
Optimization of Sequences of XML Schema Modifications -
The ROfEL Approach

Thomas Nösinger, Meike Klettke, Andreas Heuer
Database Research Group

University of Rostock, Germany
(tn, meike, ah)@informatik.uni-rostock.de

ABSTRACT
The transformation language ELaX (Evolution Language for
XML-Schema [16]) is a domain-specific language for modi-
fying existing XML Schemas. ELaX was developed to ex-
press complex modifications by using add, delete and up-
date statements. Additionally, it is used to consistently
log all change operations specified by a user. In this pa-
per we present the rule-based optimization algorithm ROfEL
(Rule-based Optimizer for ELaX) for reducing the number
of logged operations by identifying and removing unneces-
sary, redundant and also invalid modifications. This is an
essential prerequisite for the co-evolution of XML Schemas
and corresponding XML documents.

1. INTRODUCTION
The eXtensible Markup Language (XML) [2] is one of the

most popular formats for exchanging and storing structured
and semi-structured information in heterogeneous environ-
ments. To assure that well-defined XML documents are
valid it is necessary to introduce a document description,
which contains information about allowed structures, con-
straints, data types and so on. XML Schema [4] is one com-
monly used standard for dealing with this problem. After
using an XML Schema a period of time, the requirements
can change; for example if additional elements are needed,
data types change or integrity constraints are introduced.
This may result in the adaptation of the XML Schema def-
inition.

In [16] we presented the transformation language ELaX
(Evolution Language for XML-Schema) to describe and for-
mulate these XML Schema modifications. Furthermore, we
mentioned briefly that ELaX is also useful to log informa-
tion about modifications consistently, an essential prerequi-
site for the co-evolution process of XML Schema and corre-
sponding XML documents [14].

One problem of storing information over a long period of
time is, that there can be different unnecessary or redundant
modifications. Consider modifications which firstly add an

Copyright c© by the paper’s authors. Copying permitted only
for private and academic purposes.
In: G. Specht, H. Gamper, F. Klan (eds.): Proceedings of the 26th GI-
Workshop on Foundations of Databases (Grundlagen von Datenbanken),
21.10.2014 - 24.10.2014, Bozen, Italy, published at http://ceur-ws.org.

element and shortly afterwards delete the same element. In
the overall context of an efficient realization of modification
steps, such operations have to be removed. Further issues
are incorrect information (possibly caused by network prob-
lems), for example if the same element is deleted twice or the
order of modifications is invalid (e.g. update before add).

The new rule-based optimizer for ELaX (ROfEL - Rule-
based Optimizer for ELaX) had been developed for solving
the above mentioned problems. With ROfEL it is possible
to identify unnecessary or redundant operations by using
different straightforward optimization rules. Furthermore,
the underlying algorithm is capable to correct invalid modi-
fication steps. All in all, ROfEL could reduce the number of
modification steps by removing or even correcting the logged
ELaX operations.

This paper is organized as follows. Section 2 gives the
necessary background of XML Schema, ELaX and corre-
sponding concepts. Section 3 and section 4 present our
approach, by first specifying our ruled-based algorithm RO-
fEL and then showing how our approach can be applied for
an example. Related work is shown in section 5. Finally,
in section 6 we draw our conclusions.

2. TECHNICAL BACKGROUND
In this section we present a common notation used in the

remainder of this paper. At first, we will shortly introduce
the XSD (XML Schema Definition [4]), before details con-
cerning ELaX (Evolution Language for XML-Schema [16])
and the logging of ELaX are given.

The XML Schema abstract data model consists of different
components (simple and complex type definitions, element
and attribute declarations, etc.). Additionally, the element
information item serves as an XML representation of these
components and defines which content and attributes can be
used in an XML Schema. The possibility of specifying decla-
rations and definitions in a local or global scope leads to four
different modeling styles [13]. One of them is the Garden of
Eden style, in which all above mentioned components are
globally defined. This results in a high re-usability of decla-
rations and defined data types and influences the flexibility
of an XML Schema in general.

The transformation language ELaX1 was developed to
handle modifications on an XML Schema and to express
such modifications formally. The abstract data model, el-
ement information item and Garden of Eden style were
important through the development process and influence

1The whole transformation language ELaX is available at:
www.ls-dbis.de/elax

the EBNF (Extended Backus-Naur Form) like notation of
ELaX.

An ELaX statement always starts with ”add”, ”delete”
or ”update” followed by one of the alternative components
(simple type, element declaration, etc.), an identifier of the
current component and completed with optional tuples of
attributes and values (examples follow on, e.g. see figure
1). The identifier is a unique EID (emxid)2, a QNAME
(qualified name) or a subset of XPath expressions. In the
remaining parts we will use the EID as the identifier, but a
transformation would be easily possible.

ELaX statements are logged for further analyses and also
as a prerequisite for the rule-base optimizer (see section 3).
Figure 1 illustrates the relational schema of the log. The

file-ID time EID
op-

Type

msg-

Type
content

1 1 1 add 0 add element name 'name' type 'xs:decimal' id 'EID1' ;

1 2 1 upd 0 update element name 'name' change type 'xs:string' ;

1 3 2 add 0 add element name 'count' type 'xs:decimal' id 'EID2' ;

… … … … … …

Figure 1: Schema with relation for logging ELaX

chosen values are simple ones (especially the length). The
attributes file-ID and time are the composite key for the
logging relation, the EID represents the unique identifier for
a component of the XSD. The op-Type is a short form for
add, delete (del) or update (upd) operations, the msg-Type
is for the different message types (ELaX (0), etc.). Lastly,
the content contains the logged ELaX statements. The file-
ID and msg-Type are management information, which are
not covered in this paper.

3. RULE-BASED OPTIMIZER
The algorithm ROfEL (Rule-based Optimizer for ELaX)

was developed to reduce the number of logged ELaX opera-
tions. This is possible by combining given operations and/or
removing unnecessary or even redundant operations. Fur-
thermore, the algorithm could identify invalid operations in
a given log and correct these to a certain degree.

ROfEL is a rule-based algorithm. Provided that a log of
ELaX operations is given (see section 2), the following rules
are essential to reduce the number of operations. In com-
pliance with ELaX these operations are delete (del), add
or update (upd). If a certain distinction is not necessary
a general operation (op) or variable () are used, empty
denotes a not given operation. Additionally, the rules are
classified by their purpose to handle redundant (R), unnec-
essary (U) or invalid (I) operations. ROfEL stops (S) if no
other rules are applicable, for example no other operation
with the same EID is given.

S: empty → op(EID)⇒ op(EID) (1)

// ↓ most recent operation: delete (del) ↓

R: del(EID)→ del(EID)⇒ del(EID)
(2)

U: add(EID, content)→ del(EID)⇒ empty (3)

U: upd(EID, content)→ del(EID)⇒ del(EID)

with time(del(EID)) := TIME(del(EID), upd(EID, content))

(4)

2Our conceptual model is EMX (Entity Model for XML
Schema [15]), in which every component of a model has its
own, global identifier: EID

// ↓ most recent operation: add ↓

U: op(EID)→ del(EID)→ add(EID, content)

⇒ op(EID)→ add(EID, content)

(5)

I: add(EID,)→ add(EID, content)

⇒ add(EID, content)
(6)

I: upd(EID,)→ add(EID, content)

⇒ upd(EID, content)
(7)

// ↓ most recent operation: update (upd) ↓

I: op(EID)→ del(EID)→ upd(EID, content)

⇒ op(EID)→ upd(EID, content)

(8)

U: add(EID, content)→ upd(EID, content)

⇒ add(EID, content)
(9)

U: add(EID, content)→ upd(EID, content’)

⇒ add(EID,MERGE(content′, content))
(10)

R: upd(EID, content)→ upd(EID, content)

⇒ upd(EID, content)
(11)

U: upd(EID, content)→ upd(EID, content’)

⇒ upd(EID,MERGE(content′, content))
(12)

The rules have to be sequentially analyzed from left to right
(→), whereas the left operation comes temporally before the
right one (i.e., time(left) < time(right). To warrant that the
operations are working on the same component, the EID
of both operations is equal. If two operations exist and a
rule applies to them, then the result can be found on the
right side of ⇒. The time of the result is the time of the
prior (left) operation, except further investigations are ex-
plicit necessary or the time is unknown (e.g. empty).

Another point of view illustrates, that the introduced rules
are complete concerning the given operations add, delete
and update. Figure 2 represents an operation matrix, in
which every possible combination is covered with at least one
rule. On the x-axis the prior operation and on the y-axis the

add delete update

add (6) (5) (7)

delete (3) (2) (4)

update (9) , (10) (8) (11) , (12)

recent

prior
operation

Figure 2: Operation matrix of rules

recent operation are given, whereas the three-valued rules
(5) and (8) are minimized to the both most recent operations
(e.g. without op(EID)). The break-even point contains the
applying rule or rules (considering the possibility of merging
the content, see below).

Rule (4) is one example for further investigations. If a
component is deleted (del(EID)) but updated (upd(EID))
before, then it is not possible to replace the prior operation
with the result (del(EID)) without analyzing other opera-
tions between them. The problem is: if another operation
(op(EID’)) references the deleted component (e.g. a simple
type) but because of ROfEL upd(EID) (it is the prior op-
eration) is replaced with del(EID), then op(EID’) would be
invalid. Therefore, the function TIME() is used to deter-
mine the correct time of the result. The function is given
in pseudocode in figure 3. TIME() has two input parame-

TIME(op, op’):

// time(op) = t; time(op’) = t’; time(opx) = tx;

// op.EID == op’.EID; op.EID != opx.EID; t > t’;

begin

if ((t > tx > t’) AND

(op.EID in opx.content))

then return t;

return t’;

end.

Figure 3: TIME() function of optimizer

MERGE(content, content’):

// content = (A1 = ’a1’, A2 = ’a2’,

// A3 = ’’, A4 = ’a4’);

// content’ = (A1 = ’a1’, A2 = ’’,

// A3 = ’a3’, A5 = ’a5’);

begin

result := {};

count := 1;

while (count <= content.size())

result.add(content.get(count));

if (content.get(count) in content’)

then

content’.remove(content.get(count));

count := count + 1;

count := 1;

while (count <= content’.size())

result.add(content’.get(count));

count := count + 1;

// result = (A1 = ’a1’, A2 = ’a2’,

// A3 = ’’, A4 = ’a4’, A5 = ’a5’);

return result;

end.

Figure 4: MERGE() function of optimizer

ters and returns a time value, dependent on the existence of
an operation, which references the EID in its content. If no
such operation exists, the time of the result in rule (4) would
be the time of the left (op), otherwise of the right operation
(op’). The lines with // are comments and contain further
information, some hints or even explanations of variables.

The rules (6), (7) and (8) adapt invalid operations. For ex-
ample if a component is updated but deleted before (see rule
(8)), then ROfEL has to decide, which operation is valid. In
this and similar cases the most recent operation is preferred,
because it is more difficult (or even impossible) to check the
intention of the prior operation. Consequently, in rule (8)
del(EID) is removed and rule op(EID)→ upd(EID, content)
applies (op(EID) could be empty ; see rule (1)).

The rules (10) and (12) removes unnecessary operations
by merging the content of the involved operations. The func-
tion MERGE() implements this, the pseudocode is pre-
sented in figure 4. MERGE() has two input parameter,
the content of the most recent (left) and prior (right) oper-
ation. The content is given as a sequence of attribute-value
pairs (see ELaX description in section 2). The result of the
function is the combination of the input, whereas the con-
tent of the most recent operation is preferred analogical to
the above mentioned behaviour for I rules. All attribute-

value pairs of the most recent operation are completely in-
serted into the result. Simultaneously, these attributes are
removed from the content of the prior operation. At the end
of the function, all remaining attributes of the prior (right)
operation are inserted, before the result is returned.

All mentioned rules, as well as the functions TIME() and
MERGE() are essential parts of the main function RO-
FEL(); the pseudocode is presented in figure 5. ROFEL()

ROFEL(log):

// log = ((t1,op1), (t2,op2), ...); t1 < t2 < ...;

begin

for (i := log.size(); i >= 2; i := i - 1)

for (k := i - 1; k >= 1 ; k := k - 1)

if(!(log.get(i).EID == log.get(k).EID AND

log.get(i).time != log.get(k).time))

then continue;

// R: del(EID) -> del(EID) => del(EID) (2)

if (log.get(i).op-Type == 1 AND

log.get(k).op-Type == 1)

then

log.remove(i);

return ROFEL(log);

// U: upd(EID, content) -> del(EID)

// => del(EID) (4)

if (log.get(i).op-Type == 1 AND

log.get(k).op-Type == 2)

then

temp := TIME(log.get(i), log.get(k));

if (temp == log.get(i).time)

then

log.remove(k);

return ROFEL(log);

log.get(k) := log.get(i);

log.remove(i);

return ROFEL(log); [...]

// U: upd(EID,con) -> upd(EID,con’)

// => upd(EID, MERGE(con’,con)) (12)

if (log.get(i).op-Type == 2 AND

log.get(k).op-Type == 2)

then

temp := MERGE(log.get(i).content,

log.get(k).content);

log.get(k).content := temp;

log.remove(i);

return ROFEL(log);

return log;

end.

Figure 5: Main function ROFEL() of optimizer

has one input parameter, the log of ELaX operations. This
log is a sequence sorted according to time, it is analyzed
reversely. In general, one operation is pinned (log.get(i))
and compared with the next, prior operation (log.get(k)).
If log.get(k) modifies the same component as log.get(i) (i.e.,
EID is equal) and the time is different, then an applying rule
is searched, otherwise the next operation (log.get(k - 1)) is
analyzed. The algorithm terminates, if the outer loop com-
pletes successfully (i.e., no further optimization is possible).

Three rules are presented in figure 5; the missing ones
are skipped ([...]). The first rule is (2), the occurrence of
redundant delete operations. According to the above men-

tioned time choosing guidelines, the most recent operation
(log.get(i)) is removed. After this the optimizer starts again
with the modified log recursively (return ROFEL(log)).

The second rule is (4), which removes an unnecessary up-
date operation, because the whole referenced component will
be deleted later. This rule uses the TIME() function of fig-
ure 3 to decide, which time should be assigned to the result.
If another operation between log.get(i) and log.get(k) exists
and this operation contains or references log.get(i).EID, then
the most recent time (log.get(i).time) is assigned, otherwise
the prior time (log.get(k).time).

The last rule is (12), different updates on the same com-
ponent are given. The MERGE() function of figure 4 com-
bines the content of both operations, before the content of
the prior operation is changed and the most recent operation
is removed.

After introducing detailed information about the concept
of the ROfEL algorithm, we want to use it to optimize an
example in the next section.

4. EXAMPLE
In the last section we specified the rule-based algorithm

ROfEL (Rule-based Optimizer for ELaX), now we want to
explain the use with an example: we want to store some in-
formation about a conference. We assume the XML Schema
of figure 6 is given, a corresponding XML document is also
presented. The XML Schema is in the Garden of Eden style

Figure 6: XML Schema with XML document

and contains four element declarations (conf, name, count,
start) and one complex type definition (confType) with a
group model (sequence). The group model has three ele-
ment references, which reference one of the simple type el-
ement declarations mentioned above. The identification of
all components is simplified by using an EID, it is visualized
as a unique ID attribute (id = ”..”).

The log of modification steps to create this XML Schema
is presented in figure 7. The relational schema is reduced in
comparison to figure 1. The time, the component EID, the
op-Type and the content of the modification steps are given.
The log contains different modification steps, which are not

time

R
O
fE
L

EID
op-

Type
content

1 1 add add element name 'name' type 'xs:decimal' id 'EID1' ;

2 1 upd update element name 'name' change type 'xs:string' ;

3 2 add add element name 'count' type 'xs:decimal' id 'EID2' ;

4 3 add add element name 'start' type 'xs:date' id 'EID3' ;

5 42 add add element name 'stop' type 'xs:date' id 'EID42' ;

6 4 add add complextype name 'confType' id 'EID4' ;

7 5 add add group mode sequence id 'EID5' in 'EID4' ;

8 42 upd update element name 'stop' change type 'xs:string' ;

9 6 add add elementref 'name' id 'EID6' in 'EID5' ;

10 7 add add elementref 'count' id 'EID7' in 'EID5' ;

11 8 add add elementref 'start' id 'EID8' in 'EID5' ;

12 42 del delete element name 'stop' ;

13 9 add add element name 'conf' type 'confType' id 'EID9' ;

14 42 del delete element name 'stop' ;

2

4

3

10

Figure 7: XML Schema modification log of figure 6

given in the XML Schema (EID > 9). Additionally, some
entries are connected within the new introduced column RO-
fEL. The red lines and numbers represent the involved log
entries and applying ROfEL rule.

The sorted log is analyzed reversely, the operation with
time stamp 14 is pinned and compared with time entry 13.
Because the modified component is not the same (EID not
equal), the next operation with time 12 is taken. Both op-
erations delete the same component (op-Type == 1). Ac-
cording to rule (2), the redundant entry 14 is removed and
ROFEL restarts with the adapted log.

Rule (4) applies next, a component is updated but deleted
later. This rule calls the TIME() function to determine, if
the time of the result (i.e., del(EID)) should be 12 or 8.
Because no operation between 12 and 8 references EID 42,
the time of the result of (4) is 8. The content of time 8 is
replaced with delete element name ’stop’;, the op-Type is set
to 1 and the time entry 12 is deleted.

Afterwards, ROFEL restarts again and rule (3) could be
used to compare the new operation of entry 8 (original entry
12) with the operation of time 5. A component is inserted
but deleted later, so all modifications on this component
are unnecessary in general. Consequently, both entries are
deleted and the component with EID 42 is not given in the
XML Schema of figure 6.

The last applying rule is (10). An element declaration
is inserted (time 1) and updated (time 2). Consequently,
the MERGE() function is used to combine the content of
both operations. According to the ELaX specification, the
content of the update operation contains the attribute type
with the value xs:string, whereas the add operation contains
the attribute type with the value xs:decimal and id with
EID1. All attribute-value pairs of the update operation are
completely inserted into the output of the function (type =
”xs:string”). Simultaneously, the attribute type is removed
from the content of the add operation (type = ”xs:decimal”).
The remaining attributes are inserted in the output (id =
”EID1”). Afterwards, the content of entry 1 is replaced by
add element ’name’ type ”xs:string” id ”EID1”; and the sec-
ond entry is deleted (time 2).

The modification log of figure 7 is optimized with rules
(2), (4), (3) and (10). It is presented in figure 8. All in all,
five of 14 entries are removed, whereas one is replaced by a
combination of two others.

time EID
op-

Type
content

1 1 add add element name 'name' type 'xs:string' id 'EID1' ;

3 2 add add element name 'count' type 'xs:decimal' id 'EID2' ;

4 3 add add element name 'start' type 'xs:date' id 'EID3' ;

6 4 add add complextype name 'confType' id 'EID4' ;

7 5 add add group mode sequence id 'EID5' in 'EID4' ;

9 6 add add elementref 'name' id 'EID6' in 'EID5' ;

10 7 add add elementref 'count' id 'EID7' in 'EID5' ;

11 8 add add elementref 'start' id 'EID8' in 'EID5' ;

13 9 add add element name 'conf' type 'confType' id 'EID9' ;

Figure 8: XML Schema modification log of figure 7
after using rules (2), (4), (3) and (10) of ROfEL

This simple example illustrates how ROfEL can reduce the
number of logged operations introduced in section 3. More
complex examples are easy to construct and can be solved
by using the same rules and the same algorithm.

5. RELATED WORK
Comparable to the object lifecycle, we create new types

or elements, use (e.g. modify, move or rename) and delete
them. The common optimization rules to reduce the num-
ber of operations are originally introduced in [10] and are
available in other application in the same way. In [11], rules
for reducing a list of user actions (e.g. move, replace, delete,
...) are introduced. In [9], pre and postconditions of op-
erations are used for deciding which optimizations can be
executed. Additional applications can easily be found in
further scientific disquisitions.

Regarding other transformation languages, the most com-
monly used are XQuery [3] and XSLT (Extensible Stylesheet
Language Transformations [1]), there are also approaches to
reduce the number of unnecessary or redundant operations.
Moreover, different transformations to improve efficiency are
mentioned.

In [12] different ”high-level transformations to prune and
merge the stream data flow graph” [12] are applied. ”Such
techniques not only simplify the later analyses, but most
importantly, they can rewrite some queries” [12], an essen-
tial prerequisite for the efficient evaluation of XQuery over
streaming data.

In [5] packages are introduced because of efficiency ben-
efits. A package is a collection of stylesheet modules ”to
avoid compiling libraries repeatedly when they are used in
multiple stylesheets, and to avoid holding multiple copies
of the same library in memory simultaneously” [5]. Fur-
thermore, XSLT works with templates and matching rules
for identifying structures in general. If different templates
could be applied, automatic or user given priorities manage
which template is chosen. To avoid unexpected behaviour
and improve the efficiency of analyses, it is a good practise
to remove unnecessary or redundant templates.

Another XML Schema modification language is XSchema-
Update [6], which is used in the co-evolution prototype EXup
[7]. Especially the auto adaptation guidelines are similar to
the ROfEL purpose of reducing the number of modification
steps. ”Automatic adaptation will insert or remove the min-
imum allowed number of elements for instance” [6], i.e., ”a
minimal set of updates will be applied to the documents”
[6].

In [8] an approach is presented, which deals with four
operations (insert, delete, update, move) on a tree repre-
sentation of XML. It is similar to our algorithm, but we use
ELaX as basis and EIDs instead of update-intensive labelling
mechanisms. Moreover the distinction between property and
node, the ”deletion always wins” view, as well as the limita-
tion that ”reduced sequence might still be reducible” [8] are
drawbacks. The optimized reduction algorithm eliminates
the last drawback, but needs another complex structure, an
operation hyper-graph.

6. CONCLUSION
The rule-based algorithm ROfEL (Rule-based Optimizer

for ELaX) was developed to reduce the number of logged
ELaX (Evolution Language for XML-Schema [16]) opera-
tions. In general ELaX statements are add, delete and up-
date operations on the components of XML Schema, speci-
fied by a user.

ROfEL allows the identification and deletion of unnec-
essary and redundant modifications by applying different
heuristic rules. Additionally, invalid operations are also cor-
rected or removed. In general if the preconditions and condi-
tions for an adaptation of two ELaX log entries are satisfied
(e.g. EID equivalent, op-Type correct, etc.), one rule is ap-
plied and the modified, reduced log is returned.

We are confident, that even if ROfEL is domain specific
and the underlying log is specialized for our needs, the above
specified rules are applicable in other scenarios or applica-
tions, in which the common modification operations add,
delete and update are used (minor adaptations precondi-
tioned).

Future work. The integration of a cost-based component
in ROfEL could be very interesting. It is possible, that under
consideration of further analyses the combination of different
operations (e.g. rule (10)) is inefficient in general. In this
and similar cases a cost function with different thresholds
could be defined to guarantee, that only efficient adaptations
of the log are applied. A convenient cost model would be
necessary, but this requires further research.

Feasibility of the approach. At the University of Ro-
stock we implemented the prototype CodeX (Conceptual
design and evolution for XML Schema) for dealing with the
co-evolution [14] of XML Schema and XML documents; RO-
fEL and corresponding concepts are fully integrated. As we
plan to report in combination with the first release of CodeX,
the significantly reduced number of logged operations proves
that the whole algorithm is definitely feasible.

7. REFERENCES
[1] XSL Transformations (XSLT) Version 2.0.

http://www.w3.org/TR/2007/REC-xslt20-20070123/,
January 2007. Online; accessed 25-June-2014.

[2] Extensible Markup Language (XML) 1.0 (Fifth
Edition).
http://www.w3.org/TR/2008/REC-xml-20081126/,
November 2008. Online; accessed 25-June-2014.

[3] XQuery 1.0: An XML Query Language (Second
Edition).
http://www.w3.org/TR/2010/REC-xquery-20101214/,
December 2010. Online; accessed 25-June-2014.

[4] W3C XML Schema Definition Language (XSD) 1.1
Part 1: Structures. http://www.w3.org/TR/2012/

REC-xmlschema11-1-20120405/, April 2012. Online;
accessed 25-June-2014.

[5] XSL Transformations (XSLT) Version 3.0.
http://www.w3.org/TR/2013/WD-xslt-30-20131212/,
December 2013. Online; accessed 25-June-2014.

[6] F. Cavalieri. Querying and Evolution of XML Schemas
and Related Documents. Master’s thesis, University of
Genova, 2009.

[7] F. Cavalieri. EXup: an engine for the evolution of
XML schemas and associated documents. In
Proceedings of the 2010 EDBT/ICDT Workshops,
EDBT ’10, pages 21:1–21:10, New York, NY, USA,
2010. ACM.

[8] F. Cavalieri, G. Guerrini, M. Mesiti, and B. Oliboni.
On the Reduction of Sequences of XML Document
and Schema Update Operations. In ICDE Workshops,
pages 77–86, 2011.

[9] H. U. Hoppe. Task-oriented Parsing - a Diagnostic
Method to Be Used Adaptive Systems. In Proceedings
of the SIGCHI Conference on Human Factors in
Computing Systems, CHI ’88, pages 241–247, New
York, NY, USA, 1988. ACM.

[10] M. Klettke. Modellierung, Bewertung und Evolution
von XML-Dokumentkollektionen. Habilitation,
Fakultät für Informatik und Elektrotechnik,
Universität Rostock, 2007.

[11] R. Kramer. iContract - the Java(tm) Design by
Contract(tm) tool. In In TOOLS ’98: Proceedings of
the Technology of Object-Oriented Languages and
Systems, page 295. IEEE Computer Society, 1998.

[12] X. Li and G. Agrawal. Efficient Evaluation of XQuery
over Streaming Data. In In Proc. VLDB’05, pages
265–276, 2005.

[13] E. Maler. Schema Design Rules for UBL...and Maybe
for You. In XML 2002 Proceedings by deepX, 2002.

[14] T. Nösinger, M. Klettke, and A. Heuer. Evolution von
XML-Schemata auf konzeptioneller Ebene - Übersicht:
Der CodeX-Ansatz zur Lösung des
Gültigkeitsproblems. In Grundlagen von Datenbanken,
pages 29–34, 2012.

[15] T. Nösinger, M. Klettke, and A. Heuer. A Conceptual
Model for the XML Schema Evolution - Overview:
Storing, Base-Model-Mapping and Visualization. In
Grundlagen von Datenbanken, 2013.

[16] T. Nösinger, M. Klettke, and A. Heuer. XML Schema
Transformations - The ELaX Approach. In DEXA (1),
pages 293–302, 2013.

