
Submitted to:
TTC 2014

c© Albert Zündorf
This work is licensed under the
Creative Commons Attribution License.

The SDMLib solution to the FIXML case for TTC2014

Christoph Eickhoff, Tobias George, Stefan Lindel, Albert Zündorf
Kassel University, Software Engineering Research Group,

Wilhelmshöher Allee 73, 34121 Kassel, Germany

cei|tge|slin|zuendorf@cs.uni-kassel.de

This paper describes the SDMLib solution to the FIXML case for the TTC2014 [9]. SDMLib provides
Java code generation for class models / class diagrams. In addition, SDMLib provides a mechanism for
learning class models from generic example object structures. Thus, for the FIXML case we just added
an XML reader that reads an example file and creates a generic object structure reflecting its content.

1 Introduction

Our team at Kassel University found this case particularly interesting as we give a course on CASE tool
construction where one assignment to the students is to learn a class diagram from an XML file containing
object descriptions but without an explicit XML schema. Thus, the case looked quite familiar to us.

In addition, our team has developed a software development process called Story Driven Modeling [3, 1].
Story Driven Modeling starts with textual scenarios that describe example situations and how they evolve
through the execution of a certain user action. Next, the textual scenarios are extended with informal object
diagrams modeling how the desired program might represent the described situations as object structures at
runtime. Initially, the informal object diagrams may omit object types. The types are added in another design
step that formalizes the object diagrams until a class diagram can be derived. This initial class diagram may
be extended several times in order to support additional scenarios and in order to e.g. add support for
certain design patterns like composite pattern or visitor pattern or strategies. Then, an implementation of
the modeled classes may be generated using e.g. Fujaba [2] or UMLLab [8] or SDMLib [7].

To support Story Driven Modeling, SDMLib provides Generic Object Diagrams [5]. Generic Object
Diagrams are able to represent untyped object structures, they allow to add type information at runtime and
SDMLib is able to learn a class diagram from Generic Object Diagrams and to generate a Java implementa-
tion from it. This is discussed in Section 2.

To address the FIXML case, we just used the standard Java XML parser and wrote a small transformation
that translate the read XML data into a Generic Object Diagram. Then, we used the SDMLib mechanism to
learn a class diagram and to generate a Java implementation, cf. Section 3.

2 SDMLib support for Story Driven Modeling

SDMLib provides classes for a generic graph. This allows users to create generic object structures, e.g., in
a JUnit test as shown in Listing 1.

1 . . .
2 Gener i cGraph graph = new Gener icGraph () ;
3
4 G e n e r i c O b j e c t b u i l d i n g = graph . c r e a t e O b j e c t s ("WilliAllee" , "Building")

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 The SDMLib solution to the FIXML case for TTC2014

5 . w i th ("name" , "WA73") ;
6
7 G e n e r i c O b j e c t wa13 = graph . c r e a t e O b j e c t s ("seFloor" , "Floor")
8 . w i th ("name" , "WA13") . w i th ("level" , "1") ;
9

10 graph . c r e a t e L i n k s () . w i t h S r c (b u i l d i n g) . w i t h T g t (wa13) . w i t h T g t L a b e l ("has") ;
11
12 G e n e r i c O b j e c t wa03 = graph . c r e a t e O b j e c t s ("digitalFloor" , "Floor")
13 . w i th ("name" , "WA03") . w i th ("level" , "0") . w i th ("guest" ,"Ulrich") ;
14
15 graph . c r e a t e L i n k s () . w i t h S r c (b u i l d i n g) . w i t h T g t (wa03) . w i t h T g t L a b e l ("has") ;
16 . . .

Listing 1: Creating a Generic Object Model via Java API

Figure 1: Example Informal Generic Object Model

Using GraphViz [4], SDMLib is able to render object models as object diagrams, cf. figure 1.
Listing 2 shows the SDMLib algorithm for learning a class model from a generic object structure.

First, line 4 loops through all generic objects and line 6 queries the class model for a class with a name
corresponding to the type of the current generic object. Method getOrCreateClazz creates a new class, if

Albert Zündorf 3

the object type shows up for the first time. Then, line 8 loops through the generic attributes attached to the
current generic object. For each attribute method getOrCreateAttribute retrieves an attribute declaration
in the current class, cf. line 9.

1 p u b l i c ClassModel l e a r n F r o m G e n e r i c O b j e c t s (S t r i n g pName , Gener i cGraph gg){
2 t h i s . se tPackageName (pName) ;
3 // derive classes from object types

4 f o r (G e n e r i c O b j e c t gObj : gg . g e t O b j e c t s ()) {
5 i f (gObj . ge tType () != n u l l) {
6 Clazz c l a z z = t h i s . g e t O r C r e a t e C l a z z (gObj . ge tType ()) ;
7 // add attribute declarations

8 f o r (G e n e r i c A t t r i b u t e a t t r : gObj . g e t A t t r s ()) {
9 A t t r i b u t e a t t r = c l a z z . g e t O r C r e a t e A t t r i b u t e (a t t r . getName ()) ;

10 l e a r n A t t r T y p e (a t t r , a t t r) ;
11 } } }
12 LinkedHashSet<S t r i n g > a l r e a d y U s e d L a b e l s = new LinkedHashSet<S t r i n g > () ;
13 // now derive assocs from links

14 f o r (G e n e r i c L i n k l i n k : gg . g e t L i n k s ()) {
15 S t r i n g sourceType = l i n k . g e t S r c () . ge tType () ;
16 i f (sou rceType == n u l l) c o n t i n u e ; // <============

17 S t r i n g t a r g e t T y p e = l i n k . g e t T g t () . ge tType () ;
18 i f (t a r g e t T y p e == n u l l) c o n t i n u e ; // <============

19 S t r i n g s o u r c e L a b e l = l i n k . g e t S r c L a b e l () ;
20 i f (s o u r c e L a b e l == n u l l) {
21 s o u r c e L a b e l = S t r U t i l . d o w n F i r s t C h a r (sou rceType) + "s" ;
22 }
23 S t r i n g t a r g e t L a b e l = l i n k . g e t T g t L a b e l () ;
24 i f (t a r g e t L a b e l == n u l l) {
25 t a r g e t L a b e l = S t r U t i l . d o w n F i r s t C h a r (sou rceType) + "s" ;
26 }
27 A s s o c i a t i o n a s s o c = g e t O r C r e a t e A s s o c (sourceType , s o u r c e L a b e l ,
28 t a r g e t T y p e , t a r g e t L a b e l) ;
29 i f (a l r e a d y U s e d L a b e l s . c o n t a i n s (
30 l i n k . g e t S r c () . hashCode () + ":" + t a r g e t L a b e l)) {
31 a s s o c . g e t T a r g e t () . s e t C a r d (R .MANY) ;
32 }
33 i f (a l r e a d y U s e d L a b e l s . c o n t a i n s (
34 l i n k . g e t T g t () . hashCode () + ":" + s o u r c e L a b e l)) {
35 a s s o c . g e t S o u r c e () . s e t C a r d (R .MANY) ;
36 }
37 a l r e a d y U s e d L a b e l s . add (l i n k . g e t S r c () . hashCode () + ":"+ t a r g e t L a b e l) ;
38 a l r e a d y U s e d L a b e l s . add (l i n k . g e t T g t () . hashCode () + ":"+ s o u r c e L a b e l) ;
39 }
40 re turn t h i s ;
41 }

Listing 2: Learning a Class Model from a Generic Object Model

4 The SDMLib solution to the FIXML case for TTC2014

Figure 2: Class
Model learned
from Generic
Object Model

Learning the type of an attribute is done by method learnAttrType called in line 10
of listing 2. Basically, we retrieve the value of the current generic attribute. For our
generic object model, attribute values are just strings. To learn more specific attribute
types, we just try to parse the value string into an int, a double or a java.util.Date
value. On success, we store the detected type in variable attrType. On different at-
tribute values belonging to the same attribute declaration, this parsing step may compute
different results. For example one generic object may have a num attribute with value 42
while the next generic object may have a num attribute with value 23.5. The first case
results in an attribute type int while the second produce an attribunte od type double.
To resolve this, we compare the type computed for the current value with the type of the
attribute declaration that has been computed previously. If the new type is more general
than the old type, we switch to the new type.

Next, the loop in line 14 of listing 2 is used to learn associations from generic links.
For each link we retrieve the types of the connected objects and the role labels for the
link ends. Then, method getOrCreateAssoc searches the class model for a matching
association or creates one, otherwise. Note, that this step is sensible to the direction
of links, two similar links with swapped source and target roles might result in two
associations with swapped roles instead of a single one. This is easy to fix but results in
a more complicated learning algorithm and is thus omitted for lack of space.

Finally, we have to deal with association cardinalities. The most general approach is
to use to-many cardinality for all association roles. To-many associations are able to store to-one relations,
too, and thus to-many association would work in all cases. However, in many cases a to-one cardinality
would suffice and might be more natural to the user. Thus, SDMLib starts with a to-one cardinality for all
new associations and roles and we change the role cardinality as soon as there is an object with two similar
links attached to it.

Once a class model has been learned, we use Graphviz to render it to the user as a class diagram, cf.
figure 2. In addition, the user has the possibility to refactor the learned class diagram e.g. via the SDMLib
API. From the resulting class model, SDMLib generates a Java implementation with one plain Java class
per model class with private attributes and public get and set methods for each attribute and with private
attributes with public access methods for each association role (the access methods of the two roles that
build an association call each other to achieve referential integrity of the pairs of pointers that represent
a link, to-many associations use special container to hold multiple pointers). For each model class like
Building we generate a BuildingSet class. These classes are used for to-many roles. In addition, these
set classes provide the same methods as the original model classes, e.g. FloorSet::getName(). In a
set class, methods like getName() are applied to each contained element, the results are collected and
then returned. Thus, for a variable mainBuilding of type Building the call mainBuilding.getHas()
delivers the set of floors of that building and mainBuilding.getHas().getName() delivers a list of names
of these floors. We also generate model specific classes like BuildingPO that are used to represent pattern
objects in model transformations. For more details see [6]. Finally, we generate factory classes that facilitate
the creation of model objects and that provide a reflective access layer for the the model. This means, you
may ask these factories for the names of all attributes and association roles of a model class and you may
read and write attribute values using their names as simple strings. This reflective layer is also used to
provide generic serialization mechanisms to load and store model object structures from / in JSON or XML
format.

Albert Zündorf 5

3 Solving the FIXML case with SDMLib

For the FIXML case, we just developed an XML reader that turns the example input data into generic object
structures. Then, the SDMLib techniques are used to learn a class model and to generate Java code for it. Our
solution to the FIXML case first learns one separate class model for each sample XML file. Then, we use all
sample files to learn one common class model that covers all cases. As the class model learning algorithm
for each generic object, attribute, and link first looks whether it has already an appropriate declaration, you
can also start with a class model learned from other cases and add more examples later.

Once we have learned a class model and we have generated its Java implementation, SDMLib also
allows to convert generic object structures into model specific object structures. This is done using the
reflective access layer generated for the model. Once the generic object structure has been transformed into
a model specific object structure, you may program model specific algorithms based on the generated Java
implementation leveraging static type checking and compile time consistency checks. Then you may load
XML files, convert them to model specific objects and run your algorithm. Your algorithm may also utilize
the set based model layer generated by SDMLib or even the model transformation layer. As simple example
for the set based layer you may write currentOrder.getOrdqty().getQty().sum(). This looks up the
set of OrdQty objects attached to the current order. Then we look up the qty attribute of these objects.
Generally, attribute values are collected in list to allow multiple occurences of the same value. For lists of
numbers, SDMLib provides some special operations like min, max, and sum. The latter computes the sum
of the numbers of the list.

Thus, SDMLib does not only generate a Java implementation for the example XML files. It also provides
a mechanism to load XML files to a model specific object structure and SDMLib allows to run complex
algorithms and model transformations on that data. Overall, the FIXML case was made for us. SDMLib
provides a lot of functionality for generic object structures, learning class models, and generating Java code.

References
[1] I. Diethelm, L. Geiger, and A. Zündorf. Systematic story driven modeling. Technical Report, Universität Kassel,

2002.
[2] T. Fischer, J. Niere, L. Torunski, and A. Zündorf. Story diagrams: A new graph rewrite language based on the

unified modeling language and java. In H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg, editors, TAGT,
volume 1764 of Lecture Notes in Computer Science, pages 296–309. Springer, 1998.

[3] U. Norbisrath, R. Jubeh, and A. Zündorf. Story Driven Modeling. CreateSpace Publishing Platform, 2013.
[4] A. Research. Graphviz - graph visualization software, 2008.
[5] SDMLib Generic Object Diagrams. https://rawgit.com/fujaba/SDMLib/master/doc/index.html, 2014.
[6] SDMLib Model Navigation and Model Transformations Example. https://rawgit.com/azuendorf/SDMLib/master/

SDMLib.net/doc/StudyRightObjectModelNavigationAndQueries.html, 2014.
[7] Story Driven Modeling Library. http://sdmlib.org/, 2014.
[8] UML LAB from Yatta Solutions. http://www.uml-lab.com/de/uml-lab/, 2014.
[9] FIXML Case for the TTC 2014. https://github.com/transformationtoolcontest/ttc2014-fixml, 2014.

	Introduction
	SDMLib support for Story Driven Modeling
	Solving the FIXML case with SDMLib

