
RDB2Graph: A Generic Framework for
Modeling Relational Databases as Graphs

Kang Min Yoo, Sungchan Park, and Sang-goo Lee

Intelligent Data Systems Laboratory
Seoul National University

{kangminyoo, baksalchan, sglee}@europa.snu.ac.kr

Abstract. Graph data mining is highly versatile, as it applies not only
to graph data but to relational data, as long as it can be represented
as pairs of relationships. However, modeling RDBs as graphs using ex-
isting methods is limited in describing semantics of the relational data.
In this paper, we propose a two-phased graph-modeling framework that
converts any RDB to a directed graph with richer semantics than previ-
ously allowed. We implemented the framework and used it for analyzing
medical records of diabetes patients.1

Keywords: relational database, graph, graph modeling

1 Introduction

Graph data mining is a well-studied area of research because of numerous appli-
cations in fields such as social data mining and biochemical analysis [1]. Recently,
there has been a growing interest in applying graph mining techniques to rela-
tional databases, as viewing them as graph data exposes inherent semantics [3]
[4]. Since relational databases are a de facto standard in data warehousing, ap-
plying graph mining techniques to mine latent information from the massive
relational data seems even more attractive.

However, modeling relational databases as graphs is not straight-forward,
because it is challenging to devise appropriate models that expose underlying
semantics. W3C formalized the graph-modeling process by defining a new lan-
guage, R2RML [2], but the language is limited in describing some semantic
aspects of graph conversion. For example, it cannot used to describe a vertex
that combines several attributes (fig. 1). It also fails at describing semantics
not apparent in relational schemata, such as events that could be connected in
chronological order (fig. 2).

We propose a new framework to solve the current problem of modeling
RDBs as graphs. The framework converts any RDB into a directed graph given
some conversion rules (sec. 2). We have also implemented a program based on
RDB2Graph (R2G) to analyze medicals records of diabetes patients.

1 This work was supported by the National Research Foundation of Korea(NRF) grant
funded by the Korea Government(MSIP) (No. 20110030812).



2 RDB2Graph

Given a relational database D and a set of modeling rules, the framework gen-
erates a directed graph. The output of the framework is edge set E and vertex
set V . Each vertex is a set of key-values, i.e. {(k1, l1), (k2, l2), . . . , (kn, ln)}, where
each key in k1, . . . , kn corresponds to some attribute and each l in l1, . . . , ln is
some value in D. An edge e is directed and denoted by (vs, vt), where vs is the
source vertex and vt is the target vertex. Both vs and vt are in V . Given some
rule set Γ and D, framework must return E and V such that elements satisfy
the specifications of Γ .

2.1 The Two-Phase Conversion

The conversion takes place in two phases — the first phase discovers relationships
within each tuple, while the second phase establishes additional relationships
among the vertices constructed from the first phase. Thus, Γ is an union of Γ1

and Γ2, the rules for both phases respectively. Splitting in two phases is necessary
because it allows incorporation of implicit relationships not apparent from the
relational database itself.

Phase I: Tuples to Edges In order to create new vertices and edges from the
relational database, a set of rules Γ1 must specify the followings:

1. a target relation (r)
2. two sets of attributes (Cs, Ct) from relation r to indicate which values of

each tuple in r are stored as l in key-value pairs of source or target vertices
3. two sets of key aliases (Ks, Kt) to indicate k in key-value pairs of source or

target vertices.
4. a bit (b) to indicate whether the edge is bidirectional or not
5. a selection predicate (p) to filter tuples.

For each c in Cs or Ct, the corresponding value u in each tuple is paired
with the corresponding k in Ks or Kt to form a key-value pair (k, u), which is
added to the generated source or target vertex. An example of edge generation
is presented in figure 2.1.

Fig. 1. Phase I edge construction based on the rule Cs = {p id, enter date}, Ct =
{building no, duration}, Ks = {id, date}, Kt = {no, dur}, and b = 0.



The purpose of specifying the alias sets Ks and Kt is to combine semantically
identical attributes together. For example, consider a case where relation r1 has
a foreign key constraint that references a primary key of another relation r2.
Their attribute names might be different, but they are identical semantically.
By having the ability to give a common key for the attributes, we are able to
generate common vertices. It is apparent from figure 2.1 that some vertices have
common key configurations (e.g. {id, date}). We call such key configurations
vertex schemata.

Selection predicate p is similar to the counterpart of relational algebra. It can
be directly used in SQL queries to filter out tuples. For each rule, the framework
retrieves a set of tuples from T that satisfy the predicate and produces exactly
one edge of (vs, vt), which is added to E. The framework will also attempt to
add vs and vt into V , if they do not exist already. At the end of phase I, E and
V are generated and passed to phase II.

Phase II: Vertices to Edges Given the graph constructed from the previous
phase, E and V , and phase II rules Γ2, the framework constructs additional
edges that satisfy Γ2. In this phase, each rule of Γ2 specifies the followings.

1. two sets of vertex schema (Ks, Kt)

2. a bit (b) to indicate whether the generated edge is bidirectional or not

3. a vertex selection predicate (q) to filter vertices

For each rule in Γ2, vertices with schema Ks or Kt are considered as source
or target vertices of an additional edge. Given the vertices, the framework fur-
ther filters them using vertex selection predicate q. An example of such edge
generation is shown in figure 2.1.

Fig. 2. Phase II edge construction based on the rule Ks = {id, date}, Kt = {id, date},
b = 0, and q selects source and target vertices such that values of id are equal but the
target date is the nearest later date to the source date.

q is different from p of Γ1 — in p, left-hand side variables are references to
some attributes of a relation; in q, left-hand side variables are references to some
keys of either Ks or Kt. Phase II produces E and V as well, but with additional
edges that satisfy Γ2.



Fig. 3. SRCGraphModeler is an implementation of RDB2Graph. It was used to analyze
medical records of diabetes patients.

2.2 Implementation

Our implementation of the framework, SRCGraphModeler (SGM), is written in
C#, and it connects to Oracle 11g based RDB. SGM converts each rule into
PL/SQL procedures in order to run them on the database server, improving
runtime efficiency. Using SGM, we converted medical records of diabetes patients
into various graph models, then we applied graph analysis on the graphs to
extract correlation among medications and symptoms.

3 Conclusion

We have presented a graph-modeling framework that enables semantically richer
conversions than that attempted by previous works. As future works, we plan
to study how transformation of RDB data to graph data affects the information
contained in it.

References

1. Charu C. Aggarwal and Haixun Wang. Managing and Mining Graph Data, vol-
ume 40 of Advances in Database Systems. Springer, 2010.

2. Souripriya Das, Seema Sundara, and Richard Cyganiak. R2RML: RDB to RDF
Mapping Language. http://www.w3.org/TR/r2rml, September 2012.

3. Jaehui Park. A Graph-based Framework for Processing Keyword Queries over Re-
lational Databases. PhD thesis, Seoul National University, 2012.

4. Subhesh Pradhan, Sharma Chakravarthy, and Aditya Telang. Modeling Relational
Data as Graphs for Mining. In International Conference on Management of Data,
2009.


