
Software Design Approaches for Mastering Variability in
Database Systems

David Broneske, Sebastian Dorok, Veit Köppen, Andreas Meister*
*author names are in lexicographical order

Otto-von-Guericke-University Magdeburg
Institute for Technical and Business Information Systems

Magdeburg, Germany
firstname.lastname@ovgu.de

ABSTRACT
For decades, database vendors have developed traditional
database systems for different application domains with high-
ly differing requirements. These systems are extended with
additional functionalities to make them applicable for yet
another data-driven domain. The database community ob-
served that these “one size fits all” systems provide poor per-
formance for special domains; systems that are tailored for a
single domain usually perform better, have smaller memory
footprint, and less energy consumption. These advantages
do not only originate from different requirements, but also
from differences within individual domains, such as using a
certain storage device.

However, implementing specialized systems means to re-
implement large parts of a database system again and again,
which is neither feasible for many customers nor efficient in
terms of costs and time. To overcome these limitations, we
envision applying techniques known from software product
lines to database systems in order to provide tailor-made
and robust database systems for nearly every application
scenario with reasonable effort in cost and time.

General Terms
Database, Software Engineering

Keywords
Variability, Database System, Software Product Line

1. INTRODUCTION
In recent years, data management has become increasingly

important in a variety of application domains, such as auto-
motive engineering, life sciences, and web analytics. Every
application domain has its unique, different functional and
non-functional requirements leading to a great diversity of
database systems (DBSs). For example, automotive data
management requires DBSs with small storage and memory
consumption to deploy them on embedded devices. In con-
trast, big-data applications, such as in life sciences, require
large-scale DBSs, which exploit newest hardware trends,

Copyright c© by the paper’s authors. Copying permitted only
for private and academic purposes.
In: G. Specht, H. Gamper, F. Klan (eds.): Proceedings of the 26th GI-
Workshop on Foundations of Databases (Grundlagen von Datenbanken),
21.10.2014 - 24.10.2014, Bozen, Italy, published at http://ceur-ws.org.

e.g., vectorization and SSD storage, to efficiently process
and manage petabytes of data [8]. Exploiting variability to
design a tailor-made DBS for applications while making the
variability manageable, that is keeping maintenance effort,
time, and cost reasonable, is what we call mastering vari-
ability in DBSs.

Currently, DBSs are designed either as one-size-fits-all
DBSs, meaning that all possible use cases or functionalities
are integrated at implementation time into a single DBS,
or as specialized solutions. The first approach does not
scale down, for instance, to embedded devices. The second
approach leads to situations, where for each new applica-
tion scenario data management is reinvented to overcome
resource restrictions, new requirements, and rapidly chang-
ing hardware. This usually leads to an increased time to
market, high development cost, as well as high maintenance
cost. Moreover, both approaches provide limited capabilities
for managing variability in DBSs. For that reason, software
product line (SPL) techniques could be applied to the data
management domain. In SPLs, variants are concrete pro-
grams that satisfy the requirements of a specific application
domain [7]. With this, we are able to provide tailor-made
and robust DBSs for various use cases. Initial results in the
context of embedded systems, expose benefits of applying
SPLs to DBSs [17, 22].

The remainder of this paper is structured as follows: In
Section 2, we describe variability in a database system re-
garding hardware and software. We review three approaches
to design DBSs in Section 3, namely, the one-size-fits-all, the
specialization, and the SPL approach. Moreover, we com-
pare these approaches w.r.t. robustness and maturity of pro-
vided DBSs, the effort of managing variability, and the level
of tailoring for specific application domains. Because of the
superiority of the SPL approach, we argue to apply this ap-
proach to the implementation process of a DBS. Hence, we
provide research questions in Section 4 that have to be an-
swered to realize the vision of mastering variability in DBSs
using SPL techniques.

2. VARIABILITY IN DATABASE SYSTEMS
Variability in a DBS can be found in software as well as

hardware. Hardware variability is given due to the use of
different devices with specific properties for data processing
and storage. Variability in software is reflected by differ-
ent functionalities that have to be provided by the DBS
for a specific application. Additionally, the combination of

hardware and software functionality for concrete application
domains increases variability.

2.1 Hardware
In the past decade, the research community exploited aris-

ing hardware features by tailor-made algorithms to achieve
optimized performance. These algorithms effectively utilize,
e.g., caches [19] or vector registers of Central Processing
Units (CPUs) using AVX- [27] and SSE-instructions [28].
Furthermore, the usage of co-processors for accelerating data
processing opens up another dimension [12]. In the follow-
ing, we consider processing and storage devices and sketch
the variability arising from their different properties.

2.1.1 Processing Devices
To sketch the heterogeneity of current systems, possible

(co-)processors are summarized in Figure 1. Current sys-
tems do not only include a CPU or an Accelerated Process-
ing Unit (APU), but also co-processors, such as Many In-
tegrated Cores (MICs), Graphical Processing Units (GPUs),
and Field Programmable Gate Arrays (FPGAs). In the fol-
lowing, we give a short description of varying processor prop-
erties. A more extensive overview is presented in our recent
work [5].

APU

memory
bus

PCIe bus

front-side bus

Main-
Memory

GPU MIC

CPU
I/O

controller

HDD
FPGA

SSD

Figure 1: Future system architecture [23]

Central Processing Unit: Nowadays, CPUs consist of
several independent cores, enabling parallel execution of dif-
ferent calculations. CPUs use pipelining, Single Instruction
Multiple Data (SIMD) capabilities, and branch prediction
to efficiently process conditional statements (e.g., if state-
ments). Hence, CPUs are well suited for control intensive
algorithms.

Graphical Processing Unit: Providing larger SIMD reg-
isters and a higher number of cores than CPUs, GPUs offer
a higher degree of parallelism compared to CPUs. In or-
der to perform calculations, data has to be transferred from
main memory to GPU memory. GPUs offer an own memory
hierarchy with different memory types.

Accelerated Processing Unit: APUs are introduced to
combine the advantages of CPUs and GPUs by including
both on one chip. Since the APU can directly access main
memory, the transfer bottleneck of dedicated GPUs is elim-
inated. However, due to space limitations, fairly less GPU
cores fit on the APU die compared to a dedicated GPU, lead-
ing to reduced computational power compared to dedicated
GPUs.

Many Integrated Core: MICs use several integrated and
interconnected CPU cores. With this, MICs offer a high
parallelism while still featuring CPU properties. However,
similar to the GPU, MICs suffer from the transfer bottle-
neck.

Field Programmable Gate Array: FPGAs are pro-
grammable stream processors, providing only a limited stor-
age capacity. They consist of several independent logic cells
consisting of a storage unit and a lookup table. The in-
terconnect between logic cells and the lookup tables can be
reprogrammed during run time to perform any possible func-
tion (e.g., sorting, selection).

2.1.2 Storage Devices
Similar to the processing device, current systems offer a

variety of different storage devices used for data processing.
In this section, we discuss different properties of current stor-
age devices.

Hard Disk Drive: The Hard Disk Drive (HDD), as a
non-volatile storage device, consists of several disks. The
disks of an HDD rotate, while a movable head reads or writes
information. Hence, sequential access patterns are well sup-
ported in contrast to random accesses.

Solid State Drive: Since no mechanical units are used,
Solid State Drives (SSDs) support random access without
high delay. For this, SSDs use flash-memory to persistently
store information [20]. Each write wears out the flash cells.
Consequently, the write patterns of database systems must
be changed compared to HDD-based systems.

Main-Memory: While using main memory as main stor-
age, the access gap between primary and secondary storage
is removed, introducing main-memory access as the new bot-
tleneck [19]. However, main-memory systems cannot omit
secondary storage types completely, because main memory is
volatile. Thus, efficient persistence mechanisms are needed
for main-memory systems.

To conclude, current architectures offer several different
processor and storage types. Each type has a unique archi-
tecture and specific characteristics. Hence, to ensure high
performance, the processing characteristics of processors as
well as the access characteristics of the underlying storage
devices have to be considered. For example, if several pro-
cessing devices are available within a DBS, the DBS must
provide suitable algorithms and functionality to fully utilize
all available devices to provide peak performance.

2.2 Software Functionality
Besides hardware, DBS functionality is another source

of variability in a DBS. In Figure 2, we show an excerpt
of DBS functionalities and their dependencies. For exam-
ple, for different application domains different query types
might be interesting. However, to improve performance
or development cost, only required query types should be
used within a system. This example can be extended to
other functional requirements. Furthermore, a DBS pro-
vides database operators, such as aggregation functions or
joins. Thereby, database operators perform differently de-
pending on the used storage and processing model [1]. For
example, row stores are very efficient when complete tuples
should be retrieved, while column stores in combination with
operator-at-a-time processing enable fast processing of single
columns [18]. Another technique to enable efficient access
to data is to use index structures. Thereby, the choice of an
appropriate index structure for the specific data and query
types is essential to guarantee best performance [15, 24].

Note, we omit comprehensive relationships between func-
tionalities properties in Figure 2 due to complexity. Some

Sort-basedHash-basedBitonic
mergeRadixBlock-nested-

loopsNested-loops Hash Sort-merge

Join GroupingSortingSelection

<name> Feature

Mandatory

Optional

OR

Legend

XOR

DBS-Functionality

Query
Type

Exact RangekNN Row
Store

Column
Store

Storage
Model Operator

Processing
Model

Tuple-at-
a-time

Operator-
at-a-time

Vectorized
Processing

Transaction

Figure 2: Excerpt of DBMS-Functionality

functionalities are mandatory in a DBS and others are op-
tional, such as support for transactions. Furthermore, it is
possible that some alternatives can be implemented together
and others only exclusively.

2.3 Putting it all together
So far, we considered variability in hardware and software

functionality separately. When using a DBS for a specific
application domain, we also have to consider special require-
ments of this domain as well as the interaction between hard-
ware and software.

Special requirements comprise functional as well as non-
functional ones. Examples for functional requirements are
user-defined aggregation functions (e.g., to perform genome
analysis tasks directly in a DBS [9]). Other applications
require support for spatial queries, such as geo-information
systems. Thus, special data types as well as index structures
are required to support these queries efficiently.

Besides performance, memory footprint and energy effi-
ciency are other examples for non-functional requirements.
For example, a DBS for embedded devices must have a small
memory footprint due to resource restrictions. For that rea-
son, unnecessary functionality is removed and data process-
ing is implemented as memory efficient as possible. In this
scenario, tuple-at-a-time processing is preferred, because in-
termediate results during data processing are smaller than
in operator-at-a-time processing, which leads to less memory
consumption [29].

In contrast, in large-scale data processing, operators should
perform as fast as possible by exploiting underlying hard-
ware and available indexes. Thereby, exploiting underlying
hardware is another source of variability as different pro-
cessing devices have different characteristics regarding pro-
cessing model and data access [6]. To illustrate this fact,
we depict different storage models for DBS in Figure 2. For
example, column-storage is preferred on GPUs, because row-
storage leads to an inefficient memory access pattern that de-
teriorates the possible performance benefits of GPUs [13].

3. APPROACHES TO DESIGN TAILOR-
MADE DATABASE SYSTEMS

The variability in hardware and software of DBSs can
be exploited to tailor database systems for nearly every

database-application scenario. For example, a DBS for high-
performance analysis can exploit newest hardware features,
such as SIMD, to speed up analysis workloads. Moreover,
we can meet limited space requirements in embedded sys-
tems by removing unnecessary functionality [22], such as the
support for range queries. However, exploiting variability is
one part of mastering variability in DBSs. The second part
is to manage variability efficiently to reduce development
and maintenance effort.

In this section, first, we describe three different approaches
to design and implement DBSs. Then, we compare these ap-
proaches regarding their applicability to arbitrary database
scenarios. Moreover, we assess the effort to manage vari-
ability in DBSs. Besides managing and exploiting the vari-
ability in database systems, we also consider the robustness
and correctness of tailor-made DBSs created by using the
discussed approaches.

3.1 One-Size-Fits-All Design Approach
One way to design database systems is to integrate all con-

ceivable data management functionality into one single DBS.
We call this approach the one-size-fits-all design approach
and DBSs designed according to this approach one-size-fits-
all DBSs. Thereby, support for hardware features as well
as DBMS functionality are integrated into one code base.
Thus, one-size-fits-all DBSs provide a rich set of functional-
ity. Examples of database systems that follow the one-size-
fits-all approach are PostgreSQL, Oracle, and IBM DB2. As
one-size-fits-all DBSs are monolithic software systems, im-
plemented functionality is highly interconnected on the code
level. Thus, removing functionality is mostly not possible.

DBSs that follow the one-size-fits-all design approach aim
at providing a comprehensive set of DBS functionality to
deal with most database application scenarios. The claim for
generality often introduces functional overhead that leads to
performance losses. Moreover, customers pay for function-
ality they do not really need.

3.2 Specialization Design Approach
In contrast to one-size-fits-all DBSs, DBSs can also be de-

signed and developed to fit very specific use cases. We call
this design approach the specialization design approach and
DBSs designed accordingly, specialized DBSs. Such DBSs
are designed to provide only that functionality that is needed

for the respective use case, such as text processing, data
warehousing, or scientific database applications [25]. Spe-
cialized DBSs are often completely redesigned from scratch
to meet application requirements and do not follow common
design considerations for database systems, such as locking
and latching to guarantee multi-user access [25]. Specialized
DBSs remove the overhead of unneeded functionality. Thus,
developers can highly focus on exploiting hardware and func-
tional variability to provide tailor-made DBSs that meet
high-performance criteria or limited storage space require-
ments. Therefore, huge parts of the DBS (if not all) must
be newly developed, implemented, and tested which leads
to duplicate implementation efforts, and thus, increased de-
velopment costs.

3.3 Software Product Line Design Approach
In the specialization design approach, a new DBS must

be developed and implemented from scratch for every con-
ceivable database application. To avoid this overhead, the
SPL design approach reuses already implemented and tested
parts of a DBS to create a tailor-made DBS.

Storage

FAME-DBMS

Buffer Manager
Access

OS-Abstraction

Data Dictionary
Data Types
Index

List
B+-Tree

Buffer Manager

FAME-DBMS

Memory Alloc Replacement

LFU LRUDynamic Static Access

API Optimizer Transaction SQL Engine

update remove get put Stream-based
queries

Relational
queries

Aggregation
queries Select queries

OS-Abstraction

Win32 NutOSLinux Storage

Data Dictionary Data Types Index

Tables Columns List B+-Tree

add search remove update

Domain Analysis
refines class Btree
{

public :
bool PutData(RECORD& r);

};

enum DataTypes
{

DataType_None,
DataType_Bool,
DataType_Byte,
DataType_Short,
...

};

#include "include.h"
#include "DataDictionary.h"
#include "PrimaryIndex.h"

class Btree : public
PrimaryIndex
{
public:
Btree() :PrimaryIndex(true)

{ … }
}

Domain Implementation

#include
 "BtreeIndexPage.h"

refines class Btree {
BtreePageRef
GetNewPage()

{
 .
 .
 .

}

Product generationCustomization

Domain
knowledge

Feature
selection Product

Customer
needs

Mapping

Features
Common

implementation
artifacts

New
requirements

Storage

Data Types Index

List B+-Tree

Figure 3: Managing Variability

To make use of SPL techniques, a special workflow has to
be followed which is sketched in Figure 3 [2]. At first, the
domain is modeled, e.g., by using a feature model – a tree-
like structure representing features and their dependencies.
With this, the variability is captured and implementation
artifacts can be derived for each feature. The second step,
the domain implementation, is to implement each feature us-
ing a compositional or annotative approach. The third step
of the workflow is to customize the product – in our case,
the database system – which will be generated afterwards.

By using the SPL design approach, we are able to imple-
ment a database system from a set of features which are
mostly already provided. In best case, only non-existing
features must be implemented. Thus, the feature pool con-
stantly grows and features can be reused in other database
systems. Applying this design approach to DBSs enables
to create DBSs tailored for specific use cases while reduc-
ing functional overhead as well as development time. Thus,
the SPL design approach aims at the middle ground of the
one-size-fits-all and the specialization design approach.

3.4 Characterization of Design Approaches
In this section, we characterize the three design approaches

discussed above regarding:

a) general applicability to arbitrary database applications,
b) effort for managing variability, and
c) maturity of the deployed database system.

Although the one-size-fits-all design approach aims at pro-
viding a comprehensive set of DBS functionality to deal
with most database application scenarios, a one-size-fits-all
database is not applicable to use cases in automotive, em-
bedded, and ubiquitous computing. As soon as tailor-made
software is required to meet especially storage limitations,
one-size-fits-all database systems cannot be used. Moreover,
specialized database systems for one specific use case outper-
form one-size-fits-all database systems by orders of magni-
tude [25]. Thus, although one-size-fits-all database systems
can be applied, they are often not the best choice regarding
performance. For that reason, we consider the applicability
of one-size-fits-all database systems to arbitrary use cases
as limited. In contrast, specialized database systems have
a very good applicability as they are designed for that pur-
pose.

The applicability of the SPL design approach is good as
it also creates database systems tailor-made for specific use
cases. Moreover, the SPL design approach explicitly consid-
ers variability during software design and implementation
and provides methods and techniques to manage it [2]. For
that reason, we assess the effort of managing variability with
the SPL design approach as lower than managing variability
using a one-size-fits-all or specialized design approach.

We assess the maturity of one-size-fits-all database sys-
tems as very good, as these systems are developed and tested
over decades. Specialized database systems are mostly im-
plemented from scratch, so, the possibility of errors in the
code is rather high, leading to a moderate maturity and ro-
bustness of the software. The SPL design approach also
enables the creation of tailor-made database systems, but
from approved features that are already implemented and
tested. Thus, we assess the maturity of database systems
created via the SPL design approach as good.

In Table 1, we summarize our assessment of the three
software design approaches regarding the above criteria.

Criteria
Approach

One-Size- Specialization SPLFits-All
a) Applicability − ++ +
b) Management effort − − +
c) Maturity ++ © +

Table 1: Characteristics of approaches
Legend: ++ = very good, + = good, © = moderate, − = limited

The one-size-fits-all and the specialization design approach
are each very good in one of the three categories respec-
tively. The one-size-fits-all design approach provides robust
and mature DBSs. The specialization design approach pro-
vides greatest applicability and can be used for nearly every
use case. Whereas the SPL design approach provides a bal-
anced assessment regarding all criteria. Thus, against the
backdrop of increasing variability due to increasing variety
of use cases and hardware while guaranteeing mature and
robust DBSs, SPL design approach should be applied to de-
velop future DBSs. Otherwise, development costs for yet
another DBS which has to meet special requirements of the
next data-driven domain will limit the use of DBSs in such
fields.

4. ARISING RESEARCH QUESTIONS
Our assessment in the previous section shows that the

SPL design approach is the best choice for mastering vari-
ability in DBSs. To the best of our knowledge, the SPL
design approach is applied to DBSs only in academic set-
tings (e.g., in [22]).Hereby, the previous research were based
on BerkeleyDB. Although BerkeleyDB offers the essential
functionality of DBSs (e.g., a processing engine), several
functionality of relational DBSs were missing (e.g., opti-
mizer, SQL-interface). Although these missing functional-
ity were partially researched (e.g., storage manager [16] and
the SQL parser [26]), no holistic evaluation of a DBS SPL
is available. Especially, the optimizer in a DBS (e.g., query
optimizer) with a huge number of crosscutting concerns is
currently not considered in research. So, there is still the
need for research to fully apply SPL techniques to all parts
of a DBS. Specifically, we need methods for modeling vari-
ability in DBSs and efficient implementation techniques and
methods for implementing variability-aware database oper-
ations.

4.1 Modeling
For modeling variability in feature-oriented SPLs, feature

models are state of the art [4]. A feature model is a set
of features whose dependencies are hierarchically modeled.
Since variability in DBSs comprises hardware, software, and
their interaction, the following research questions arise:

RQ-M1: What is a good granularity for modeling a
variable DBS?
In order to define an SPL for DBSs, we have to model fea-
tures of a DBS. Such features can be modeled with different
levels of granularity [14]. Thus, we have to find an appli-
cable level of granularity for modeling our SPL for DBSs.
Moreover, we also have to consider the dependencies be-
tween hardware and software. Furthermore, we have to find
a way to model the hardware and these dependencies. In
this context, another research questions emerges:

RQ-M2: What is the best way to model hardware and
its properties in an SPL?
Hardware has become very complex and researchers demand
to develop a better understanding of the impact of hard-
ware on the algorithm performance, especially when paral-
lelized [3, 5]. Thus, the question arises what properties of
the hardware are worth to be captured in a feature model.

Furthermore, when thinking about numerical properties,
such as CPU frequency or amount of memory, we have to
find a suitable technique to represent them in feature mod-
els. One possibility are attributes of extended feature-mod-
els [4], which have to be explored for applicability.

4.2 Implementing
In the literature, there are several methods for implement-

ing an SPL. However, most of them are not applicable to
our use case. Databases rely on highly tuned operations
to achieve peak performance. Thus, variability-enabled im-
plementation techniques must not harm the performance,
which leads to the research question:

RQ-I1: What is a good variability-aware implemen-
tation technique for an SPL of DBSs?
Many state of the art implementation techniques are based

on inheritance or additional function calls, which causes per-
formance penalties. A technique that allows for variability
without performance penalties are preprocessor directives.
However, maintaining preprocessor-based SPLs is horrible,
which accounts this approach the name #ifdef Hell [11, 10].
So, there is a trade-off between performance and maintain-
ability [22], but also granularity [14]. It could be beneficial
for some parts of DBS to prioritize maintainability and for
others performance or maintainability.

RQ-I2: How to combine different implementation tech-
niques for SPLs?
If the answer of RQ-I1 is to use different implementation
techniques within the same SPL, we have to find an ap-
proach to combine these. For example, database operators
and their different hardware optimization must be imple-
mented using annotative approaches for performance rea-
sons, but the query optimizer can be implemented using
compositional approaches supporting maintainability; the
SPL product generator has to be aware of these different
implementation techniques and their interactions.

RQ-I3: How to deal with functionality extensions?
Thinking about changing requirements during the usage of
the DBS, we should be able to extend the functionality in
the case user requirements change. Therefore, we have to
find a solution to deploy updates from an extended SPL
in order to integrate the new requested functionality into a
running DBS. Some ideas are presented in [21], however,
due to the increased complexity of hardware and software
requirements an adaption or extension is necessary.

4.3 Customization
In the final customization, features of the product line are

selected that apply to the current use case. State of the art
approaches just list available features and show which fea-
tures are still available for further configuration. However, in
our scenario, it could be helpful to get further information of
the configuration possibilities. Thus, another research ques-
tion is:

RQ-C1: How to support the user to obtain the best
selection?
In fact, it is possible to help the user in identifying suitable
configurations for his use case. If he starts to select func-
tionality that has to be provided by the generated system,
we can give him advice which hardware yields the best per-
formance for his algorithms. However, to achieve this we
have to investigate another research question:

RQ-C2: How to find the optimal algorithms for a
given hardware?
To answer this research question, we have to investigate the
relation between algorithmic design and the impact of the
hardware on the execution. Hence, suitable properties of
algorithms have to be identified that influence performance
on the given hardware, e.g., access pattern, size of used data
structures, or result sizes.

5. CONCLUSIONS
DBSs are used for more and more use cases. However,

with an increasing diversity of use cases and increasing het-
erogeneity of available hardware, it is getting more challeng-

ing to design an optimal DBS while guaranteeing low imple-
mentation and maintenance effort at the same time. To solve
this issue, we review three design approaches, namely the
one-size-fits-all, the specialization, and the software prod-
uct line design approach. By comparing these three design
approaches, we conclude that the SPL design approach is a
promising way to master variability in DBSs and to provide
mature data management solutions with reduced implemen-
tation and maintenance effort. However, there is currently
no comprehensive software product line in the field of DBSs
available. Thus, we present several research questions that
have to be answered to fully apply the SPL design approach
on DBSs.

6. ACKNOWLEDGMENTS
This work has been partly funded by the German BMBF

under Contract No. 13N10818 and Bayer Pharma AG.

7. REFERENCES
[1] D. J. Abadi, S. R. Madden, and N. Hachem.

Column-stores vs. Row-stores: How Different Are
They Really? In SIGMOD, pages 967–980. ACM,
2008.

[2] S. Apel, D. Batory, C. Kästner, and G. Saake.
Feature-Oriented Software Product Lines. Springer,
2013.

[3] C. Balkesen, G. Alonso, J. Teubner, and M. T. Özsu.
Multi-Core, Main-Memory Joins: Sort vs. Hash
Revisited. PVLDB, 7(1):85–96, 2013.

[4] D. Benavides, S. Segura, and A. Ruiz-Cortés.
Automated Analysis of Feature Models 20 Years Later:
A Literature Review. Inf. Sys., 35(6):615–636, 2010.

[5] D. Broneske, S. Breß, M. Heimel, and G. Saake.
Toward Hardware-Sensitive Database Operations. In
EDBT, pages 229–234, 2014.

[6] D. Broneske, S. Breß, and G. Saake. Database Scan
Variants on Modern CPUs: A Performance Study. In
IMDM@VLDB, 2014.

[7] K. Czarnecki and U. W. Eisenecker. Generative
Programming: Methods, Tools, and Applications.
ACM Press/Addison-Wesley Publishing Co., 2000.

[8] S. Dorok, S. Breß, H. Läpple, and G. Saake. Toward
Efficient and Reliable Genome Analysis Using
Main-Memory Database Systems. In SSDBM, pages
34:1–34:4. ACM, 2014.

[9] S. Dorok, S. Breß, and G. Saake. Toward Efficient
Variant Calling Inside Main-Memory Database
Systems. In BIOKDD-DEXA. IEEE, 2014.

[10] J. Feigenspan, C. Kästner, S. Apel, J. Liebig,
M. Schulze, R. Dachselt, M. Papendieck, T. Leich, and
G. Saake. Do Background Colors Improve Program
Comprehension in the #ifdef Hell? Empir. Softw.
Eng., 18(4):699–745, 2013.

[11] J. Feigenspan, M. Schulze, M. Papendieck, C. Kästner,
R. Dachselt, V. Köppen, M. Frisch, and G. Saake.
Supporting Program Comprehension in Large
Preprocessor-Based Software Product Lines. IET
Softw., 6(6):488–501, 2012.

[12] B. He, M. Lu, K. Yang, R. Fang, N. K. Govindaraju,
Q. Luo, and P. V. Sander. Relational Query
Coprocessing on Graphics Processors. TODS,
34(4):21:1–21:39, 2009.

[13] B. He and J. X. Yu. High-throughput Transaction
Executions on Graphics Processors. PVLDB,
4(5):314–325, Feb. 2011.

[14] C. Kästner, S. Apel, and M. Kuhlemann. Granularity
in Software Product Lines. In ICSE, pages 311–320.
ACM, 2008.

[15] V. Köppen, M. Schäler, and R. Schröter. Toward
Variability Management to Tailor High Dimensional
Index Implementations. In RCIS, pages 452–457.
IEEE, 2014.

[16] T. Leich, S. Apel, and G. Saake. Using Step-wise
Refinement to Build a Flexible Lightweight Storage
Manager. In ADBIS, pages 324–337. Springer-Verlag,
2005.

[17] J. Liebig, S. Apel, C. Lengauer, and T. Leich.
RobbyDBMS: A Case Study on Hardware/Software
Product Line Engineering. In FOSD, pages 63–68.
ACM, 2009.

[18] A. Lübcke, V. Köppen, and G. Saake. Heuristics-based
Workload Analysis for Relational DBMSs. In
UNISCON, pages 25–36. Springer, 2012.

[19] S. Manegold, P. A. Boncz, and M. L. Kersten.
Optimizing Database Architecture for the New
Bottleneck: Memory Access. VLDB J., 9(3):231–246,
2000.

[20] R. Micheloni, A. Marelli, and K. Eshghi. Inside Solid
State Drives (SSDs). Springer, 2012.

[21] M. Rosenmüller. Towards Flexible Feature
Composition: Static and Dynamic Binding in Software
Product Lines. Dissertation, University of Magdeburg,
Germany, June 2011.

[22] M. Rosenmüller, N. Siegmund, H. Schirmeier,
J. Sincero, S. Apel, T. Leich, O. Spinczyk, and
G. Saake. FAME-DBMS: Tailor-made Data
Management Solutions for Embedded Systems. In
SETMDM, pages 1–6. ACM, 2008.

[23] M. Saecker and V. Markl. Big Data Analytics on
Modern Hardware Architectures: A Technology
Survey. In eBISS, pages 125–149. Springer, 2012.

[24] M. Schäler, A. Grebhahn, R. Schröter, S. Schulze,
V. Köppen, and G. Saake. QuEval: Beyond
High-Dimensional Indexing à la Carte. PVLDB,
6(14):1654–1665, 2013.

[25] M. Stonebraker, S. Madden, D. J. Abadi,
S. Harizopoulos, N. Hachem, and P. Helland. The End
of an Architectural Era (It’s Time for a Complete
Rewrite). In VLDB, pages 1150–1160, 2007.

[26] S. Sunkle, M. Kuhlemann, N. Siegmund,
M. Rosenmüller, and G. Saake. Generating Highly
Customizable SQL Parsers. In SETMDM, pages
29–33. ACM, 2008.

[27] T. Willhalm, I. Oukid, I. Müller, and F. Faerber.
Vectorizing Database Column Scans with Complex
Predicates. In ADMS@VLDB, pages 1–12, 2013.

[28] J. Zhou and K. A. Ross. Implementing Database
Operations Using SIMD Instructions. In SIGMOD,
pages 145–156. ACM, 2002.

[29] M. Zukowski. Balancing Vectorized Query Execution
with Bandwidth-Optimized Storage. PhD thesis, CWI
Amsterdam, 2009.

