
Ontology Schema-specific Rule Materialization

Seungwoo Lee, Chang-Hoo Jeong, Jung-Ho Um, Taehong Kim, Hanmin Jung

Dept of Computer Intelligence Research, KISTI

245 Daehak-ro, Yuseong-gu, Daejeon, 305-806, Korea

{swlee, chjeong, jhum, kimtaehong, jhm}@kisti.re.kr

Abstract. The reasoning should tackle big data issues like other domains as the

size of ontology grows bigger and bigger. Especially, rule-based reasoning

should overcome the following challenges: duplicate elimination and rule

matching efficiency. To deal with these challenges, we introduce a new rule-

based reasoning method which materializes each generic instance rule into sev-

eral schema-specific instance rules and combines with Hadoop framework to

deal with billions of triples. The experiment shows the materialization remarka-

bly improves the efficiency of rule-based reasoning by reducing the amount of

required memory and making it linear to the data size.

Keywords: rete reasoning; rule materialization; RDFS rule; OWL Horst rule

1 Introduction

Rule-based reasoning is a process that derives new knowledge – it is represented in

triples composed of subject, predicate and object in ontology reasoning – from given

set of knowledge by matching more than one rules. However, the reasoning process is

also suffering from big data issues like other domains as the size of ontology has be-

come bigger and bigger. To achieve efficient reasoning with overcoming big data

issues, we have several challenges and two of them are follows: duplicate elimination

and rule matching efficiency.

First, separate input sets of triples may derive same – i.e., duplicate – triples by one

rule. Even different rules may derive duplicate triples. Urbani et al.[1] pointed out that

reasoning might derive 50 times more duplicates than unique derived triples in their

preliminary simulation. So, we need an efficient mechanism for eliminating dupli-

cates and this challenge should be overcome by all means to achieve the scalability of

reasoning process. Second, some parts of reasoning rules are often so generic to cause

too many matches of triples. Rules are generally defined from the semantics of vo-

cabularies of ontology description languages such as RDF (Resource Description

Framework), RDFS (RDF Schema) and OWL (Web Ontology Language). Therefore,

these rules are always valid independently of any specific ontology and have generic

triple patterns in their condition. These rules often cause inefficiency in matching

them to given set of triples because the generic patterns could be matched to too many

given triples, most of which are eventually filtered out when joining with triples

mailto:jhm%7d@kisti.re.kr

matched to remaining patterns. So, we need an efficient mechanism for reducing such

unnecessary triple matches.

In this paper, we present a method that removes unnecessary pattern matches,

eventually reduces join operations in rule-based reasoning selectively fetches input

triples, and efficiently eliminates duplicates derived by reasoning rules.

The remaining part of this paper is as follows: in section 2, some related works are

explored and in section 3, our main approaches are described. Some experiments

justifying our approaches are given in section 4, which is followed by conclusion in

section 5.

2 Related Work

Rule-based reasoning is implemented widely based on rete algorithm[2][3] due to its

efficiency in pattern matching. This algorithm achieves efficiency of pattern matching

by enabling more than one rule to share triples matched to their common triple pat-

terns. Most time-consuming operation in rete occurs when joining triples from more

than one pattern because join operation causes repeated search and comparison of

corresponding values to common variables. To perform this efficiently, indexing

mechanisms such as hashing or Pyramid technique are usually adopted[3][4]. Rete

has a big advantage in efficiency but also has a severe disadvantage in scalability. It

requires quite large memory spaces because it maintains all triples matched to each

pattern and joined by more than one pattern in main memory. This makes it impossi-

ble for rete-based reasoning to process billions of triples.

To achieve scalability of rule-based reasoning, recent research such as WebPIE[1]

utilized Hadoop, a distributed and parallelized computing framework. It showed that

the performance of Hadoop-based reasoning is highly dependent on how to design

mappers and reducers for each rule. So, it designed rule-specific mappers and reduc-

ers and succeeded to achieve web-scale reasoning. To eliminate duplicate derivation

in early stage, it tried to get mappers to group input triples by considering the output

of the rule, not joining key. It, in addition, maintained schema triples in main memory

to improve load balances between parallelized computing nodes.

In this paper, we describe a new approach that first removes unnecessary pattern

matches in rete framework by materializing rules based on given ontology schema,

next fetches input triples selectively by implementing rule-specific input formats, and

finally eliminates duplicate derivations by grouping rules having same output forms.

3 Rule Materialization

In our previous work[5], we applied dynamic materialization on some rules having

genric patterns in RDFS and OWL semantics[6][7] and in this paper, we extend the

materialization to all rules having schema triple patterns in RDFS and OWL seman-

tics. Triples can be divided into two types: schema and instance triples. Schema indi-

cates triples defining classes, relationships between them, and attributes related to

them while instance means triples describing individuals, relationship between them,

and attributes related to them. Similarly, triple patterns forming rules can also be di-

vided into two types: schema and instance triple patterns. Schema triples are generally

small and static to a given ontology so as to be maintained in main memory while

instance triples may continue to grow as much as not to be maintained in main

memory. So, schema-only rules could be processed sufficiently on rete framework,

but rules having instance triple patterns could not be processed on rete when the pat-

terns are too generic.

For example, the generic triple pattern (u p v) of rdfs2 in Table 1 could be

matched to all given triples, but only small part of them could be joined with specific

triples matched to the remaining triple pattern (p rdfs:domain c) due to the common

variable ‘p’. Indexing mechanisms such as hashing are usually applied to check such

consistency efficiently, but they also require large memory spaces. More badly, as the

target ontology grows, such indexing size also grows and may not be maintained in

main memory. To solve this issue, we take following approaches according to types

of rules:

 Schema-only rules (i.e., rdfs 5, 6, 8, 10, 11, 12, and 13, and owl-horst 9, 10, 12a,

12b, 12c, 13a, 13b, and 13c) are processed fully on rete framework.

 Generic-only rules (i.e., rdf 1 and 2, rdfs 1, 4a, and 4b, owl-horst 5a and 5b) are

replaced and processed fully using dictionary which encodes all unique terms of

input triples.

Table 1. RDF and RDFS rules[6]

id entailment rules

rd
f

1 (u p v)  (p rdf:type rdf:Property)

2
(u p v) (if v is a XML literal and _:n is a bland node allocated to v)  (_:n rdf:type

rdf:XMLLiteral)

rd
fs

1
(u p v) (if v is a plain literal and _:n is a bland node allocated to v)  (_:n rdf:type

rdfs:Literal)

2 (p rdfs:domain c) (u p v)  (u rdf:type c)

3 (p rdfs:range c) (u p v)  (v rdf:type c)

4a (u p v)  (u rdf:type rdfs:Resource)

4b (u p v)  (v rdf:type rdfs:Resource)

5 (p rdfs:subPropertyOf q) (q rdfs:subPropertyOf r)  (p rdfs:subPropertyOf r)

6 (p rdf:type rdf:Property)  (p rdfs:subPropertyOf p)

7 (p rdfs:subPropertyOf q) (u p v)  (u q v)

8 (c rdf:type rdfs:Class)  (c rdfs:subClassOf rdfs:Resource)

9 (c rdfs:subClassOf d) (u rdf:type c)  (u rdf:type d)

10 (c rdf:type rdfs:Class)  (c rdfs:subClassOf c)

11 (c rdfs:subClassOf d) (d rdfs:subClassOf e)  (c rdfs:subClassOf e)

12
(p rdf:type rdfs:ContainerMembershipProperty)  (p rdfs:subPropertyOf

rdfs:member)

13 (c rdf:type rdfs:Datatype)  (c rdfs:subClassOf rdfs:Literal)

 Rules related to ‘owl:sameAs’ (i.e., owl-horst 6, 7, and 11) are replaced with

sameAs table storing all same terms, defining a canonical term among them, and

replacing all same term occurrences with their canonical ones.

 Remaining rules having combination of schema and instance triple patterns (i.e.,

rdfs 2, 3, 7, and 9, owl-horst 1, 2, 3, 4, 8a, 8b, 14a, 14b, 15, and 16) are processed

first on rete to be materialized into schema-specific rules and then each material-

ized rule is processed on distributed and parallelized Hadoop framework.

The first and second ones are straightforward and the third one is similar to the ap-

proach of WebPIE[1]. So, the detailed explanation of them is omitted here. For the

last one, our previous work[5] introduced rete-based framework that materializes

some of the rules (i.e., rdfs 2, 3, 7, and 9, owl-horst 4, and 8a) into schema-specific

rules and this paper extends the work into other rules in OWL Horst and incorporates

Hadoop framework[9] additionally to deal with billions of triples.

For example, when a given ontology defines n functional properties, p1,…,pn, our

rete-based reasoning framework will materialize the rule owl-horst1 into following n

rules: (u pi v) (u pi w)  (v owl:sameAs w) (here, i = 1,…,n). These rules can be im-

plemented in one pair of a mapper and a reducer as in WebPIE[1] but having pi as

parameters. In addition, when input triples are stored and indexed with six possible

Table 2. OWL Horst rules[1][8]

id entailment rules

1 (p rdf:type owl:FunctionalProperty) (u p v) (u p w)  (v owl:sameAs w)

2 (p rdf:type owl:InverseFunctionalProperty) (u p w) (v p w)  (u owl:sameAs v)

3 (p rdf:type owl:SymmetricProperty) (u p v)  (v p u)

4 (p rdf:type owl:TransitiveProperty) (u p v) (v p w)  (u p w)

5a (u p v)  (u owl:sameAs u)

5b (u p v)  (v owl:sameAs v)

6 (u owl:sameAs v)  (v owl:sameAs u)

7 (u owl:sameAs v) (v owl:sameAs w)  (u owl:sameAs w)

8a (p owl:inverseOf q) (u p v)  (v q u)

8b (p owl:inverseOf q) (u q v)  (v p u)

9 (c rdf:type owl:Class) (c owl:sameAs d)  (c rdfs:subClassOf d)

10 (p rdf:type rdf:Property) (p owl:sameAs q)  (p rdfs:subPropertyOf q)

11 (u p v) (u owl:sameAs x) (v owl:sameAs y)  (x p y)

12a (c owl:equivalentClass d)  (c rdfs:subClassOf d)

12b (c owl:equivalentClass d)  (d rdfs:subClassOf c)

12c (c rdfs:subClassOf d) (d rdfs:subClassOf c)  (c owl:equivalentClass d)

13a (p owl:equivalentProperty q)  (p rdfs:subPropertyOf q)

13b (p owl:equivalentProperty q)  (q rdfs:subPropertyOf p)

13c (p rdfs:subPropertyOf q) (q rdfs:subPropertyOf p)  (p owl:equivalentProperty q)

14a (c owl:hasValue v) (c owl:onProperty p) (u p v)  (u rdf:type c)

14b (c owl:hasValue v) (c owl:onProperty p) (u rdf:type c)  (u p v)

15 (c owl:someValuesFrom d) (c owl:onProperty p) (u p v) (v rdf:type d)  (u rdf:type c)

16 (c owl:allValuesFrom d) (c owl:onProperty p) (u p v) (u rdf:type c)  (v rdf:type d)

combinations of subject, predicate and object using Hbase[10], one of column-based,

no-SQL databases, the input format of the mapper can be implemented to selectively

fetch triples only matched to the corresponding pattern. Finally, we can combine rules

having a common conclusion (e.g., rdfs 2, 3, and 9) and implement one pair of a

mapper and a reducer to efficiently eliminate duplicates derived from different rules.

4 Experiments

To demonstrate the feasibility of the proposed materialization approach, we first

checked memory usages according to materialization. Fig. 1 shows that the memory

without materialization is exhausted quickly even though the size of data is quite

small, while the memory with materialization is consumed smoothly. We also com-

pared the elapsed time in reasoning with and without materialization using

LUBM[11]. The result in Fig. 2 shows that materialization improves the reasoning

remarkably and even makes it linear to the size of data.

Especially, rete-reasoning without materialization consumed and exhausted memo-

ries very quickly even for small size of data. However, materialization solved this

issue effectively by maintaining only schema triples in memory and leaving reasoning

of instance rules to Hadoop framework.

Fig. 1. Memory usages with and without materialization

Fig. 2. The elapsed time in reasoning with and without materialization according to the size of

data (LUBM)

(a) without materialization, LUBM(20) (b) with materialization, LUBM(1000)

5 Conclusion

This paper explained a rete-based reasoning method that materializes RDFS and

OWL-Horst rules when an ontology schema is given and then can combine with Ha-

doop framework to deal with billions of triples. Each generic instance rule is material-

ized into several schema-specific rules, which can be implemented in a pair of a map-

per and a reducer. Each mapper can selectively fetch input triples matched to its pat-

tern using Hbase and rules having a common conclusion can be combined into a re-

ducer to efficiently eliminate duplicate derivations from different rules.

The combination with Hadoop framework is being implemented and will be tested

to check how much our method could improve reasoning performance, comparing to

WebPIE[1] in near future.

Acknowledgement

This work was supported by the IT R&D program of MSIP/KEIT. [2014044034002,

High performance database solution development for integrated big data monitoring

and analysis]

References

1. Urbani, J., Kotoulas, S., Maassen, J., Harmelen, F., Bal, H.: WebPIE: A Web-scale Parallel

Inference Engine using MapReduce. Journal of Web Semantics: Science, Services and

Agents on the World Wide Web 10, 59--75 (2012)

2. Forgy, C.L.: Rete: A Fast Algorithm for the Many Pattern/Many Object Pattern Match

Problem. Artificial Intelligence 19(1), 17--37 (1982)

3. Doorenbos, R.B.: Production Matching for Large Learning Systems. Ph.D Thesis, Carne-

gie Mellon University, Pittsburgh, PA (1995)

4. Özacar, T., Öztürk, Ö., Ünalir, M.O.: Optimizing a Rete-based Inference Engine using a

Hybrid Heuristic and Pyramid based Indexes on Ontological Data. Journal of Computers

2(4), 41--48 (2007)

5. Lee, S., Jung H., Kim, P., You, B.-J.: Dynamically Materializing Wild Pattern Rules Re-

ferring to Ontology Schema in Rete Framework. In Proceedings of the 1st Asian Workshop

on Scalable Semantic Data Processing (AS2DP) (2009)

6. RDF Semantics, available at: http://www.w3.org/TR/rdf-mt

7. OWL Web Ontology Language Semantics and Abstract Syntax, available at:

http://www.w3.org/TR/owl-semantics

8. Horst, H.J.: Completeness, Decidability and Complexity of Entailment for RDF Schema

and a Semantic Extension Involving the OWL Vocabulary. Journal of Web Semantics 3(2-

3) 79--115 (2005)

9. Apache Hadoop, available at http://wiki.apache.org/hadoop.

10. Um, J.-H., Lee, S., Kim, T.-H., Jeong, C.-H., Seo, K., Park, J., Jung, H.: MapReduce-based

Bulk-Loading Algorithm for Fast Search for Billions of Triples, In Proceedings of the 9th

KIPS International Conference on Ubiquitous Information Technologies and Applications

(CUTE 2014), (2014)

11. Guo, Y., Pan, Z., Heflin, J.: LUBM: A Benchmark for OWL Knowledge Base Systems.

Journal of Web Semantics 3(2), 158--182 (2005)

