FIXML to Java, C# and C++ Transformationswith

Dan Li, Danning Li Xiaoshan Li
Guizhou Academy of Sciences, Guiyang, China Faculty of Science and Technology, University of Macau,n@hi
Volker Stolz

Bergen University College, Norway

QVTR-XSLT is a tool for design and execution of transforraas based on the graphical notation of
QVT Relation. In this paper, we present a solution to the WIXto Java, C# and C++" case study
of the Transformation Tool Contest (TTC) 2014 using the QVARLT tool.

1 Introduction

The "FIXML to Java, C# and C++" case study of the Transfororafiool Contest (TTC) 2014 addresses
the problem of automatically synthesizing program codenffmancial messages expressed in FIX (Fi-
nancial Information eXchange) format. The problem can lo&dm down into three tasks: 1) generating
FIX model from FIX text file, 2) producing a model of the progrdanguage from the FIX model, and

3) converting the program model to program code of Java, G&+ar. In this paper, the transforma-

tion tasks are tackled with QVTR-XSLII[1], a tool that supgoediting and execution of the graphical

notation of QVT Relations (QVT-R) languadé [3].

As part of the model transformation standard proposed bythiect Management Group (OMG),
QVT-R is a high-level, declarative transformation langeiadts graphical notation provides a concise,
intuitive, and yet powerful way to define model transformas. In QVT-R, a transformation is defined
as a set ofelations(rules) between source and target metamodels, where @netgtecifies how two
object diagrams, calledomain patternsrelate to each other. Optionally, a relation may have a pair
of when andwhereclauses specified with an extended subset of Object Camtstranguage (OCL)
to define the pre- and postconditions of the relation, rasmdyg. A transformation may also include
gueriesandfunctions Transformations are driven by a single, designated teg-kelation.

QVTR-XSLT supports the graphical notation of QVT-R and tixecution of a subset of QVT-R
by means of XSLTI[4]. The tool supports unidirectional naoremental enforcement model-to-model
transformations of QVT-R. Features supported includestamation inheritance through rule overrid-
ing, traceability of transformation executions, multipiput and output models, and in-place transfor-
mations. In addition, we extend QVT-R with additional tremmsation parameter, conditional relation
call and graphical model queryi[2]. The tool providegraphical editorin which metamodels and trans-
formations can be specified using the graphical syntax, aoda generatothat automatically generates
executable XSLT stylesheets for the transformationgraAsformation runners also developed to exe-
cute a single or a chain of generated XSLT transformationisnmking a Saxon XSLT processor. It can
display the execution time and generate the execution ifragquired.

The rest of the paper is structured as follows: Sedflon ®dhices the design of a solution for the
case study. We discuss the experimental result and evatuattithe solution against the criteria given in
the case specification in Sectidn 3.

© Dan Li, Danning Li, Xiaoshan Li & Volker Stolz
This work is licensed under the
Creative Commoris Attribution License.

Submitted to:
TTC 2014

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 FIXML to Java, C# and C++ Transformations with QVTR-XSLT

2 Solution design

ERES]FI toLang <QVTRModel>]

(2] FI¥model «MetaModel»

& FINto0O «Tran
2] HtmlMetaModel eMetaModel» | i N

-
-
i} 8 >
2} L:‘J LanzuageModel «Metaliode ; . . ’ models
}d O0model <MetaModel» i K
- & 00toLang «Transformation» k T .
H- & Sort00 «Transformation» FIX Text F:IX WModel ‘ I('-‘:n:lgram
ode
-
}‘m UML Standard Profile [UML_Stan

o-Ef ENFXNI [QVIR Profile.mdzipl | | ; ----- i; o transformations

‘ FIXmodel ‘ | 00model | | LanguageModel ‘ ‘ HtmlIMetaModel |
>~

metamodels

Program
Model

£ TextToFIX «Transformation»

b
b
b
b
b
b
b
b
b
&
&

R QVTR [QVTR_Profile. mdzip] TextToFIX ﬂ FIXto00 00toLang U Sort00
@ Code engineering sets A 7
Figure 1: Solution overview. Figure 2: Overall transforioatprocess.

Using the graphical editor of QVTR-XSLT, the solution foethase study is designed as a QVT-R
transformation modeFiXtoLangwhose outline is shown in Fi@gl 1. It consists of 4 metamodats 4
transformations. Among the metamoddis{modelspecifies the structures of both FIX text model and
FIX model, OOmodeldefines the abstract model for the OO program languages hamndriguageModel
provides the concrete syntax features for each language.

To complete the tasks of the case study, transformatatToFIXreads a FIX text file and transforms
it to a FIX model (task 1, see Sectibnl2.1), which is subsetiyueonverted into an abstract program
model by theFIXtoOO transformation (task 2, see Sectldnl2.2). In case of C++¢ldeses defined in
the program model need to be sorted to ensure a class isetbdlafore being called. Transformation
SortO0is dedicated to this purpose. For the next task, as QVTR-XiSImainly designed for model-
to-model transformations, the program model, along withléimguage concrete feature model, are first
transformed to program code represented as an HTML modettrdorms to theHtmIMetaModelof
Fig.O. Then, a pre-defined XSLT stylesheet generates a f@airfile of the program code from the
HTML model (see Sectioh 2.3). This transformation procéss,various artifacts and their relation to
each other, are shown in FIg. 2.

2.1 FIX text to FIX modd transformation

FIXML
<<Relation>> ‘3
T FIXtoFIX
ABSNode‘ {where=nds=node(); NodeToNode(nds,t);}
XMLNode o {isTopLevel}
name : String i +subnodes
<<Domain>> o <<Domain>>
+attributes|0..* M‘ - - M
XMLAttribute ABSAttribute
name : String [
value : String
Figure 3: FIX metamodel. Figure 4: Top relatiBrXtoFIX.

The very first transformatiofmextToFIXtakes as input an XML text file and outputs a model of FIX
format. As shown in Fig[d3, we define a single metamdea&modelfor both the source and target

Dan Li, Danning Li, Xiaoshan Li & Volker Stolz 3

models. QVTR-XSLT uses simple UML class diagrams to defineamedels, and requires that a model
has a unique root element, such as EeML shown in the Fig[13. In the metamodel, two elements,
ABSNodeand ABSAttribute specify the structure of the source text model. Their dabses XMLNode
andXMLAttribute defines the metamodel of the target FIX model. Slightlyedéht from the metamodel
given in the case specification, we usaneproperty instead ofag to specify the tag of a FIX node.

The transformation itself is simple and straightforward. starts from the top relatioiIXtoFIX
(Fig. @), which matches theIXML element (the root of the source text model) in its left-haadt,p
and constructs the ro®iXML element of the target model in its right-hand part. In Wieereclause,
functionnode()is used to obtain all direct subnodes owned by the root of dnece model, and another
relationNodeToNodés invoked to subsequently map these subnodes. The mapaingstly one-to-one.

2.2 FIX mode to program model transfor mation

Package
<<Relation>> "‘_]
AttToProperty
{where=regexp="[-+]?[0-9]*\.[0-9]+";
+type N OOElement tp=if matches(v,regexp) then 'Double’ else 'String’ endif;}
name : String
<<Domain>> <<Domain>>
: XMLNode : Class
== =
o o attributes - L
<<enumeration>> att : XMLAttribute ke mitive}
imiti — name = "nm"
Object t P"'."T'""e _Type jaie= T type = "tp"
order : String Vy;?ﬁé . é?rieng gglLTt?le e value = "v"
Figure 5: Metamodel of program model. Figure 6: RelatioiToProperty

Fig.[illustrates the metamodel of the program model, wiietves as the target metamodel of the
transformationFIXtoOO. The three programming languages share the same abstrdak siefinitions.

In the metamodel, we define a root elemeatkagethat contains a set @flasses A class own$roperties
which could be either of &rimitive type (e.g.,String or Double) or anObject of class type. Therder
property inObjectelements indicates the order of an object if there are melbpjects with the same
name.

The challenge of the transformation is that in the sourceehtbeétre may be multiple nodes with the
same tag name. These nodes are distributed throughout thel,rand each of them may have a different
set of subnodes. We have to search the whole model to collextcarrences of this node, union all of
their subnodes to obtain a largest set, and convert the st toroperties of corresponding class in the
target model. As multiple subnodes with the same tag nameeaxiaywithin the same node, a function
is used to count the order of the subnodes, and store theiartherorder property of theDbjectelement.

We tackle the task of Extensions 3.1 (selecting appropdata types) in the relation that transforms
attribute nodes of the source model into primitive progsriof target model, as shown in Hig. 6. In the
whereclause, a regular expressiagyexpis used in thenatchedunction to decide if the valueis of type
Doublg otherwise it is of typeString

2.3 Program mode to program code transformation

This task is comprised of three steps: 1) sorting class gdi@as of the program model; 2) transforming
the program model into an HTML model of a particular programgranguage; 3) rendering the HTML

4 FIXML to Java, C# and C++ Transformations with QVTR-XSLT

model to a text file.

Sorting program model. For C++, the class declarations should be ordered so thetedaare always
declared before they are used. We design transform&woi®Ofor that purpose. It take®Omodelas
the source- and the target metamodel. The transformatiopta@ typical bubble sort algorithm. The
following function is defined for comparison of the pair ofaxknt classes:

function Compare(cl:Class, c2:Class) {
result=if c2.#0Object.type~includes(cl.name}then c1—union(c2) else c2—union(cl) endif;
}
where the input parametet is located before2 in the source model. However, if clasg does not
include any object of typel, we consider2is “smaller” thancl and swap them.

Program model toHTML model. This transformatior©OOtoLangtakes as input a program model and
a feature model, and generates an HTML model for the codeegpdhnticular programming language.
It calls the sorting function defined iBortOOIif needed. The feature model, which conforms to the
metamodelanguageModeldefines the concrete syntax features for each language:

<LanguageDef>

<L angDef name="Java" this="this." String="String" Double="DoabiniVar="true" nul="null’ orderClass="false" .../>
<L angDef name="C#" this="this." String="string" Double="doubl@iVar="true" nul="null’ orderClass="false" .../>

<L angDef name="C++" this="" String="string" Double="double" iné¥="false" nul="NIL’ orderClass="true" .../>
</LanguageDef>

In addition, a parameter file is used for the transformatioindicate which language is currently wanted
and the file name of the feature model:

<parameter Root>
<currentLang>C++<fcurrentLang>

<sourceTypedM oddl name="languageSpec" file="LanguageDef.xml"/>
</parameter Root>

HTML model to plain text. A pre-defined simple XSLT stylesheet of about 20 lines of X$hde is
used to convert the HTML model of the program code into a e file.

3 Experimentsand Evaluation
Using the QVTR-XSLT code generator, we load the QVT-R tramsfition model and generate for each

transformation a XSLT stylesheet. Some measures of theftnamations, such as lines of generated
XSLT code, development efforts, and model modularity, &@e in TabldL.

Table 1: Measures of the transformations.

Name Number of relations Lines of Develop Modularity
/queries/functions XSLT code person-hours

TextToFix 3 81 3 0

FIXtoOO 6/3/1 181 10 -0.2

SortOO 1/3/3 117 7 0

OOtoLang 10/6/1 444 20 -0.56

Total 20/12/5 857 40 -0.31

Dan Li, Danning Li, Xiaoshan Li & Volker Stolz 5

With the transformation runner, we load and execute a baelhtt chains all the transformations,
as well as individual XSLT transformations, on the examples/ided by the case study in a laptop of
Intel M330 2.13 GHz CPU, 3 GB memory, and running Windows 7 ldorfhe sizes of examples and
the execution times for generating C++ code are shown irefabThe execution time includes loading
and saving model files from/to disk. The DTD definition (settdine) of test4.xml has to be removed
first. Examples test7 and test8 are rejected because thewalid XML files.

Table 2: Experimental results
Example Size Batch TextToFIX FIXtoOO OOtolLang

(kb) (ms) (ms) (ms) (ms)
testl 0.65 16 <1 <1 15
test2 092 31 <1 15 16
test3 0.56 25 <1 8 16
test4 0.83 47 <1 16 31
test5 5.0 265 3 120 141
test6 12.4 1200 15 590 593

The generated programs are syntactically correct by cldokbe IDEs of corresponding languages.
Fortestlandtest2 comparing the generated programs with the program testpilevided by the case
study shows equivalent structure. We also manually vehniéygenerated program code with the original
XML examples. So there is a high confidence that the transftoms produce semantics preserving
results. As we can see from Table 2, the solution works wetlftie transformation algorithm also needs
to be optimized to convert larger models more efficiently.

Conclusion

We presented a solution for the "FIXML to Java, C# and C++"ecatidy of TTC 2014. Our so-
lution is founded on the standards introduced by OMG and W&, makes use of well-known and
commonly adopted CASE tools and languages. We hope the traevsll help to demonstrate that the
graphical notation of QVT-R, a combination of UML object giams and essential OCL expressions, as
well as the QVTR-XSLT tool, can be efficiently applied to mbatansformations in practice.

References

[1] Dan Li, Xiaoshan Li & Volker Stolz (2011)QVT-based model transformation using XSIACM SIGSOFT
Softw. Eng. Note86, pp. 1-8, ddt0. 1145/ 1921532. 1921563.

[2] Dan Li, Xiaoshan Li & Volker Stolz (2012)Model querying with graphical notation of QVT relation&CM
SIGSOFT Softw. Eng. Noted7(4), pp. 1-8, ddL0. 1145/ 2237796. 2237808.

[3] Object Management Group (201Meta Object Facility (MOF) 2.0 Query/View/Transformati®pecification,
version 1.1

[4] WWW Consortium (2007)XSL Transformations (XSLT) Version 2.0, W3C Recommemdatigailable at
nttp://ww. W3. org/ IR 2007/ REC- XSI T 20- 200/0123/.

http://dx.doi.org/10.1145/1921532.1921563
http://dx.doi.org/10.1145/2237796.2237808
http://www.w3.org/TR/2007/REC-xslt20-20070123/

	Introduction
	Solution design
	FIX text to FIX model transformation
	FIX model to program model transformation
	Program model to program code transformation

	Experiments and Evaluation

