying the semantic correspondences between model elements. As
the TGG language is fully declarative, rules have to be declared so that they are applied only in the
intended context and a sequence of rule applications always results in a correct model.
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Regarding the case study, we can conceive our transformation as fulfilling two tasks simultaneously:
building a rooted tree of (attributed) object attributes, i.e., expanding the model vertically, and for all
child nodes, creating a class if it does not exist, i.e., expanding the model horizontally.

In our experience, that is the main challenge when realizing this transformation with TGGs: TGG
rules translate each model element only once, so rules have to be formulated in such a way that all
corresponding elements (in both forward and backward directions) have to be immediately added to
the target model if the context for processing a new source element (node or attribute) is present. This
requirement of a transformation with TGGs calls for carefully specified rule contexts.

The TGG Rules. We can examine the tasks of translating child nodes and translating attributes
separately. In the following, FIXML classes are simply referred to as classes.

Using rule refinement, one is able to specify the common parts of TGG rules as separate rules, and
then later derive the actual rules of it using a kind of inheritance, where the inheriting rule has to contain
only what differentiates it from its ancestor. This results in more rules but a decreased amount of objects
within rules what makes them more comprehensible. In addition, the rule diagram showing inheritances
reflects the logical structure of the TGG.

Another advantage is that rule refinement relies on the existing TGG rule pattern syntax as opposed
to, e.g., a template-based solution which would result in an additional layer on top of the TGG specifica-
tion. The technique is flexible and has only a limited amount of restrictions; we have to note that this can
also lead to misuse and, thus, overcomplicated diagrams. This is the general drawback of refinements:
their application is not always trivial and getting used to thinking in refinement diagrams requires some
practice. Finally, while the resulting overview diagram can be a valuable tool for maintenance, it might
be challenging to design it.

For further details on rule refinement, we refer to [1] and our eMoflon handbook [2]. In the following,
a semantic description of our rule set is given and the rule diagram of our implementation is shown; the
detailed presentation of the single rules is omitted because of space restrictions.

Root rule. Our first rule is straightforward: we have to map the XML tag right after the <FIXML>

element to a FixmlClass contained by a CompilationUnit.
Attribute rules. This task can be covered with two rules. A Level 0 attribute rule simply maps all

attributes of the root node in source to a FIXML attribute of the root class.
Each attribute in lower levels (Level N) has to be mapped to an object attribute attribute of the parent

object attribute and a FIXML attribute of the corresponding referred class (as in the Level 0 case). This
mapping can be specified with a TGG rule which inherits from a first level attribute rule.

Node rules. We have to separate the nodes along two dimensions when specifying the rules we need
for handling nodes: (1) if the node processed is Level 0 (direct descendant of the root node) or Level N
and (2) if it is the first occurrence of this node name or not (rest). We always have to create a new object
attribute for a node and a new class, if there is no existing class for this type of node; Level 0 object
attributes are direct descendants of a class, while Level N ones are children of another object attribute.

Figure 2 shows the First rule, one of the abstract rules, which specifies the context for a first
occurrence of a node. The black boxes (in the upper part) represent the context in the visual syntax of
eMoflon. Green boxes (childNode in the lower part) are the newly created elements. A crossed-out box
means a negative application condition: the object can not be part of the context. This (abstract) rule
requires, that when a new node from the source is processed, there is no FIXML class already there with
the same name. (In this rule, there are no correspondence links directly present.)

Rule diagram. The diagram how the transformation rule set has been implemented can be seen in
Figure 3. Using rule refinement, it can be specified which rules should be actually generated from the
description for transformation purposes, avoiding having too general rules included in the transformation
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Figure 3: Rule diagram for source-to-target model transformation

system (the names of abstract rules are in italics).

2.3 Step III: Target to Code

This step has been implemented using StringTemplate, a template language and engine for generating
source code. In general, StringTemplate is a very simple, minimalistic template language, that enforces
a strict separation between logic (i.e., the actual transformation) and a view of the model. This fits well
to our approach as we focus on TGG rules and handle the complexity of the transformation there and not
in the templates.

Although our target model resembles our expectations of a model representing structural information
in object-oriented format, it still has to be post-processed in order to (1) contain empty attributes where
an object attribute has less contained attributes and/or object attributes than the class it instantiates and
(2) deleting multiple neighbour attributes of the same name.

2.4 A TGG Advantage: Backward Transformation

In our solution, we also included another operation for demonstrating one of the advantages of TGGs:
without any further efforts, a backward transformation on the target outputs of the given test cases can
be performed. Utilizing the built-in XML unparser of eMoflon, we are capable of recreating the original
XML input of the transformation. This step included in the solution is solely for demonstration purposes,
but the backward transformation provided here could be actually applied in a possible application where
actual model instances are, for instance, refactored and are to be translated back to FIXML descriptions.

3 Evaluation

In this chapter, we give an evaluation of our solution, taking the different aspects, as specified by the case
study, into consideration.

The abstraction level of the solution is high as the main transformation is specified in a fully declar-
ative way. Its complexity can not be evaluated in this context as it is not clear how ”operator” and
”reference” should be interpreted in our TGG visual syntax. The resulting program code is syntactically
and semantically correct, although it is not directly compilable as some language-specific details have
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test1.xml test2.xml test3.xml test4.xml test5.xml test6.xml

FWD 0.862 0.4265 0.2254 0.2172 2.6568 52.4381
BWD 0.3302 0.3064 0.119 0.2116 5.2227 73.1619

Table 1: Execution times for the test cases test1.xml-test6.xml in both directions

been omitted (as in the case study as well). The solution has been developed by a newcomer to TGGs, so
the development effort was higher than usual: approx. 30 person-hours of which 25 was spent with the
TGG specification and learning TGGs.

The solution is highly fault tolerant as it does not accept invalid XMLs as input and accurate error
descriptions are shown.

The aspect of modularity can be addressed in our solution in the following way: r is the number of
TGG rules and d is the number of inheritance arrows. This results in a modularity score of 1− 10

11 ≈ 0.1.
The average execution times (in seconds) of 10 runs in our SHARE environment for the test cases

test1.xml to test6.xml in forward (FWD) and backward (BWD) direction are summarized in Table 1.

4 Conclusion and Future Work

In this paper, we presented our solution for the FIXML case study of Transformation Tool Contest 2014
using Triple Graph Grammars (TGGs) using eMoflon. We demonstrated a relatively new TGG concept,
rule refinement, which enables more structured TGG rule sets. In addition to the required transformation
from FIXML to object-oriented code, we have also shown that a TGG specification immediately provides
a backward transformation as well, allowing us to produce FIXML trees from target models.

Our future plans include performing scalability measurements based on our FIXML case study so-
lution, which we can then use for identifying performance bottlenecks. The process of tailoring a
transformation-based model generator to an already existing meta-model and a TGG may provide us
important experience for a further goal: the ability to derive such model generators automatically from a
TGG transformation.

References
[1] Anthony Anjorin, Karsten Saller, Malte Lochau & Andy Schürr (2014): Modularizing Triple Graph Grammars
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