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This paper describes the SDMLIib solution to the MovieDB case for the TTC2014 [4]. We explain a
model transformation based solution and a plain Java solution based on a set-based model layer gen-
erated by SDMLib. In addition we discuss several refactorings we have used to improve the runtime
performance of our solutions.

1 Introduction

SDMLib [3]] is a light-weight model transformation approach based on graph grammar theory. SDMLib
provides a Java API that allows to build a class model and to generate an SDMLIib specific Java implemen-
tation for it. The generated model classes provide bidirectional association implementations, a reflection
layer, and XML and JSON serialization mechanisms. In addition, SDMLib generates a set based layer for
the model, where each method provided for a single model object is also provided for a set of such model
objects. This is frequently used for model navigation e.g in actorl.getMovies().getPersons(). Here we ask
an actor for the set of movies the actor has done and on this set we ask for the set of persons that participated
in (at least one of) these movies. Finally, SDMLib generates a pattern matching layer for the model that
provides classes to build model specific object patterns and model transformations.

To solve the MovieDB case, we mainly use the set based layer. This enables a very efficient implemen-
tation of the clique detection task. However, for completeness, we also provide a solution using SDMLib
model transformations.

2 The solution

SDMLib is able to load an Ecore file and to translate the EMF class model into an SDMLib class model and
to generate an efficient Java implementation. We have extended the original class model with class Ranking
used to store the 15 best cliques with respect to average ranking and number of movies.

Figure [I] shows the SDMLib model transformation used to find cliques of two. The search starts with
pattern object p1 that matches to any Person in our database. Via Movie m2 we look for any Person p3
that has collaborated with p1. The first constraint on the right of Figure [I| requires that the name of p3 is
alphabetically later than the name of p1. This avoids mirrored couples. Next, the subpattern o6 searches
for all movies m7 done by both persons. Each such movie is added to a new Clique object c4. The second
constraint of Figure |1| ensures that at least three movies have been added to our new clique. If this is the
case, action 1: of Figure[I|calls method addToCliques that stores the clique and maintains ranking tables.
Finally, the last action 2: calls another model transformation 1ookForCliques that looks for larger cliques.
(Note, the graphical representation of our model transformation does not show all details of the execution
order. Such details are revealed by the Java code that build up the model transformation. This Java code is
omitted for lack of space.)
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To be honest, the initial versions of
our clique finding methods have been
built using the set based model layer gen-
erated by SDMLIb. In Listing|[T|line[3|we
first check whether the wanted clique size is already reached. Method 1lookForCliques gets a set of com-
mon movies and a set of persons from the previous clique as parameter.

Figure 1: Look for Couples Model Transformation

1 private void lookForCliques(MovieSet commonMovies, int wantedSize,

2 PersonSet persons) {

3 if (wantedSize <= maxCliqueSize) {

4 PersonSet newClique = (PersonSet) persons.clone ();

5 newClique . add (dummyPerson );

6 for (Person p : commonMovies. getPersons ()) {

7 if (persons.get(persons.size()—1).getName ().compareTo(p.getName())<0){
8 MovieSet intersection = commonMovies. intersection (p.getMovies ());
9 if (intersection.size() >= 3) {

10 newClique . set (wantedSize —1, p);

11 addToCliques (intersection , newClique);

12 // look for larger cliques



13
14

Albert Ziindorf 3

lookForCliques (commonMovies, wantedSize + 1, newClique);

Py

Listing 1: Set Base Model Transformation lookForCliques

Line [6]loops through the set of all persons that participate in one of the common movies passed as pa-
rameter. Note the call to commonMovies.getPersons (). Parameter commonMovies is of type MovieSet.
This class is generated by SDMLIib as an addition to the model class Movie. Class MovieSet provides
all methods provided by class Movie and extends these methods to work on sets of objects. Thus method
MovieSet: :getPersons() calls methods Movie: :getPersons() on each element of commonMovies.
Method Movie: :getPersons () has return type PersonSet, i.e. the set of persons working on a given
movie. Method MovieSet: :getPersons() collects these PersonSets within a (flat) result set using a
result.union(newSet) operation. In our method lookForCliques this set based getPersons opera-
tion saves us an explicit outer loop through the commonMovies set and we do not need an extra data structure
to keep track of already handled persons. Similarly, line[uses the set based method intersection to com-
pute the set of common movies from the parameter commonMovies and the movies of the current person
p. The if statement in line [/| ensures that we consider only persons with a name later than the name of the
last person in newClique. This avoids multiple cliques of the same persons that differ only in the ordering.
The if statement in line 9] ensures that the intersection of movies has at least 3 entries. Thus, when we
reach line (10| we have found a new clique and line 11| adds this new clique to the rankings and line [13|tries
to extend the new clique recursively.

3 Performance

The first version of our solution used the SDMLib generated model implementation, the set based model
layer, and plain Java code as outlined in listing [T} In that version we did not create all found cliques
explicitly but we only collected the 15 best cliques for each ranking. Without further optimizations the
20,000 synthetic MovieDB case needed about 50 seconds on a 2.67 GHz Intel i7 dual core (M60) 64 bit
CPU (with hyper threading) and 8 GB main memory running windows 7. We call this our reference laptop
from now on. Actually, first measurements with different case sizes for the synthetic MovieDB produced
strange results where e.g the 10,000 case was much slower then the 20,000 case. We figured out that the
Java virtual machine hot compile has a strong influence on our measurements. Hot compile causes up to 10
times speed-ups. Thus we added a warm up phase to our benchmark where we run a large synthetic case
just to trigger the hot compile.

Then we replaced the java.util.LinkedHashSet implementation used for Cliques to store sets of
common movies and sets of persons by an java.util.ArrayList based implementation. Our ArrayList
based implementation still ensured set semantics, i.e. before adding e.g. a new Person object, it checks
whether this object is already contained. As this benchmark uses many small sets of objects, using Ar-
rayLists resulted in a speed-up of factor 5.

Next, the call for solutions states that the benchmark shall be done on workstation with an 8 core CPU.
Thus we redesigned our solution to run in multiple threads. On our dual core reference laptop this created a
speed-up of roughly factor 2. We have also tested it on a 12 core workstation where we achieved a speed-up
of factor 10. With the parallelization we achieved an execution time of 12,263 seconds for the N=200,000
synthetic case using only one core and 5,695 seconds using both cores of our reference laptop, cf. row one
of table

In the synthetic case movies are generated with ascending rankings. Thus looping through the persons in
order of their creation results in cliques with an ascending order of average ranking. Thus, when we maintain
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Figure 2: Look for Cliques Model Transformation

the list of the 15 best ranked cliques, we constantly replace old entries with higher ranked new entries. To
avoid this, we just visit the persons in reverse order. This saves again 2.4 seconds on our reference laptop.
Well, to some extend this is cheating as this trick will not show an improvement on the real data.

Next we learned from a conversation with the organizer that the call for solutions requires to create
all cliques explicitly. Actually, explicit clique creation needs about 0.5 seconds for two threads and thus
probably about 1 second on a single thread. Finally, we need about 5 seconds to detect all couples and all
cliques in a single thread for the N=200,000 synthetic case.

| solution feature | trafo (sec) | manual (sec) | parallel (sec) | no create (sec) |
Introduced ArrayList for cliques 12.263 5.695 -
Changed PersonSet to ArrayList<Person> 8.897 4.641 -
Looping through persons in reverse order 6.461 3.043 -
Changed MovieSet to Array List 4.740 2.379 1.919
Added trafo, improved it by factor 5 213.250 5.723 2.795 2.330
Caching trafos 74.596 4.697 2.247 1.858

Table 1: Evaluation results
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At this point in time, we added the model transformation based solution to the clique detection mecha-
nism as discussed in section [2| Initially, the trafo solution already took some 200 seconds for the N=20,000
case. We identified that the SDMLib model transformation mechanism did a lot of copying of candidate sets
during search. By removing many of these copies and by using ArrayList where possible we achieved a
speed-up of about factor 6 resulting in the times reported in row 5 of table[I] Thus, the improved model
transformation used 213 seconds for the N=200,000 synthetic case. Unhappy with this execution time, we
identified that the lookForCliques transformation is called recursively some million times and that we
construct the object structure that represents the model transformation each time anew. Thus, we added a
cache for the object structure that represents the model transformation and just reinitialized it to start the
pattern matching from a new clique each time. This reduced the execution time to some 75 seconds, cf. last
row of table[I] Overall, the transformation based solution is still 15 times slower than the set based solution.
Actually, we have already spotted some other inefficient heap operations within our interpreter. We work on
more improvements on that.

4 Conclusions

Our first approach to attack the MovieDB case was a manually written Java method exploiting the model
implementation generated by SDMLib and especially exploiting the generated set-based model layer as
shown in listing [I] Coming up with this solution was quite straight forward and we think it is reasonably
concise and it seems to be reasonably efficient.

For comparison, we also developed a model transformation based approach. While the graphical repre-
sentation of the model transformations in figure|l|and figure [2|is reasonably understandable (at least if you
have developed them yourself :), the Java code that creates the object structure that represents the model
transformations is about double the size of the set-based solution. In addition, the Java code is not as com-
prehensible as the set-based code. And finally, the model transformation based solution is slower by a factor
of 15. Note, the set-based model layer generated by SDMLib compares to simple OCL expressions [1]].
Thus, a comparable solution might have been created using EMF and OCL. Next, before this benchmark
the model layer generated by SDMLib relied on LinkedHashSets for the implementation of to-many asso-
ciations. This especially was a distinction from EMF based models that use ELists to implement to-many
associations which finally compares to an ArrayList. In this benchmark we followed the advice of EMF
and used an ArrayList based solution, too. Actually, this is more efficient as long as the sets are rea-
sonable small (some hundred to some 1000 elements). When we used an ArrayList based PersonSet
(guaranteeing the uniqueness of contained elements) for the root clique of the MovieDB case that contains
all movies and all persons, the ArrayList performance caved in. Actually, the check for containment is not
necessary while creating the synthetic cases or reading the real case files. Thus, the choice of the right data
structure heavily depends on the situation and it may even change during execution time (initially a lot of
add operations, then only reads). For SDMLib we will soon provide an option to enable the user to choose
the data structure that fits the user’s purposes most.
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