
Extending an Information Retrieval System
through Time Event Extraction

Pierpaolo Basile, Annalina Caputo, Giovanni Semeraro, and Lucia Siciliani

Department of Computer Science - University of Bari Aldo Moro
Via E. Orabona, 4 - 70125 Bari (ITALY)

e-mail: {pierpaolo.basile@uniba.it, annalina.caputo@uniba.it,
giovanni.semeraro@uniba.it, siciliani.lu@gmail.com}

Abstract. In this paper we propose an innovative Information Retrieval system
able to manage temporal information. The system allows temporal constraints in
a classical keyword-based search. Information about temporal events is automat-
ically extracted from text at indexing time and stored in an ad-hoc data structure
exploited by the retrieval module for searching relevant documents. Our system
can search textual information that refers to specific period of times. We perform
an exploratory case study indexing all Italian Wikipedia articles.

1 Introduction

Identifying specific pieces of information related to a particular time period is a
key task for searching past events. Although this task seems to be marginal for
Web users [18], many search domains, like enterprise search, or lately developed
information access tasks, such as Question Answering [20] and Entity Search,
would benefit from techniques able to handle temporal information.
The capability of extracting and representing temporal events mentioned in a text
can enable the retrieval of documents relevant for a given topic pertaining to a
specific time. Nonetheless, the notion of temporal in the retrieval context has
often being associated with the dynamic dimension of a piece of information, i.e.
how it changes over time, in order to promote freshness in results. Such kind of
approaches focus on when the document was published (timestamp) rather than
the temporal event mentioned in its content (focus time). While traditional search
engines take into account temporal information related to a document as a whole,
our search engine aims to extract and index single events occurring in the texts,
and to enable the retrieval of topics related to specific temporal events mentioned
in the documents. In particular, we are interested in retrieving documents that
are relevant for the user query, and also match some temporal constraints. For
example, the user could be interested in a particular topic —strumenti musicali
(musical instrument)— related to a specific time period —inventati tra il 1300 ed
il 1500 (invented between 1300 and 1500)—.
However, looking for happenings in a specific time span requires further, and
more advanced, techniques able to treat temporal information. Therefore, our goal
is to merge features of both Information Retrieval (IRS) and Temporal Extraction
Systems (TES). While an IRS allows us to handle and access the information
included in texts, TES locate temporal expressions. We define this kind of system
“Time-Aware IR” (TAIR).



In the past, several attempts have been made to exploit temporal information in
IR systems [2], with an up-to-date literature review and categorization provided
in [7]. Most of these approaches exploit time information related to the document
in order to improve the ranking (recent documents are more relevant) [9], cluster
documents using temporal attributes [1,3], or exploit temporal information for ef-
fectively present documents to the user [16]. However, just a handful of work have
focused on temporal queries, that is the capability of querying a collection with
both free text and temporal expression [4]. Alonso et al. pointed out as this kind
of tasks needs the combination of results from both the traditional keyword-based
and the temporal retrieval that can give rise to two different result sets. Vanden-
bussche and Teissèdre [23] dealt with temporal search in the context of both the
Web of Content and the Web of Data, but differently from our system, they re-
lied on an ontology of time for temporal queries [11]. Kanhabua and Nørvåg [13]
defined semantic- and temporal-based features for a learning to rank approach
by extracting named entities and temporal events from the text. Similarly to our
approach, Arikan et al. [5] considered the query as composed by a keyword and
a temporal part. Then, the two queries were addressed by computing two dif-
ferent language model-based weights. Exploiting a similar model, Berberich et
al. [6] developed a framework for dealing with uncertainty in temporal queries.
However, both approaches drawn the probability of the temporal query out of the
whole document, thus neglecting the pertinence of temporal events at a sentence
level. In order to overcome such a limitation, Matthews et al. [17] introduced
two different types of indexes, at a document and a sentence level, with the latter
associated with content date.
Preliminary to indexing and retrieval, the Information Extraction phase aims to
extract temporal information, and its associated events, from text. In this area
[15], several approaches aim at building structured knowledge sources of tem-
poral events. In [12] the authors describe an extension of the YAGO knowledge
base, in which entities, facts, and events are anchored in both time and space.
Other work exploit Wikipedia to extract temporal events, such as those reported
in [10, 14, 25]. Temporal extraction systems can locate temporal expressions and
normalize them making this information available for further processing. Cur-
rently, there are different tools that can make this kind of analysis on documents,
like SUTime [8] or HeidelTime [21] and other systems which took part in Tem-
pEval evaluation campaigns. Temporal extraction is not the main focus of this
paper, then we remand the interested reader to the TempEval description task pa-
pers [22,24] for a wider overview of the latest state-of-the-art temporal extraction
systems.
The paper is organized as follows: Section 2 provides details about the model
behind our TAIR system, while Section 3 describes the implementation of our
model. Section 4 reports some use cases of the TAIR system which show the
potential of our approach, while Section 5 closes the paper.

2 Time-Aware IR Model

A TAIR model should be able to tackle some problems that emerge from temporal
search [23], that is: 1) the extraction and normalization of temporal references,
2) the representation of the temporal expressions associated to documents, and 3)
the ranking under the constraint of keyword- and temporal-queries.



Our TAIR model consists of three main components responsible to deal with
these issues, as sketched in Figure 1:

Fig. 1: The IR time-aware Model

Text processing It automatically extracts time expressions from text. The ex-
tracted expressions are normalized in a standard format and sent to the in-
dexing component;

Indexing This component is dedicated to index both textual and temporal infor-
mation. During the indexing, text fragments are linked to time expressions.
The idea behind this approach is that the context of a temporal expression is
relevant;

Search It analyzes the user query composed by both keywords and temporal
constraints, and performs the search over the index in order to retrieve rele-
vant information.

2.1 Text Processing Component

Given a document as input, the text processing component provides as output
the normalized temporal expressions extracted from the text, along with infor-
mation about positions in which the temporal expressions are found. For this
purpose we adopt a standard annotation language for temporal expressions called
TimeML [19]. We are interested in expressions tagged with the TIMEX3 tag that
is used to mark up explicit temporal expressions, such as times, dates and dura-
tions. In TIMEX3 the value of the temporal expression is normalized according
to 2002 TIDES guideline, an extension of the ISO-8601 standard, and is stored
in an attribute called value. An example of TIMEX3 annotation for the sentence
“before the 23th May 1980” is reported below:



<TimeML>
before the
<TIMEX3 tid="t3" type="DATE" value="1980-05-23">

23th May 1980
</TIMEX3>

</TimeML>

Where tid is a unique identifier, type can assume one of the types between:
DATE, TIME, DURATION, and SET, while the value attribute contains the tem-
poral information that varies accordingly to the type.
ISO-8601 normalizes temporal expressions in several formats. For example, “May
1980” is normalized as “1980-05”, while “23th May 1980” as “1980-05-23”. We
choose to normalize all dates using the pattern yyyy-mm-dd. All temporal expres-
sions not compliant to the pattern, such as “1980”, must be normalized retaining
the lexicographic order between dates. Our solution consists in normalizing all
temporal expressions in the form of yyyy or yyyy-mm to the last day of the previ-
ous year or month, respectively. In our previous example, the expression “1980”
is normalized as 19791231. Similarly, the expression “1980-05” is normalized
as “1980-04-30”. Moreover, the text processing component applies several nor-
malization rules to correctly identify seasons, for example the TimeML tag for
Spring “yyyy-SP” is normalized as “yyyy-03-20”.
Using the correct normalization, the order between periods is respected. In con-
clusion the text processing component extracts temporal information and cor-
rectly normalized them to make different time periods comparable.

2.2 The Indexing Component

After the text processing step, we need to store and index data. In our model we
propose to store both documents and temporal expressions in three separated data
indexes, as reported in Figure 1.
The first index (docrep) stores the text of each document (without processing)
with an id, a numeric value that unequivocally identifies the document. This in-
dex is used to store the document content only for the presentation purpose. The
second index (doc) is a traditional inverted index in which the text of each docu-
ment is indexed and used for keyword-based search. Finally, the last index (time)
stores temporal expressions found in each document. For each temporal expres-
sion, we store the following information:

– The document id;
– The normalized value of the time expression according to the normalization

procedure described in Section 2.1;
– The start and end offset of the expression in the document, useful for high-

lighting;
– The context of the expression: the context is defined by taking all the words

that can be found within n characters before and after the time expression.
The context is indexed and used by the search component during the retrieval
step. The idea is to keep trace of the context where the time expression oc-
curred. The context is tokenized and indexed and exploited in conjunction
with the keyword-based search, as we explained in Section 2.3.

It is important to note that a document could have many temporal expressions,
for each of these an entry in the time index is created. For example, given the



Fig. 2: Wikipedia page example.

Wikipedia page in Figure 2, we store its whole content as reported in Table 1a,
while we tokenize and index the page as shown in Table 1b. The most interesting
part of the indexing step is the storage of temporal expressions. As depicted in
Table 1c, for each temporal expression we store the normalized time value, in
this case “13961231”, and the start and end offset of the expression in the text.
Finally, we tokenize and index the context in which the expression occurs. In
Table 1c, in italics is reported the left context, while the right context is reported
in bold. Examples are reported according to the Italian version of Wikipedia, but
the indexing step is language independent.

2.3 The Search Component

The search component retrieves relevant documents according to the user query
q containing temporal constraints. For this reason we need to make temporal ex-
pressions in the query compliant with the expressions stored in the index. The
query is processed by the Text Component in order to extract and normalize the
time expressions.
The query q is represented by two parts: qk contains keywords, while qt only the
normalized time expressions. qk is used to retrieve from the doc index a first re-
sults set RSdoc. Thus, both qk and qt are used to query the time index producing
the results set RStime. The search in time index is limited to those documents
belonging to RSdoc. In RStime, text fragments have to match the time constraints
expressed in qt, while the matching with the keyword-based query qk is optional.
The optional matching with qk has the effect of promoting those contexts that sat-
isfy both the temporal constraints and the query topics, while not completely re-
moving poorly matching results. The motivation behind this approach is twofold:
through RSdoc we retrieve those documents relevant for the query topic, while
RStime contains the text fragments that match the time query qt and are related
to the query topic.
For example given the query q =“clavicembalo [1300 TO 1400]”, we identify
the two fields: qk =“clavicembalo” and qt = [12991231 TO 13991231]. It is



Field V alue

ID 42
Content Con il termine clavicem-

balo (altrimenti detto grav-
icembalo, arpicordo, cim-
balo, cembalo) si indica una
famiglia di strumenti musi-
cali a corde [...]

(a) docrep index.

Field V alue

ID 42
Content {‘Con’, ‘il’, ‘termine’,

‘clavicembalo’, ‘altri-
menti’, ‘detto’, ‘grav-
icembalo’, ‘arpicordo’,
‘cimbalo’, ‘cembalo’, ‘si’,
‘indica’, ‘una’, ‘famiglia’,
‘di’, ‘strumenti’,
‘musicali’, ‘a’, ‘corde’ [...]
}

(b) doc index.

Field V alue

ID 42
Time 13961231
Start Offset 350
End Offset 354
Context {‘Il’, ‘termine’, ‘stesso’, ‘che’, ‘compare’, ‘per’, ‘la’,

‘prima’, ‘volta’, ‘in’, ‘un’, ‘documento’, ‘del’, ‘deriva’,
‘dal’, ‘latino’, ‘clavis’, ‘chiave’ [...] }

(c) time index.
Table 1: The three indices used by the system.

important to underline that in this example we adopted a particular syntax to
identify range queries, more details about the system implementation are reported
in Section 3.

The retrieval step produces two results sets: RSdoc and RStime. Considering the
query q in the previous example: RSdoc contains the doc 42 with a relevance
score sdoc. While the results set RStime contains the temporal expression re-
ported in Table 1c with a score stime. The last step is to combine the two results
sets. The idea is to promote text fragments in RStime that comes from docu-
ments that belong to RSdoc. We simply boost the score of each result in RStime

multiplying its score by the score assigned to its origin document in RSdoc. In
our example the temporal expression occurring in RStime obtains a final score
computed as: sdoc × stime. We have chosen to boost score rather than linearly
combine them, in this way we avoid the use of combination parameters.

Finally, we sort the re-ranked RStime and provide it to the user as final result of
the search. It is important to underline that our system does not produce a list of
document as a classical search engine does, but we provide all the text passages
that are both relevant for the query and compliant to temporal constraints.



3 System Implementation

We implemented our TAIR model in a freely available system1 as an open-source
software under the GNU license V.3. The system is developed in JAVA and ex-
tends the indexing and search open-source API Apache Lucene2.
The text processing component is based on the HeidelTime tool3 [21] to extract
temporal information. We adopt this tool for two reasons: 1) it obtained good
performance in the TempEval-3 task, and 2) it is able to analyze text written in
several languages including the Italian. HeidelTime is a rule based system that
can be extended to support other languages or specific domains.
Our system provides all the expected functionalities: text analysis, indexing and
search. The query language supports all operators provided by the Lucene query
syntax4. Moreover the temporal query qt can be formulated using natural time
expressions, for example “12 May 2014” or “yesterday”. The search component
tries to automatically translate the user query in the proper time expressions.
However, the user can directly formulate qt using normalized time expressions
and query operators. Table 2 shows some time operators.

Query Description

20020101 match exactly 1st January 2002
[20020101 TO 20030101] match from 1st January 2002 to 1st Jan-

uary 2003
[∗ TO 20030101] before 1st January 2003
[20020101 TO ∗] after 1st January 2002
01??2002 any first day of the month in 2002, *

should be used for multiple character
match, for example 01*2002

20020101 AND 20020131 the first and last day of January 2002,
AND and OR operator can be used to
combine exact match and range query

Table 2: Example of time query operators.

Currently the system does not provide a GUI for searching and visualizing the
results, but it is designed as an API. As future works we plan to extend the API
with REST Web functionalities.

4 Use case

We decided to set up a case study to show the potentialities of the proposed IR
framework. The case study involves the indexing of a large collection of docu-

1 https://github.com/pippokill/TAIR
2 http://lucene.apache.org/
3 https://code.google.com/p/heideltime/
4 http://lucene.apache.org/core/4_8_1/queryparser/org/apache/
lucene/queryparser/classic/package-summary.html



ments and a set of example queries exploiting specific scenarios in which tempo-
ral expressions play a key role. Moreover, another goal is to provide performance
information about the system in terms of indexing and query time, and index
space.

We propose an exploratory use case indexing all Italian Wikipedia articles. Our
choice is based on the fact that Wikipedia is freely available and contains millions
of documents with many temporal events. We need to set some parameters: we
index only documents with at least 4,000 characters, remove special pages (e.g.
category pages), we set the context size in temporal index to 256 characters.

We perform the experiment on a virtual machine with four virtual cores and 32GB
of RAM. Table 3 reports some statistics related to the indexing step. The indexing
time is very high due to the complexity of the temporal extraction algorithm and
the huge number of documents. We speed up the temporal event extraction im-
plementing a multi threads architecture, in particular in this evaluation we enable
four threads for the extraction.

Statistics V alue

Number of documents 168,845
Number of temporal expressions 6,615,430
Indexing time 68 hours
Indexing time (doc./min.) 41,38

Table 3: Indexing performance.

One of the most appropriate scenarios consists in finding events that happened in
a specific date. For example, one query could be interested in listing all events
happened on 29 April 1981. In this case the time query is “19810429” while the
keyword query is empty. The first three results are shown in Table 4.

We report in bold the temporal expressions that match the query. It is important
to note that in the first result the year “1981” appears distant from both the month
and the day, but the Text Processing component is able to correctly recognize and
normalize the date.

Another interesting scenario is to find events related to a specific topic in a par-
ticular time period. For example, Table 5 reports the first three results for the
query: “terremoti tra il 1600 ed il 1700” (earthquakes between 1600 and 1700).
This query is split in its keyword qk =“terremoti” (earthquakes) and temporal
component qt = [15991231 TO 16991231].

Table 6 shows the usage of time query operators, in particular of wild-cards. We
are interested in facts related to computers which happened in January 1984 using
the time query pattern “198401??”.

As reported in Table 6, the first two results regard events whose time interval en-
compasses the time expressed in the query, since they took place in 1984, while
the third result shows an event that completely fulfil the time requirements ex-
pressed in the temporal query.



Result Rank Wikipedia page Time Context
1 Paul Breitner nel 1981, richiamato da Jupp Derwall,

nel frattempo divenuto nuovo commis-
sario tecnico della Germania Ovest, e
con il quale aveva comunque avuto ac-
cese discussioni a distanza. Il “nuovo
debutto” avviene ad Amburgo il 29
aprile contro l’Austria.

2 ...E tu vivrai nel terrore!
L’aldilà

Warbeck e Catriona McColl, presente
nei contenuti speciali del DVD edito
dalla NoShame. Accoglienza. Il film
uscı̀ in Italia il 29 aprile 1981 e incassò
in totale 747.615.662 lire. Distribuito
per i mercati esteri dalla VIP Interna-
tional, ottenne un ottimo successo

3 RCS Media Group L’operazione venne perfezionata il 29
aprile 1981. Quel giorno una società
dell’Ambrosiano (quindi di Calvi), la
“Centrale Finanziaria S.p.A.” effettuò
l’acquisto del 40% di azioni Rizzoli

Table 4: Results for the query “19810429”

Result Rank Wikipedia page Time Context
1 Terremoto della Cal-

abria dell’8 giugno
1638

Il terremoto dell’8 giugno 1638 fu un
disastroso terremoto che colpı̀ la Cal-
abria, in particolare il Crotonese e parte
del territorio già colpito nei giorni 27 e
28 marzo del 1638

2 Eruzione dell’Etna del
1669

1669 10 marzo - M = 4.8 Nicolosi
Terremoto con effetti distruttivi nel
catanese in particolare a Nicolosi in se-
guito all’eruzione dell’Etna conosciuta
come Eruzione dell’Etna del 1669. Il 25
febbraio e l’8 e 10 marzo del 1669 una
serie di violenti terremoti.

3 Terremoto del Val di
Noto del 1693

l’evento catastrofico di maggiori di-
mensioni che abbia colpito la Sicilia
orientale in tempi storici.Il terremoto
del 9 Gennaio 1693

Table 5: Results for the query “earthquakes between 1600 and 1700”



Result Rank Wikipedia page Time Context
1 Apple III L’Apple III, detto anche Apple ///, fu un

personal computer prodotto e commer-
cializzato da Apple Computer dal 1980
al 1984 come successore dell’Apple II

2 Home computer Apple Macintosh (1984), il primo
home/personal computer basato su una
interfaccia grafica, nonch il primo a
16/32-bit

3 Apple Macintosh Apple Computer (oggi Apple Inc.).
Commercializzato dal 24 gennaio 1984
al 1 ottobre 1985, il Macintosh il ca-
postipite dell’omonima famiglia

Table 6: Results for the query “computer” with the temporal pattern “198401??”

5 Conclusions and Future Work

We proposed a “Time-Aware” IR system able to extract, index, and retrieve tem-
poral information. The system expands a classical keyword-based search through
temporal constraints. Temporal expressions, automatically extracted from doc-
uments, are indexed through a structure that enables both keyword- and time-
matching. As a result, TAIR retrieves a list of text fragments that match the tem-
poral constraints, and are relevant for the query topic. We proposed a preliminary
case study indexing all the Italian Wikipedia and described some retrieval scenar-
ios which would benefit from the proposed IR model.
As future work we plan to improve both recognition and normalization of time
expressions, extending some particular TimeML specifications that in this pre-
liminary work were not taken into account during the normalization process.
Moreover, we will perform a deep “in-vitro” evaluation on a standard document
collection.

Acknowledgements

This work fulfils the research objectives of the projects PON 01 00850 ASK-
Health (Advanced System for the interpretation and sharing of knowledge in
health care) and PON 02 00563 3470993 project “VINCENTE - A Virtual col-
lective INtelligenCe ENvironment to develop sustainable Technology Entrepre-
neurship ecosystems” funded by the Italian Ministry of University and Research
(MIUR).

References

1. Alonso, O., Gertz, M.: Clustering of Search Results Using Temporal At-
tributes. In: Proceedings of the 29th annual international ACM SIGIR Con-
ference on Research and Development in Information Retrieval. pp. 597–
598. ACM (2006)



2. Alonso, O., Gertz, M., Baeza-Yates, R.: On the Value of Temporal Informa-
tion in Information Retrieval. SIGIR Forum 41(2), 35–41 (2007)

3. Alonso, O., Gertz, M., Baeza-Yates, R.: Clustering and Exploring Search Re-
sults Using Timeline Constructions. In: Proceedings of the 18th ACM Con-
ference on Information and Knowledge Management. pp. 97–106. CIKM
’09, ACM (2009)

4. Alonso, O., Strötgen, J., Baeza-Yates, R.A., Gertz, M.: Temporal Information
Retrieval: Challenges and Opportunities. In: Proceedings of the 1st Interna-
tional Temporal Web Analytics Workshop (TWAW 2011). vol. 11, pp. 1–8
(2011)

5. Arikan, I., Bedathur, S.J., Berberich, K.: Time Will Tell: Leveraging Tempo-
ral Expressions in IR. In: Baeza-Yates, R.A., Boldi, P., Ribeiro-Neto, B.A.,
Cambazoglu, B.B. (eds.) Proceedings of the 2ND International Conference
on Web Search and Web Data Mining, WSDM 2009, Barcelona, Spain,
February 9-11, 2009. ACM (2009)

6. Berberich, K., Bedathur, S., Alonso, O., Weikum, G.: A Language Mod-
eling Approach for Temporal Information Needs. In: Proceedings of the
32Nd European Conference on Advances in Information Retrieval. pp. 13–
25. ECIR’2010, Springer-Verlag (2010)

7. Campos, R., Dias, G., Jorge, A.M., Jatowt, A.: Survey of Temporal Infor-
mation Retrieval and Related Applications. ACM Computing Surveys 47(2),
15:1–15:41 (2014)

8. Chang, A.X., Manning, C.D.: SUTime: A library for recognizing and nor-
malizing time expressions. In: LREC. pp. 3735–3740 (2012)

9. Elsas, J.L., Dumais, S.T.: Leveraging Temporal Dynamics of Document Con-
tent in Relevance Ranking. In: Proceedings of the 3rd ACM International
Conference on Web Search and Data Mining. pp. 1–10. WSDM ’10, ACM
(2010)

10. Hienert, D., Luciano, F.: Extraction of Historical Events from Wikipedia. In:
Proceedings of the First International Workshop on Knowledge Discovery
and Data Mining Meets Linked Open Data. pp. 25–36 (2011)

11. Hobbs, J.R., Pan, F.: An Ontology of Time for the Semantic Web. ACM
Transactions on Asian Language Information Processing (TALIP) - Special
Issue on Temporal Information Processing 3(1), 66–85 (2004)

12. Hoffart, J., Suchanek, F.M., Berberich, K., Weikum, G.: YAGO2: A Spa-
tially and Temporally Enhanced Knowledge Base from Wikipedia. Artificial
Intelligence 194, 28–61 (2013)

13. Kanhabua, N., Nørvåg, K.: Learning to Rank Search Results for Time-
sensitive Queries. In: Proceedings of the 21st ACM International Confer-
ence on Information and Knowledge Management. pp. 2463–2466. CIKM
’12, ACM (2012)

14. Kuzey, E., Weikum, G.: Extraction of temporal facts and events from
Wikipedia. In: Proceedings of the 2nd Temporal Web Analytics Workshop.
pp. 25–32. ACM (2012)

15. Ling, X., Weld, D.S.: Temporal Information Extraction. In: Proceedings of
the 24th Conference on Artificial Intelligence (AAAI 2010). Atlanta, GA.
(2010)

16. Matthews, M., Tolchinsky, P., Blanco, R., Atserias, J., Mika, P., Zaragoza,
H.: Searching through time in the New York Times. In: Proceedings of
the Fourth Workshop on Human-Computer Interaction and Information Re-
trieval (HCIR 10). pp. 41–44 (2010)



17. Matthews, M., Tolchinsky, P., Blanco, R., Atserias, J., Mika, P., Zaragoza,
H.: Searching through time in the New York Times. In: Proceedings of the
4th Workshop on Human-Computer Interaction and Information Retrieval,
HCIR Challenge 2010. pp. 41–44 (2010)

18. Nunes, S., Ribeiro, C., David, G.: Use of temporal expressions in web search.
In: Proceedings of the IR Research, 30th European Conference on Advances
in Information Retrieval, pp. 580–584. ECIR’08, Springer-Verlag (2008)

19. Pustejovsky, J., Castano, J.M., Ingria, R., Sauri, R., Gaizauskas, R.J., Setzer,
A., Katz, G., Radev, D.R.: TimeML: Robust Specification of Event and Tem-
poral Expressions in Text. New Directions in Question Answering 3, 28–34
(2003)

20. Saurı́, R., Knippen, R., Verhagen, M., Pustejovsky, J.: Evita: A Robust Event
Recognizer for QA Systems. In: Proceedings of the Conference on Human
Language Technology and Empirical Methods in Natural Language Process-
ing. pp. 700–707. ACL (2005)

21. Strötgen, J., Zell, J., Gertz, M.: HeidelTime: Tuning English and Develop-
ing Spanish Resources for TempEval-3. In: 2nd Joint Conference on Lexical
and Computational Semantics (*SEM), Volume 2: Proceedings of the 7th
International Workshop on Semantic Evaluation. pp. 15–19. ACL (2013)

22. UzZaman, N., Llorens, H., Derczynski, L., Allen, J., Verhagen, M., Puste-
jovsky, J.: Semeval-2013 task 1: Tempeval-3: Evaluating time expressions,
events, and temporal relations. In: 2nd Joint Conference on Lexical and
Computational Semantics (*SEM), Volume 2: Proceedings of the 7th Inter-
national Workshop on Semantic Evaluation. pp. 1–9. ACL (2013)

23. Vandenbussche, P.Y., Teissèdre, C.: Events Retrieval Using Enhanced Se-
mantic Web Knowledge. In: Workshop DeRIVE 2011 (Detection, Represen-
tation, and Exploitation of Events in the Semantic Web) in cunjunction with
10th International Semantic Web Conference 2011 (ISWC 2011) (2011)

24. Verhagen, M., Sauri, R., Caselli, T., Pustejovsky, J.: SemEval-2010 Task 13:
TempEval-2. In: Proceedings of the 5th International Workshop on Semantic
Evaluation. pp. 57–62. ACL (July 2010)

25. Whiting, S., Jose, J., Alonso, O.: Wikipedia As a Time Machine. In: Proceed-
ings of the Companion Publication of the 23rd International Conference on
World Wide Web Companion. pp. 857–862. International World Wide Web
Conferences Steering Committee (2014)


