
PEL: Position-Enhanced Length Filter for Set Similarity
Joins

Willi Mann
Department of Computer Sciences

Jakob-Haringer-Str. 2
Salzburg, Austria

wmann@cosy.sbg.ac.at

Nikolaus Augsten
Department of Computer Sciences

Jakob-Haringer-Str. 2
Salzburg, Austria

nikolaus.augsten@sbg.ac.at

ABSTRACT
Set similarity joins compute all pairs of similar sets from two
collections of sets. Set similarity joins are typically imple-
mented in a filter-verify framework: a filter generates candi-
date pairs, possibly including false positives, which must be
verified to produce the final join result. Good filters produce
a small number of false positives, while they reduce the time
they spend on hopeless candidates. The best known algo-
rithms generate candidates using the so-called prefix filter
in conjunction with length- and position-based filters.

In this paper we show that the potential of length and po-
sition have only partially been leveraged. We propose a new
filter, the position-enhanced length filter, which exploits the
matching position to incrementally tighten the length filter;
our filter identifies hopeless candidates and avoids process-
ing them. The filter is very efficient, requires no change in
the data structures of most prefix filter algorithms, and is
particularly effective for foreign joins, i.e., joins between two
different collections of sets.

1. INTRODUCTION
The set similarity join computes all pairs of similar sets

from two collections of sets. The similarity is assessed using
a set similarity function, e.g., set overlap, Jaccard, or Cosine
similarity, together with a threshold. A pair of sets is in the
join result if the similarity exceeds the threshold.

Set similarity joins have many interesting applications
ranging from near duplicate detection of Web documents to
community mining in social networks [9]. The set elements
are called tokens [3] and are often used to represent complex
objects, e.g., strings (q-grams [11]) or trees (pq-grams [2]).

The best algorithms for set similarity joins are based on
an inverted list index and the so-called prefix filter [5]. The
prefix filter operates on sorted sets and rejects candidate
pairs that have no overlap in a (short) prefix. Only the pre-
fix must be indexed, which leads to substantial savings in
space and runtime. However, for frequent tokens, the prefix
filter produces a large number of candidates. Recent devel-

Copyright c© by the paper’s authors. Copying permitted only
for private and academic purposes.
In: G. Specht, H. Gamper, F. Klan (eds.): Proceedings of the 26th GI-
Workshop on Foundations of Databases (Grundlagen von Datenbanken),
21.10.2014 - 24.10.2014, Bozen, Italy, published at http://ceur-ws.org.

opments in the field leverage the position of the matching
tokens between two prefixes (positional filter) and the num-
ber of remaining tokens in the overall set (length filter) to
further reduce the number of candidates.

This paper proposes a new filter, the position-enhanced
length filter (PEL), which tightens the length filter based
on the position of the current token match. In previous
work, position and length information have only partially
been exploited. PEL fully leverages position and length to
achieve additional pruning power. As a key feature, PEL
does not require changes in the prefix filter index, but is
applied on top of previous algorithms at almost no cost. In
our experiments we show that PEL is particularly effective
for foreign joins. PEL also performs well for self joins over
large collections of small sets.1

The remaining paper is organized as follows: Section 2
introduces the set similarity join, provides background ma-
terial, and an in-depth analysis of filtering techniques based
on position and length. Our novel position-enhanced length
filter (PEL) is introduced in Section 3. We empirically eval-
uate our technique and demonstrate its effectiveness on real
world data in Section 4. In Section 5 we survey related work
and finally draw conclusions in Section 6.

2. BACKGROUND
We revisit candidate generation, candidate reduction, and

efficient verification techniques discussed in literature. The
main concepts of this section are summarized in Figure 1.

2.1 Candidate Generation
We shorty explain the prefix filter, translate normal-

ized thresholds to overlap thresholds, revisit length- and
position-based filter conditions, and discuss prefixes in
index implementations of set similarity joins.

Prefix Filter. The fastest set similarity joins are based
on the prefix filter principle [5]: A pair of sorted sets s0, s1
can only meet an overlap threshold tO, i.e., |s0 ∩ s1| ≥ tO,
if there is a non-zero overlap in the prefixes of the sets. The
prefixes are of length |s0|− tO +1 for s0 and |s1|− tO +1 for
s1. The set similarity join proceeds in three steps: (a) index
the prefixes of one join partner, (b) probe the prefixes of the
other join partner against the index to generate candidates,
(c) verify the candidates by inspecting the full sets.

Threshold for normalized set overlap. Normalized
set similarity measures take the set sizes into account. For

1In a self join, both input relations are identical, which can-
not be assumed in a foreign join.

Table 1: Set similarity functions and related definitions, extending [7, Table 1] by new pmaxsize.

Similarity function minoverlap(t, s0, s1) minsize(t, s0) pmaxsize(t, s0, p0) maxsize(t, s0)

Jaccard J(s0, s1) = |s0∩s1|
|s0∪s1|

t
1+t

(|s0|+ |s1|) t |s0| |s0|−(1+t)·p0
t

|s0|
t

Cosine C(s0, s1) = |s0∩s1|√
|s0|·|s1|

t
√
|s0| · |s1| t2 |s0| (|s0|−p0)

2

|s0|·t2
|s0|
t2

Dice D(s0, s1) = 2·(|s0∩s1|)
|s0|+|s1|

t(|s0|+|s1|)
2

t |s0|
2−t

(2−t)·|s0|−2p0
t

(2−t)|s0|
t

Overlap O(s0, s1) = |s0 ∩ s1| t t ∞ ∞

the purpose of set similarity joins, the normalized threshold
is translated into an overlap threshold (called minoverlap).
The overlap threshold may be different for each pair of sets.
For example, for the Cosine threshold tC (join predicate

|s0 ∩ s1|/
√
|s0| · |s1| ≥ tC), minoverlap(tC , s0, s1) := tC ·√

|s0| · |s1|. Table 1 lists the definitions of well-known set
similarity functions with the respective overlap thresholds.

Length filter. For a given threshold t and a reference
set s0, the size of the matching partners must be within
the interval [minsize(t, s0),maxsize(t, s0)] (see Table 1).
This was first observed for the PartEnum algorithm [1]
and was later called the length filter. Example: |s0| = 10,
|s1| = 6, |s2| = 16, Cosine threshold tC = 0.8. Since
minoverlap(tC , s0, s1) = 6.1 > |s1| we conclude (without
inspecting any set element) that s0 cannot reach threshold
tC with s1. Similarly, minoverlap(tC , s0, s2) = 10.1, thus
s2 is too large to meet the threshold with s0. In fact,
minsize(tC , s0) = 6.4 and maxsize(tC , s0) = 15.6.

Prefix length. The prefix length is |s0| − tO + 1 for
a given overlap threshold tO and set s0. For normalized
thresholds t the prefix length does not only depend on s0,
but also on the sets we compare to. If we compare to s1, the
minimum prefix size of |s0| is minprefix(t, s0, s1) = |s0| −
minoverlap(t, s0, s1) + 1. When we index one of the join
partners, we do not know the size of the matching partners
upfront and need to cover the worst case; this results in the
prefix length maxprefix(t, s0) = |s0|−minsize(t, s0)+1 [7],
which does not depend on s1. For typical Jaccard thresholds
t ≥ 0.8, this reduces the number of tokens to be processed
during the candidate generation phase by 80 % or more.

For self joins we can further reduce the prefix length [12]
w.r.t. maxprefix: when the index is built on-the-fly in in-
creasing order of the sets, then the indexed prefix of s0 will
never be compared to any set s1 with |s1| < |s0|. This al-
lows us to reduce the prefix length to midprefix(t, s0) =
|s0| −minoverlap(t, s0, s0) + 1.

Positional filter. The minimum prefix length for a pair
of sets is often smaller than the worst case length, which we
use to build and probe the index. When we probe the index
with a token from the prefix of s0 and find a match in the
prefix of set s1, then the matching token may be outside the
optimal prefix. If this is the first matching token between
s0 and s1, we do not need to consider the pair. In general,
a candidate pair s0, s1 must be considered only if

minoverlap(t, s0, s1) ≤ o + min{|s0| − p0, |s1| − p1}, (1)

where o is the current overlap (i.e., number of matching
tokens so far excluding the current match) and p0 (p1) is
the position of the current match in the prefix of s0 (s1);
positions start at 0.

Previous work:

• minoverlap(t, s0, s1): equivalent overlap threshold for
Jaccard, Cosine, or Dice threshold t for a pair of sets s0, s1.

• minsize(t, s0), maxsize(t, s0): minimum and maximum
size of any set that can satisfy threshold t w.r.t. set s0.

• maxprefix(t, s0) = |s0| − minsize(t, s0) + 1: length of
probing prefix

• midprefix(t, s0) = |s0|−minoverlap(t, s0, s0)+1: length
of indexing prefix for self joins

• minprefix(t, s0, s1) = |s0| − minoverlap(t, s0, s1) + 1:
length of optimal prefix for a particular pair of sets

Position-enhanced length filter (PEL):

• pmaxsize(t, s0, p0): new tighter limit for maximum set size
based on the probing set position

Figure 1: Overview of functions.

The positional filter is stricter than the prefix filter and
is applied on top of it. The pruning power of the positional
filter is larger for prefix matches further to right (i.e., when
p0, p1 increase). Since the prefix filter may produce the same
candidate pair multiple times (for each match in the prefix),
an interesting situation arises: a pair that passes the posi-
tional filter for the first match may not pass the filter for
later matches. Thus, the positional filter is applied to pairs
that are already in the candidate set whenever a new match
is found. To correctly apply the positional filter we need
to maintain the overlap value for each pair in the candidate
set. We illustrate the positional filter with examples.

Example 1. Set s0 in Figure 2 is the probing set (prefix
length maxprefix = 4), s1 is the indexed set (prefix length
midprefix = 2, assuming self join). Set s1 is returned from
the index due to the match on g (first match between s0 and
s1). The required overlap is dminoverlapC(0.8, s0, s1)e =
8. Since there are only 6 tokens left in s1 after the match,
the maximum overlap we can get is 7, and the pair is pruned.
This is also confirmed by the positional filter condition (1)
(o = 0, p0 = 3, p1 = 1).

Example 2. Assume a situation similar to Figure 2, but
the match on g is the second match (i.e., o = 1, p0 = 3,
p1 = 1). Condition (1) holds and the pair can not be pruned,
i.e., it remains in the candidate set.

Example 3. Consider Figure 3 with probing set s0 and
indexed set s1. The match on token a adds pair (s0, s1) to
the candidate set. Condition (1) holds for the match on a
(o = 0, p0 = 0, p1 = 0), and the pair is not pruned by
the positional filter. For the next match (on e), however,
condition (1) does not hold (o = 1, p0 = 1, p1 = 4) and
the positional filter removes the pair from the candidate set.
Thus, the positional filter does not only avoid pairs to enter

c e f g ? ? ? ? ? ?s0:

a g ? ? ? ? ? ?s1:

pred: C(s0, s1) ≥ 0.8

⇒ dminoverlap(s0, s1, 0.8)e = 8

7

7

probing set (pr)

indexed set (idx)

Figure 2: Sets with matching token In prefix: match
impossible due to positions of matching tokens and
remaining tokens.

a e ? ? ? ? ? ? ? ? ? ? ? ? ? ?s0:

a b c d e ? ? ? ? ?s1:

pred: C(s0, s1) ≥ 0.6

⇒ dminoverlap(s0, s1, 0.8)e = 8

14

5+1 +1 = 7 < 8

pr

idx

Figure 3: Sets with two matching tokens: pruning
of candidate pair by second match.

the candidate set, but may remove them later.

2.2 Improving the Prefix Filter
The prefix filter often produces candidates that will be

removed immediately in the next filter stage, the positional
filter (see Example 1). Ideally, such candidates are not pro-
duced at all. This issue is addressed in the mpjoin algo-
rithm [7] as outlined below.

Consider condition (1) for the positional filter. We split
the condition into two new conditions by expanding the min-
imum such that the conjunction of the new conditions is
equivalent to the positional filter condition:

minoverlap(t, s0, s1) ≤ o + |s0| − p0 (2)

minoverlap(t, s0, s1) ≤ o + |s1| − p1 (3)

The mpjoin algorithm leverages condition (2) as follows.
The probing sets s0 are processed in increasing size order, so
|s0| grows monotonically during the execution of the algo-
rithm. Hence, for a specific set s1, minoverlap grows mono-
tonically. We assume o = 0 (and justify this assumption
later). For a given index entry (s1, p1), the right side of con-
dition (2) is constant, while the left side can only grow. Af-
ter the condition fails to hold for the first time, it will never
hold again, and the index list entry is removed. For a given
index set s1, this improvement changes the effective length
of the prefix (i.e., the part of the sets where we may detect
matches) w.r.t. a probing set s0 to minprefix(t, s0, s1) =
|s1| −minoverlap(t, s0, s1) + 1, which is optimal. On the
downside, a shorter prefix may require more work in the
verification phase: in some cases, the verification can start
after the prefix as will be discussed in Section 2.3.

2.3 Verification
Efficient verification techniques are crucial for fast set sim-

ilarity joins. We revisit a baseline algorithm and two im-
provements, which affect the verification speed of both false
and true positives. Unless explicitly mentioned, the term
prefix subsequently refers to maxprefix (probing set) resp.

b c e f g h ? ? ?s0:

a e h ? ? ? ? ? ?s1:

pr

idx

Figure 4: Verification: where to start?

c d e ? ? ? ?s0:

e ? ? ? ? ?s1:

pred: J(s0, s1) ≥ 0.7
⇒ dminoverlap(. . .)e = 6

pr

idx

(a) Match impossible

c d e ? ? ? ?s0:

e ? ? ? ?s1:

pred: J(s0, s1) ≥ 0.7
⇒ dminoverlap(. . .)e = 5

pr

idx

(b) Match possible

Figure 5: Impossible and possible set sizes based on
position in s0 and the size-dependent minoverlap.

midprefix (indexing set) as discussed in earlier sections.
Since the sets are sorted, we compute the overlap in a

merge fashion. At each merge step, we verify if the current
overlap and the remaining set size are sufficient to achieve
the threshold, i.e., we check positional filter condition (1).

(A) Prefix overlap [12] : At verification time we already
know the overlap between the two prefixes of a candidate
pair. This piece of information should be leveraged. Note
that we cannot simply continue verification after the two
prefixes. This is illustrated in Figure 4: there is 1 match in
the prefixes of s0 and s1; when we start verification after the
prefixes, we miss token h. Token h occurs after the prefix
of s0 but inside the prefix of s1. Instead, we compare the
last element of the prefixes: for the set with the smaller
element (s0), we start verification after the prefix (g). For
the other set (s1) we leverage the number of matches in the
prefix (overlap o). Since the leftmost positions where these
matches can appear are the first o elements, we skip o tokens
and start at position o (token e in s1). There is no risk of
double-counting tokens w.r.t. overlap o since we start after
the end of the prefix in s0.

(B) Position of last match [7] : A further improvement is
to store the position of the last match. Then we start the
verification in set s1 after this position (h in s1, Figure 4).

Small candidate set vs. fast verification. The po-
sitional filter is applied on each candidate pair returned by
the prefix filter. The same candidate pair may be returned
multiple times for different matches in the prefix. The po-
sitional filter potentially removes existing candidate pairs
when they appear again (cf. Section 2.1). This reduces the
size of the candidate set, but comes at the cost of (a) lookups
in the candidate set, (b) deletions from the candidate set,
and (c) book keeping of the overlaps for each candidate pair.
Overall, it might be more efficient to batch-verify a larger
candidate set than to incrementally maintain the candidates;
Ribeiro and Härder [7] empirically analyze this trade-off.

3. POSITION-ENHANCED LENGTH FIL-
TERING

In this section, we motivate the position-enhanced length
filter (PEL), derive the new filter function pmaxsize, dis-
cuss the effect of PEL on self vs. foreign joins, and show how
to apply PEL to previous algorithms.

Motivation. The introduction of the position-enhanced
length filter is inspired by examples for positional filtering

800

1000

1250
se

t
si

ze

0 100 200
position in prefix

A
B

C D
maxsize

probing set size

pmaxsize
minsize

maxprefix

Figure 6: Illustrating possible set sizes.

like Figure 5(a). In set s1, the only match in the prefix oc-
curs at the leftmost position. Despite this being the leftmost
match in s1, the positional filter removes s1: the overlap
threshold cannot be reached due the position of the match
in s0. Apparently, the position of the token in the probing
set can render a match of the index sets impossible, inde-
pendently of the matching position in the index set. Let us
analyze how we need to modify the example such that it
passes the positional filter: the solution is to shorten index
set s1, as shown in Figure 5(b). This suggests that some
tighter limit on the set size can be derived from the position
of the matching token.

Deriving the PEL filter. For the example in
Figure 5(a) the first part of the positional filter, i.e.,
condition (2), does not hold. We solve the equation
minoverlap(t, s0, s1) ≤ |s0| − p0 to |s1| by replacing
minoverlap with its definition for the different similarity
functions. The result is pmaxsize(t, s0, p0), an upper
bound on the size of eligible sets in the index. This bound
is at the core of the PEL filter, and definitions of pmaxsize
for various similarity measures are listed in Table 1.

Application of PEL. We integrate the pmaxsize
upper bound into the prefix filter. The basic prefix filter
algorithm processes a probing set as follows: loop over
the tokens of the probing set from position p0 = 0 to
maxprefix(t, s0) − 1 and probe each token against the
index. The index returns a list of sets (their IDs) which
contain this token. The sets in these lists are ordered by
increasing size, so we stop processing a list when we hit a
set that is larger than pmaxsize(t, s0, p0).

Intuitively, we move half of the positional filter to the
prefix filter, where we can evaluate it at lower cost: (a) the
value of pmaxsize needs to be computed only once for each
probing token; (b) we check pmaxsize against the size of
each index list entry, which is a simple integer comparison.
Overall, this is much cheaper than the candidate lookup that
the positional filter must do for each index match.

Self Joins vs. Foreign Joins. The PEL filter is more
powerful on foreign joins than on self joins. In self joins,
the size of the probing set is an upper bound for the set
size in the index. For all the similarity functions in Table 1,
pmaxsize is below the probing set size in less than 50%
of the prefix positions. Figure 6 gives an example: The
probing set size is 1000, the Jaccard threshold is 0.8, so
minsize(0.8, 1000) = 800, maxsize(0.8, 1000) = 1250, and
the prefix size is 201. The x-axis represents the position in
the prefix, the y-axis represents bounds for the set size of the
other set. The region between minsize and maxsize is the

base region. The base region is partitioned into four regions
(A, B, C, and D) by the probing set size and pmaxsize. For
foreign joins, our filter reduces the base region toA+C. If we
assume that all set sizes occur equally likely in the individual
inverted lists of the index, our filter cuts the number of index
list entries that must be processed by 50%. Since the tokens
are typically ordered by their frequency, the list length will
increase with increasing matching position. Thus the gain of
PEL in practical settings can be expected to be even higher.
This analysis holds for all parameters of Jaccard and Dice.
For Cosine, the situation is more tricky since pmaxsize is
quadratic and describes a parabola. Again, this is in our
favor since the parabola is open to the top, and the curve
that splits the base region is below the diagonal.

For self joins, the only relevant regions are A and B since
the size of the sets is bounded by the probing set size. Our
filter reduces the relevant region from A+ B to A. As Fig-
ure 6 illustrates, this reduction is smaller than the reduction
for foreign joins. For the similarity functions in Table 1, B
is always less than a quarter of the full region A+B. In the
example, region B covers about 0.22 of A+ B.

Algorithm 1: AllPairs-PEL(Sp, I, t)

Version using pmaxsize for foreign join;
input : Sp collection of outer sets, I inverted list index

covering maxprefix of inner sets, t similarity
threshold

output: res set of result pairs (similarity at least t)
1 foreach s0 in Sp do
2 M = {}; /* Hashmap: candidate set → count */

3 for p0 ← 0 to maxprefix(t, s0)− 1 do
4 for s1 in Is0[p] do
5 if |s1| < minsize(t, s0) then
6 remove index entry with s1 from Is0[p];
7 else if |s1| > pmaxsize(t, s0, p0) then
8 break;
9 else

10 if M [s1] = ∅ then
11 M = M ∪ (s1, 0);
12 M [s1] = M [s1] + 1;

13 end

14 end
15 /* Verify() verifies the candidates in M */

16 res = res ∪ V erify(s0,M, t);

17 end

Algorithm. Algorithm 1 shows AllPairs-PEL2, a ver-
sion of AllPairs enhanced with our PEL filter. AllPairs-
PEL is designed for foreign joins, i.e., the index is con-
structed in a preprocessing step before the join is executed.
The only difference w.r.t. AllPairs is that AllPairs-PEL uses
pmaxsize(t, s0, p0) instead of maxsize(t, s0) in the condi-
tion on line 7. The extensions of the algorithms ppjoin and
mpjoin with PEL are similar.

An enhancement that is limited to ppjoin and mpjoin is to
simplify the positional filter: PEL ensures that no candidate
set can fail on the first condition (Equation 2) of the split
positional filter. Therefore, we remove the first part of the

2We use the -PEL suffix for algorithm variants that make
use of our PEL filter.

Table 2: Input set characteristics.
#sets in
collection

set size # of diff.
tokensmin max avg

DBLP 3.9 · 106 2 283 12 1.34 · 106

TREC 3.5 · 105 2 628 134 3.4 · 105

ENRON 5 · 105 1 192 000 298 7.3 · 106

minimum in the original positional filter (Equation 1), such
that the minimum is no longer needed.

Note that the removal of index entries on line 6 is the eas-
iest solution to apply minsize, but in real-world scenarios,
it only makes sense for a single join to be executed. For
a similarity search scenario, we recommend to apply binary
search on the lists. For multiple joins with the same indexed
sets in a row, we suggest to use an overlay over the index
that stores the pointer for each list where to start.

4. EXPERIMENTS
We compare the algorithms AllPairs [4] and mpjoin [7]

with and without our PEL extension on both self and for-
eign joins. Our implementation works on integers, which we
order by the frequency of appearance in the collection. The
time to generate integers from tokens is not measured in our
experiments since it is the same for all algorithms. We also
do not consider the indexing time for foreign joins, which
is considered a preprocessing step. The use of PEL has no
impact on the index construction. The prefix sizes are max-
prefix for foreign joins and midprefix for self joins. For self
joins, we include the indexing time in the overall runtime
since the index is built incrementally on-the-fly. We report
results for Jaccard and Cosine similarity, the results for Dice
show similar behavior. Our experiments are executed on the
following real-world data sets:

• DBLP3: Snapshot (February 2014) of the DBLP bib-
liographic database. We concatenate authors and ti-
tle of each entry and generate tokens by splitting on
whitespace.

• TREC4: References from the MEDLINE database,
years 1987–1991. We concatenate author, title, and
abstract, remove punctuation, and split on whitespace.

• ENRON5: Real e-mail messages published by FERC
after the ENRON bankruptcy. We concatenate sub-
ject and body fields, remove punctuation, and split on
whitespace.

Table 2 lists basic characteristics of the input sets. We
conduct our experiments on an Intel Xeon 2.60GHz machine
with 128 GB RAM running Debian 7.6 ’wheezy’. We com-
pile our code with gcc -O3. Claims about results on “all”
thresholds for a particular data set refer to the thresholds
{0.5, 0.6, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95}. We stop tests whose
runtime exceeds one hour.

Foreign Joins. For foreign joins, we join a collection of
sets with a copy of itself, but do not leverage the fact that the

3http://www.informatik.uni-trier.de/~Ley/db/
4http://trec.nist.gov/data/t9_filtering.html
5https://www.cs.cmu.edu/~enron/

collections are identical. Figures 7(a) and 7(b) show the per-
formance on DBLP with Jaccard similarity threshold 0.75
and Cosine similarity 0.85. These thresholds produce result
sets of similar size. We observe a speedup of factor 3.5 for
AllPairs-PEL over AllPairs with Jaccard, and a speedup of
3.8 with Cosine. For mpjoin to mpjoin-PEL we observe a
speedup of 4.0 with Jaccard and 4.2 with Cosine. Thus, the
PEL filter provides a substantial speed advantage on these
data points. For other Jaccard thresholds and mpjoin vs.
mpjoin-PEL, the maximum speedup is 4.1 and the minimum
speedup is 1.02. For threshold 0.5, only mpjoin-PEL finishes
within the time limit of one hour. Among all Cosine thresh-
olds and mpjoin vs. mpjoin-PEL, the maximum speedup is
4.2 (tC = 0.85), the minimum speedup is 1.14 (tC = 0.95).
We only consider Cosine thresholds tC ≥ 0.75, because the
non-PEL variants exceed the time limit for smaller thresh-
olds. There is no data point where PEL slows down an
algorithm. It is also worth noting that AllPairs-PEL beats
mpjoin by a factor of 2.7 with Jaccard threshold tJ = 0.75
and 3.3 on Cosine threshold tC = 0.85; we observe such
speedups also on other thresholds.

Figure 7(c) shows the performance on TREC with Jac-
card threshold tJ = 0.75. The speedup for AllPairs-PEL
compared to AllPairs is 1.64, and for mpjoin-PEL compared
to mpjoin 2.3. The minimum speedup of mpjoin over all
thresholds is 1.26 (tJ = 0.95), the maximum speedup is
2.3 (tJ = 0.75). Performance gains on ENRON are slightly
smaller – we observe speedups of 1.15 (AllPairs-PEL over
AllPairs), and 1.85 (mpjoin-PEL over mpjoin) on Jaccard
threshold tJ = 0.75 as illustrated in Figure 7(d). The mini-
mum speedup of mpjoin over mpjoin-PEL is 1.24 (tJ = 0.9
and 0.95), the maximum speedup is 2.0 (tJ = 0.6).

Figure 8(a) shows the number of processed index entries
(i.e., the overall length of the inverted lists that must be
scanned) for Jaccard threshold tJ = 0.75 on TREC. The
number of index entries increases by a factor of 1.67 for
AllPairs w.r.t. AllPairs-PEL, and a factor of 4.0 for mpjoin
w.r.t. mpjoin-PEL.

Figure 8(b) shows the number of candidates that must
be verified for Jaccard threshold tJ = 0.75 on TREC. On
AllPairs, PEL decreases the number of candidates. This is
because AllPairs does not apply any further filters before
verification. On mpjoin, the number of candidates increases
by 20%. This is due to the smaller number of matches from
the prefix index in the case of PEL: later matches can remove
pairs from the candidate set (using the positional filter) and
thus decrease its size. However, the larger candidate set
for PEL does not seriously impact the overall performance:
the positional filter is also applied in the verification phase,
where the extra candidate pairs are pruned immediately.

Self joins. Due to space constraints, we only show re-
sults for DBLP and ENRON, i.e., the input sets with the
smallest and the largest average set sizes, respectively. Fig-
ure 7(e) and 7(f) show the performance of the algorithms on
DBLP and ENRON with Jaccard threshold tJ = 0.75. Our
PEL filter provides a speed up of about 1.22 for AllPairs,
and 1.17 for mpjoin on DBLP. The maximum speedup we
observe is 1.70 (AllPairs-PEL vs. AllPairs, tJ = 0.6); for
tJ = 0.95 there is no speed difference between mpjoin and
mpjoin-PEL. On the large sets of ENRON, the performance
is worse for AllPairs-PEL because verification takes more
time than PEL can save in the probing phase (by reducing
the number of processed index entries). There is almost no

0

100

200

300

400

500

sec

A
ll
P
a
ir
s

A
ll
P
a
ir
s-
P
E
L

m
p
jo
in

m
p
jo
in
-P

E
L

(a) Foreign join,
DBLP, tJ = 0.75.

0

100

200

300

400

500
sec

A
ll
P
a
ir
s

A
ll
P
a
ir
s-
P
E
L

m
p
jo
in

m
p
jo
in
-P

E
L

(b) Foreign join,
DBLP, tC = 0.85.

0

50

100

150

sec

A
ll
P
a
ir
s

A
ll
P
a
ir
s-
P
E
L

m
p
jo
in

m
p
jo
in
-P

E
L

(c) Foreign join,
TREC, tJ = 0.75

0

100

200

300

400 sec

A
ll
P
a
ir
s

A
ll
P
a
ir
s-
P
E
L

m
p
jo
in

m
p
jo
in
-P

E
L

(d) Foreign j., EN-
RON, tJ = 0.75

0

10

20

30

sec

A
ll
P
a
ir
s

A
ll
P
a
ir
s-
P
E
L

m
p
jo
in

m
p
jo
in
-P

E
L

(e) Self join,
DBLP, tJ = 0.75

0

20

40

60

80

100

sec

A
ll
P
a
ir
s

A
ll
P
a
ir
s-
P
E
L

m
p
jo
in

m
p
jo
in
-P

E
L

(f) Self join, EN-
RON, tJ = 0.75

Figure 7: Join times.

0

2.0e10

4.0e10

6.0e10

8.0e10

A
ll
P
a
ir
s

A
ll
P
a
ir
s-
P
E
L

m
p
jo
in

m
p
jo
in
-P

E
L

(a) Number of pro-
cessed index entries.

0

5.0e9

1.0e10

1.5e10
A
ll
P
a
ir
s

A
ll
P
a
ir
s-
P
E
L

m
p
jo
in

m
p
jo
in
-P

E
L

(b) Number of candi-
dates to be verify.

Figure 8: TREC (foreign join): tJ = 0.75

difference between mpjoin and mpjoin-PEL. The maximum
increase in speed is 9% (threshold 0.8, mpjoin), the maxi-
mum slowdown is 30% (threshold 0.6, AllPairs).

Summarizing, PEL substantially improves the runtime in
foreign join scenarios. For self joins, PEL is less effective
and, in some cases, may even slightly increase the runtime.

5. RELATED WORK
Sarawagi and Kirpal [8] first discuss efficient algorithms

for exact set similarity joins. Chaudhuri et al. [5] propose
SSJoin as an in-database operator for set similarity joins
and introduce the prefix filter. AllPairs [4] uses the prefix
filter with an inverted list index. The ppjoin algorithm [12]
extends AllPairs by the positional filter and introduces the
suffix filter, which reduces the candidate set before the final
verification. The mpjoin algorithm [7] improves over ppjoin
by reducing the number of entries returned from the index.
AdaptJoin [10] takes the opposite approach and drastically
reduces the number of candidates at the expense of longer
prefixes. Gionis et al. [6] propose an approximate algorithm
based on LSH for set similarity joins. Recently, an SQL op-
erator for the token generation problem was introduced [3].

6. CONCLUSIONS
We presented PEL, a new filter based on the pmaxsize

upper bound derived in this paper. PEL can be easily
plugged into algorithms that store prefixes in an inverted
list index (e.g., AllPairs, ppjoin, or mpjoin). For these algo-
rithms, PEL will effectively reduce the number of list entries
that must be processed. This reduces the overall lookup time
in the inverted list index at the cost of a potentially larger
candidate set. We analyzed this trade-off for foreign joins
and self joins. Our empirical evaluation demonstrated that

the PEL filter improves performance in almost any foreign
join and also in some self join scenarios, despite the fact that
it may increase the number of candidates to be verified.

7. REFERENCES
[1] A. Arasu, V. Ganti, and R. Kaushik. Efficient exact

set-similarity joins. In Proc. VLDB, pages 918 – 929,
2006.

[2] N. Augsten, M. H. Böhlen, and J. Gamper. The
pq-gram distance between ordered labeled trees. ACM
TODS, 35(1), 2010.

[3] N. Augsten, A. Miraglia, T. Neumann, and
A. Kemper. On-the-fly token similarity joins in
relational databases. In Proc. SIGMOD, pages 1495 –
1506. ACM, 2014.

[4] R. J. Bayardo, Y. Ma, and R. Srikant. Scaling up all
pairs similarity search. WWW, 7:131 – 140, 2007.

[5] S. Chaudhuri, V. Ganti, and R. Kaushik. A primitive
operator for similarity joins in data cleaning. In Proc.
ICDE, page 5. IEEE, 2006.

[6] A. Gionis, P. Indyk, and R. Motwani. Similarity
search in high dimensions via hashing. In Proc.
VLDB, pages 518–529, 1999.

[7] L. A. Ribeiro and T. Härder. Generalizing prefix
filtering to improve set similarity joins. Information
Systems, 36(1):62 – 78, 2011.

[8] S. Sarawagi and A. Kirpal. Efficient set joins on
similarity predicates. In Proc. SIGMOD, pages 743 –
754. ACM, 2004.

[9] E. Spertus, M. Sahami, and O. Buyukkokten.
Evaluating similarity measures: A large-scale study in
the orkut social network. In Proc. SIGKDD, pages 678
– 684. ACM, 2005.

[10] J. Wang, G. Li, and J. Feng. Can we beat the prefix
filtering?: An adaptive framework for similarity join
and search. In Proc. SIGMOD, pages 85 – 96. ACM,
2012.

[11] C. Xiao, W. Wang, and X. Lin. Ed-Join: An efficient
algorithm for similarity joins with edit distance
constraints. In Proc. VLDB, 2008.

[12] C. Xiao, W. Wang, X. Lin, J. X. Yu, and G. Wang.
Efficient similarity joins for near-duplicate detection.
ACM TODS, 36(3):15, 2011.

