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Abstract. Performance metrics are used in various stages of the process aimed at
solving a classification problem. Unfortunately, most of these metrics are in fact
biased, meaning that they strictly depend on the class ratio —i.e., on the imbalance
between negative and positive samples. After pointing to the source of bias for the
most acknowledged metrics, novel unbiased metrics are defined, able to capture
the concepts of discriminant and characteristic capability. The combined use of
these metrics can give important information to researchers involved in machine
learning or pattern recognition tasks, such as classifier performance assessment
and feature selection.

1 Introduction

Several metrics are used in pattern recognition and machine learning in various tasks
concerning classifier building and assessment. An important category of these metrics
is related to confusion matrices. Accuracy, precision, sensitivity (also called recall) and
specificity are all relevant examples [5] of metrics that belong to this category. As none
of the above metrics is able to give information about the process under assessment
in isolation, two different strategies have been adopted so far for assessing classifier
performance or feature importance: i) devising single metrics on top of other ones and
ii) identifying proper pairs of metrics able to capture the wanted information. The for-
mer strategy is exemplified by F; [6l] and MCC (Matthews Correlation Coefficient) [4],
which are commonly used in the process of model building and assessment. Typical
members of the latter strategy are sensitivity vs. specificity diagrams, which allow to
draw relevant information (e.g., ROC curves [[1]) in a Cartesian space. Unfortunately,
regardless from the strategies discussed above, most of the existing metrics are in fact
biased, meaning that they strictly depend on the class ratio —i.e., on the imbalance be-
tween positive and negative samples. However, the adoption of biased metrics can only
be recommended when the statistics of input data is available. In the event one wants
to assess the intrinsic properties of a classifier, or other relevant aspects in the process
of classifier building and evaluation, the adoption of biased metrics does not appear a
reliable choice. For this reason, in the literature, some proposals have been made to in-
troduce unbiased metrics —see in particular the work of Flach [2]]. In this paper a pair of
unbiased metrics is proposed, able to capture the concepts of discriminant and charac-
teristic capability. The former is expected to measure to which extent positive samples



can be separated from the negative ones, whereas the latter is expected to measure to
which extent positive and negative samples can be grouped together. After giving prag-
matic definitions of these metrics, their semantics is discussed for binary classifiers and
binary features. An analysis focusing on the combined use of the corresponding metrics
in form of Cartesian diagrams is also made.

The remainder of the paper is organized as follows: after introducing the concept of
normalized confusion matrix, obtained by applying Bayes decomposition to any given
confusion matrix, in Section [2| a brief analysis of the most acknowledged metrics is
performed, pointing out that most of them are in fact biased. Section [3|introduces novel
metrics devised to measure the discriminant and characteristic capability of binary clas-
sifiers or binary features. Section[dreports experiments aimed at pointing out the poten-
tial of Cartesian diagrams drawn using the proposed metrics. Section [5] highlights the
strengths and weaknesses of this paper and Section [6]draws conclusions.

2 Background

As the concept of confusion matrix is central in this paper, let us preliminarily illustrate
the notation adopted for its components (also because the adopted notation slightly dif-
fers from the most acknowledged one). When used for classifier assessment, the generic
element &;; of a confusion matrix = accounts for the number of samples that satisfy the
property specified by the subscripts. Limiting our attention to binary problems, in which
samples are described by binary features, let us assume that 1 and 0 identify the pres-
ence and the absence of a property.

In particular, let us denote with =.(P,N) the confusion matrix of a run in which
a classifier ¢, trained on a category c, is fed with P positive samples and N negative
samples (with a total of M samples). With X. and X, random variables that account
for the output of classifier and oracle, the joint probability p(Xc,)/(\L.) is proportional,
through M, to the expected value of Z.(P,N).

Assuming statistical significance, the confusion matrix obtained from a single test
(or, better, averaged over multiple tests in which the values for P and N are left un-
changed) gives us reliable information on the performance of the classifier. In symbols:

E(PN) =M p(Xe,X:) = M- p(X.) - p(Xc|Xc) (1)

In so doing, we assume that the transformation performed by ¢ can be isolated from the
inputs it processes, at least from a statistical perspective. Hence, the confusion matrix
for a given set of inputs can be written as the product between a term that accounts for
the number of positive and negative instances, on one hand, and a term that represents
the expected recognition / error rate of ¢, on the other hand. In symbols:
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- wjj~pXe=i, X, = 7), 1,7 =0,1, denotes the joint occurrence of correct classifi-
cations (i = j) or misclassifications (i # j). According to the total probability law:
Yijwij=1

— pis the percent of positive samples and # is the percent of negative samples.

- Y~ p(X. = j|X.=1i), i,j=0,1, denotes the percent of inputs that have been
correctly classified (i = j) or misclassified (i # j) by )?L.. Y00, Y01, Y10, and 11 re-
spectively denote the rate of true negatives, false positives, false negatives, and true
positives. According to the total probability law: Y0 + Y1 = Y10+ 711 = 1. An es-
timate of the conditional probability p(X.|X.) for a classifier ¢ that accounts for a
category ¢ will be called normalized confusion matrix hereinafter.

The separation between inputs and the intrinsic behavior of a classifier reported
in Equation (Z) suggests an interpretation that recalls the concept of transfer function,
where a set of inputs is applied to ¢. In fact, Equation (2)) highlights the separation of the
optimal behavior of a classifier from the deterioration introduced by its actual filtering
capabilities. In particular, & =~ p(X.) represents the optimal behavior obtainable when
¢ acts as an oracle, whereas I’ =~ p(X, | X, ) represents the expected deterioration caused
by the actual characteristics of the classifier. Hence, under the assumption of statistical
significance of experimental results, any confusion matrix can be divided in terms of
optimal behavior and expected deterioration using the Bayes theorem.

A different interpretation holds for confusion matrix subscripts when they are used
to investigate binary features. In this case i still denotes the actual category, whereas
Jj denotes the truth value of the binary feature (with 0 and 1 made equivalent to false
and true, respectively). However, as a binary feature can always be though of as a very
simple classifier whose classification output reflects the truth value of the feature in the
given samples, all definitions and comments concerning classifiers can be applied to
binary features as well.

Let us now examine the most acknowledged metrics deemed useful for pattern
recognition and machine learning according to the above perspective. The classical def-
initions for accuracy (a), precision (), and recall (p) can be given in terms of false
positives rate (fp), true positives rate (¢p) and class ratio (the imbalance between neg-
ative and positive samples, ) as follows:
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Equation highlights the dependence of accuracy and precision from the class ra-
tio, only recall being unbiased. Note that the expression concerning accuracy has been
obtained taking into account that p+n =1 implies p=1/(c+1)andn=0c/(c+1).

As pointed out, when the goal is to assess the intrinsic properties of a classifier or
a feature, biased metrics do not appear a proper choice, leaving room for alternative
definitions aimed at dealing with the imbalance between negative and positive samples.



In [2]], Flach gave definitions of some unbiased metrics starting from classical ones.
In practice, unbiased metrics can be obtained from classical ones by setting the imbal-
ance ¢ to 1. In the following, if needed, unbiased metrics will be denoted using the
subscript u.

3 Definition of Novel Metrics

To our knowledge, no satisfactory definitions have been given so far able to account
for the need of capturing the potential of a model according to its discriminant and
characteristic capability. With the goal of filling this gap, let us spend few words on the
expected behavior of any metrics intended to measure them. Without loss of generality,
let us assume the metrics be defined in [—1,+1]. As for the discriminant capability,
we expect its value be close to +1 when a classifier or feature partitions a given set
of samples in strong accordance with the corresponding class labels. Conversely, the
metric is expected to be close to —1 when the partitioning occurs in strong discordance
with the class label. As for the characteristic capability, we expect its value be close
to +1 when a classifier or feature tend to cluster most of the samples as if they were
in fact belonging to the main category. Conversely, the metric is expected to be close
to —1 when most of the samples are clustered as belonging to the alternate categoryE]
An immediate consequence of the desired behavior is that the above properties are not
independent. In other words, regardless from their definition, the metrics devised to
measure discriminant and characteristic capability of a classifier or feature (say 8 and
¢, hereinafter) are expected to show an orthogonal behavior. In particular, when the
absolute value of one metric is about 1 the other should be close to 0.

Let us now characterize 0 and ¢ with more details, focusing on classifiers only
(similar considerations can also be made for features):

— fp=~0andip~1-Weexpect § ~+1 and ¢ ~ 0, meaning that the classifier is
able to partition the samples almost in complete accordance with the class labels.

- fp~landtp~1-Weexpect § ~0and ¢ ~ +1, meaning that almost all samples
are recognized as belonging to the main class label.

— fp~0andtp~0-Weexpect § ~0and ¢ ~ —1, meaning that almost all samples
are recognized as belonging to the alternate class label.

— fp~1anditp~0-Weexpect § ~ —1 and ¢ ~ 0, meaning that the classifier is
able to partition the domain space almost in complete discordance with the class
labels (however, this ability can still be used for classification purposes by simply
turning the classifier output into its opposite).

The determinant of the normalized confusion matrix is the starting point for giving
proper definitions of & and ¢ able to satisfy the constraints and boundary conditions

Tt is worth noting that the definition of characteristic capability proposed in this paper is
in partial disagreement with the classical concept of “characteristic property” acknowledged by
most of the machine learning and pattern recognition researchers. The classical definition only
focuses on samples that belong to the main class, whereas the conceptualization adopted in this
paper applies to all samples. The motivation of this choice should become clearer later on.



discussed above. It can be rewritten as follows:

A =%0-Y11—"Y1-Y0="0-Y1—(1—=%0) (1 —71)
=%0 Y11 —1+%1+%0—%0 Y1 ="Y1+%Y0—1 4)
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When A = 0, the classifier under assessment has no discriminant capability whereas
A =+1and A = —1 correspond to the highest discriminant capability, from the positive
and negative side, respectively. It is clear that the simplest definition of & is to make it
coincident to A, as the latter has all the desired properties required by the discriminant
capability metric.

As for ¢, considering the definition of 6 and the constraints that must apply to a
metric intended to measure the characteristic capability, the following definition appear
appropriate, being actually dual with respect to 6 also from a syntactic point of view:

o=p—-p=tp+fp—1 )

Figurereports the isometric curves drawn for different values of 6 and @, respectively,
with varying 7p and fp.
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Fig. 1: Isometric plotting of § and ¢ with varying false and true positive rate.

The two measures can be taken in combination for investigating properties of clas-
sifiers or features. The run of a classifier over a specific test set, different runs of a clas-
sifier over multiple test sets, and the statistics about the presence/absence of a feature on
a specific dataset are all examples of potential use cases. However, while reporting in-
formation about classifier or feature properties in ¢ — & diagrams, one should be aware
that the @ — § space is constrained by a rhomboidal shape. This shape depends on the
constraints that apply to 8, ¢, tp, and fp.

In particular, as 8 =tp— fp and ¢ =tp+ fp — 1, the following relations hold:

0=—0+2tp—1)=+0+2-fp+1) ©6)



Considering fp and 7p as parameters, we can easily draw the corresponding isometric
curves in the @ — & space. Figure [2| shows their behavior for 7p = {0,0.5,1} and for
fp=1{0,0.5,1}.

As the definitions of 8 and ¢ are given as linear transformations over ¢p and fp, it
is not surprising that the isometric curves of fp and ¢p drawn in the ¢ — & space are
again straight lines.
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Fig.2: Shape of the ¢ — J space: the rhombus centered in (0,0) delimits the area of
admissible value pairs.

Semantics of the @ — 8 space for classifiers. As for binary classifiers, their discriminant
capability is strictly related to the unbiased accuracy, which in turn can be given in
terms of unbiased error (say e,). The following equivalences make explicit the relation
between a,, e, and §:

a_tn+tp_1+5_1_1—6_1_fp+fn_
SR R A 2

1—e, (N

It is worth pointing out that the actual discriminant capability of a classifier is not a
redefinition of accuracy (or error), as a classifier may still have high discriminant ca-
pability also in presence of high unbiased error. Indeed, as already pointed out, a low-
performance classifier can be easily transformed into a high-performance one by simply
turning its output into its opposite. Thanks to the “turning-into-opposite” trick, the ac-
tual discriminant capability of a classifier could in fact be made coincident with the
absolute value of 8. However, for reasons related to the informative content of ¢ — &
diagrams, we still take apart the discriminant capability observed from the positive side
from the one observed on the negative side. As for the characteristic capability, let us



preliminarily note that, in presence of statistical significance, we can write:

1
EX]~ - (P=N) = (p—n)
8)
~ 1 ~ o~ (
EX |~ v (P—N) =(p—-n)+2-n-fp—2-p-fn
Hence, the difference in terms of expected values between oracle and classifier is:
EX.~X]=E[X]-EX]~-2-n fp+2-p-fn ©)

According to Friedman [3], it is easy to show that Equation (9) actually represents an
estimate of the bias of a classifier, measured over the confusion matrix that describes
the outcomes of the experiments performed on the test set(s). Summarizing, ina ¢ — o
diagram used for assessing classifiers, the §-axis and the @-axis represent the unbiased
accuracy and the unbiased bias, respectively. It is worth pointing out that a high positive
value of 6 means that the classifier at hand approximates the behavior of an oracle,
whereas a high negative value approximates the behavior of a classifier that is almost
always wrong (say anti-oracle when 6 = —1). Conversely, a high positive value of ¢
denotes a dummy classifier that almost always consider input items as belonging to the
main category, whereas a high negative value denotes a dummy classifier that almost
always consider input items as belonging to the alternate category.

Semantics of the ¢ — & space for features. As for binary features, § measures to which
extent a feature is able to partition the given samples in accordance (6 ~ +1) or in
discordance (6 ~ —1) with the main class label. In either case, the feature has high
discriminant capability. As already pointed out for classifiers, instead of considering
the absolute value of § as a measure of discriminant capability, we take apart the value
observed on the positive side from the one observed on the negative side for reasons
related to the informative content of ¢ — § diagrams. On the other hand, ¢ measures
to which extent the feature at hand is spread over the given dataset. A high positive
value of ¢ indicates that the feature is mainly true along positive and negative samples,
whereas a high negative value indicates that the feature is mainly false in the dataset
—regardless of the class label of samples.

4 Experiments

Some experiments have been performed with the aim of assessing the potential of ¢ — &
diagrams. In our experiments we use a collection in which each document is a webpage.
The dataset is extracted from the DMOZ taxonom}ﬂ Let us recall that DMOZ is the
collection of HTML documents referenced in a Web directory developed in the Open
Directory Project (ODP). We choose a set of 174 categories containing about 20000
documents, organized in 36 domains.

In this scenario, we expect terms important for categorization appear at the upper
or lower corner of the ¢ — & rhombus, in correspondence with high values of |5|. As

Zhttp://www.dmoz.org
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Fig. 3: Position of terms within ¢ — & diagrams for the selected DMOZ’s categories.

for the characteristic capability, terms that occur barely on documents are expected to
appear at the left hand corner (high negative values of @), while the so-called stopwords
are expected to appear at the right hand corner (high values of ¢).

Experiments have been focusing on the identification of discriminant terms and
stopwords. Figure [3| plots the “signatures” obtained for DMOZ’s categories Filmmak-
ing, Composition, Arts, and Magic. Alternate categories have been derived considering
the corresponding siblings. Note that, in accordance with the Zipf’s law [7], most of the
words are located at the left hand corner of the constraining thombus. Looking at the
drawings, it appears that Filmmaking and Arts are expected to be the most difficult cate-
gories to predict, as no terms with a significant value of |d| exist for it. On the contrary,
documents of Composition and Magic appear to be relatively easy to classify, as sev-
eral terms exist with significant discriminant value. This conjecture is confirmed after
training 50 decision trees using only terms ¢ whose characteristic capability satisfies the



constraint |@(¢)| < 0.4. For each category, test samples have been randomly extracted
at each run, whereas the remainder of the samples trained the classifiers.
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Fig. 4: Four diagrams reporting the classification results.

Figure [ reports the signatures of classifiers. The figure clearly points out that, as
expected, the average (unbiased) accuracies obtained on categories Composition and
Magic are higher than the ones obtained on categories Filmmaking and Arts. Besides,
¢ — 0 diagrams point out that also variance and bias of classifiers trained for categories
Filmmaking and Arts are apparently worse than those measured on classifiers trained
for categories Composition and Magic.



5 Strengths and Weaknesses of This Proposal

Apart from the analysis of existing metrics, the paper has been mainly concerned with
the definition of two novel metrics deemed useful in the task of developing and assess-
ing machine learning and pattern recognition algorithms and systems. All in all, there
is no magic in the given definitions. In fact, the ¢ — & space is basically obtained by ro-
tating the fp —tp space of m/4. Although this is not a dramatic change of perspective,
it is clear that the ¢ — & space allows to analyze at a glance the most relevant properties
of classifiers or features. In particular, the (unbiased) accuracy and the (unbiased) bias
of a classifier are immediately visible on the vertical and horizontal axis of a ¢ — &
space, respectively. Moreover, an estimate of the variance of a classifier can be easily
investigated by just reporting the results of several experiments in the ¢ — & space (see,
for instance, Figure |4, which clearly points out to which extent the performance of in-
dividual classifiers change along experiments). All the above measures are completely
independent from the imbalance of data by construction, as the ¢ — & space is defined
on top of unbiased metrics (i.e., p and p). This aspect is very important for classifier as-
sessment, making it easier to compare the performance obtained on different test data,
regardless from the imbalance between negative and positive samples. Summarizing,
the @ — & space for classifiers can be actually thought of as a bias vs. accuracy (or er-
ror) space, whose primary uses can be: (i) assessing the accuracy of a classifier over a
single or multiple runs, looking at its § axis; (ii) assessing the bias of a classifier over a
single or multiple runs, looking at the ¢ axis; (iii) assessing the variance of a classifier,
looking at the scattering of multiple runs on the @ — & space. As for binary features, an
insight about the potential of ¢ — § diagrams in the task of assessing their importance
has been given in Section 4] In particular, let us recall that the most important features
related to a given domain are expected to have high values of |§|, whereas not impor-
tant ones are expected to have high values of |@|. Moreover, in the special case of text
categorization, stopwords are expected to occur at the right hand corner of the rhombus
that constrains the ¢ — J space.

It is worth mentioning that alternative definitions could also be given in the ¢ — &
space for other relevant properties, e.g., ROC curves and AUC (or Gini’s coefficient).
Although these aspects are beyond the scope of this paper, let us spend few words on
ROC curves. It is easy to verify that random guessing for a classifier would constrain
the ROC curve to the @ axis, whereas the ROC curve of a classifier acting as an oracle
would coincide with the positive border of the surrounding rhombus.

6 Conclusions and Future Work

After discussing and analyzing some issues related to the most acknowledged metrics
used in pattern recognition and machine learning, two novel metrics have been pro-
posed, i.e. 6 and ¢, intended to measure discriminant and characteristic capability for
binary classifiers and binary features. They are unbiased and are obtained as linear
transformations of false and true positive rates. Moreover, the corresponding isomet-
ric curves show that they are orthogonal. The applications of ¢ — § diagrams to pattern
recognition and machine learning problems are manifold, ranging from feature selection



to classifier performance assessment. Some experiments performed in a text categoriza-
tion setting confirm the usefulness of the proposal. As for future work, the properties of
terms in a scenario of hierarchical text categorization will be investigated using & and
¢ diagrams. A generalization of § and ¢ to multilabel categorization problems with
multivalued features is also under study.
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