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Abstract. Recent years have seen a renewed interest in cognitive systems with
the ability to explain either external phenomena or their own internal reason-
ing processes while solving problems. Some successful models of explanation-
generation have made use of structured representations, reasoned over using ana-
logical or deductive mechanisms. But before such models can be adapted for
use in real-world situations, they need to incorporate additional features associ-
ated with explanation-generation. For example, generated explanations may dif-
fer qualitatively based on the explanandum’s domain; e.g., explanations rooted
in physical causality to explain physical phenomena vs. folk-psychology expla-
nations that rely on propositional attitudes (believes, knows, intends, ...). This
may affect the generated explanations in both explicit and implicit ways. We
tackle both the explicit and implicit effects of this cognitive feature and incor-
porate them into a comprehensive cognitive architecture: CLARION (especially
its meta-cognitive and non-action-centered subsystems).

Keywords: Explanation, Cognitive Architecture, CLARION, Analogy, Deduc-
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1 Introduction: Features of Explanations

The importance of a cognitive system’s ability to explain its results, or the actions of oth-
ers, and to produce useful explanations, is being increasingly realized by Al researchers.
But as has been known for quite some time now, there are a variety of explanations that
might be considered useful. For example, if one wishes to tell some cognitive system W
that a chicken crossed the road (which happened to require movement in an eastward
direction), there are at least two different ways of presenting more or less the same
thing:

E; Chicken C wanted to cross the road.
E> Muscle contractions in chicken C propelled it eastward.

These two explananda refer to the same event at different levels of abstraction by
invoking different concepts. The type of explanation (or alternately, explanans) that
might be deemed an appropriate response to each of these explananda differ as well.
An explanation whose language features many propositional attitudes of the chicken

Page 27 of 171



(e.g. “C believes,” “C knows,” “C wants,” etc.) may be appropriate for explaining E|,
but may not constitute a satisfactory explanation in response to E;. An explanation
rooted in physical causality (referring to the normal properties of muscle contractions,
for example) may be the other way around: it would be appropriate for E; but less
so in response to Ep. In short, the presentation of the explanandum affects the sort of
explanation that is most appropriate.

The question hinted at in the above example, of whether to root an explanation in
physical causality or propositional attitudes, reflects a parallel one faced by cognitive
systems: What factors are used by agents to determine which qualitative features of an
explanation are appropriate? In the present paper, we explore and model one answer
to this question: that the concepts used in the presentation of the explanandum affect
the explanans in both implicit and explicit ways. We model these ways using the Meta-
Cognitive Subsystem (MCS) of the CLARION cognitive architecture.

We do not hope, nor do we attempt, to resolve any questions regarding whether
one type of explanation is better than another. Although discussion in the philosophical
literature of the so-called intentional stance [3], the normative views of Hempel [8], and
so on, are fascinating and informative, we are here only concerned with modeling the
cognitive processes that lead humans to choose one style of explanation over another.

The remainder of this paper proceeds as follows. After further motivating the fea-
tures the modeling of which is our target, will first discuss related previous work in
modeling explanation-generation, in order to set the stage for the communication of our
own, and to introduce concepts we use in this paper such as metaknowledge, metacog-
nition, and so on (§2). In section 3, we present the cognitive architecture CLARION,
and briefly discuss recent developments in its representational capabilities which make
it possible for us to do the work we present herein. We close with brief demonstrations
in section 4, and section 5 concludes with final remarks.

1.1 Effects of the Explanandum’s Presentation

The type of feature of explanation-generation we aim to model here, which we refer to
as F effects for convenience, are the effects that the presentation of the explanandum has
on the explanation generated. If the explanandum e is a simple fact about some world,
let us define the full explanandum E as the explanandum plus all of the contextual
facts required to understand the explanandum. For example, to return to the earlier
example, the position of the chicken relative to the road, the position of the road relative
to the four cardinal directions, and so on, are all examples of facts comprising E. The
presentation of the full explanandum P(E) is a particular form of the full explanandum
E. This distinction is important. £} and E> might be considered two partial presentations
of the same full explanandum, but they differ in their presentations.

F effects, then, are those which the presentation of the full explanandum exhibits
on the explanations generated. We can further subdivide these into F, effects, and F;
effects; these are explicit and implicit effects, respectively. Examples of both in the
psychological literature are numerous, e.g. see [23,13].

Determinations of similarity based on simple featural overlap might be considered
an implicit process, or one that operates primarily using the representations on CLAR-
ION’s lower level [23], if the features in question are predominantly micro features not
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immediately verbalizable. Such similarity processes are known to be used in analogical
reasoning, particularly in the initial stages, which use surface similarity to select source
analogs from long-term memory [9, 17, 7].

But explicit processes may play a large role in explanation as well. One way to
identify explicit processes, or those that operate primarily using the representations like
those on CLARION’s top level, is to perform experiments on human subjects that re-
quire them to verbalize their thoughts in some way. In explanation, one example relates
to the so-called “self-explanation effect,” in which children who verbalize their expla-
nations seem to be able to improve the quality of their learning, and learn more [2].
This effect also applies to adults who actively create explanations for their own use [1].
Furthermore, explaining the reasoning of the beliefs and the reasoning of others also
directly enhances learning [19]; this suggests that encouraging development of theory
of mind may be helpful in teaching [31].

Our basic hypothesis for the modeling of F effects in the present paper is that the
knowledge structures used to construct explanations are selected based on parameters
in the metacognitive system, which themselves may be influenced, either explicitly or
implicitly, by the concepts used in the explanandum’s presentation.

2 Metacognition and Explanation Generation in Cognitive
Systems

In this section we provide an overview of some recent modeling of metacognition in or-
der to give the reader a feel for the state of the art in the field, and to clarify the present
paper’s contribution. Explanation, and in particular the modeling of explanation using
analogy, has been tackled before. Thagard (2012) divides the computational models of
explanation thus far into four types: probabilistic; those based on artificial neural net-
works; logical; and those based on schemas or analogy . The approach described in
this paper falls in between the last two of these four types, since the template-matching
system which we describe in the next section allows for both rule-based deductive rea-
soning and a form of analogical reasoning.

Hummel and Landy [11] propose that in explanation-generation, there are at least
three types of flexibilities required by the representations and underlying processes:
relational flexibility, the ability to see one concept as possibly playing multiple roles;
semantic flexibility, the ability to exploit partial or imperfect matches between the ob-
jects and relations comprising an explanandum and the objects and relations encoded
in potentially relevant domains in long-term memory; and an ability to map to, and
transfer elements from, multiple domains in long-term memory simultaneously. How-
ever, the third type of flexibility can lead to a variant of the type-token problem (i.e.
ambiguity about whether two elements have the same referent) against which Gentner’s
one-to-one constraint [6] is often used for defense. To fix this, they have their sys-
tem decide whether two units correspond within the context of a certain source analog
(which effectively implements a context-sensitive variant of the one-to-one constraint),
and model the system using LISA [10-12].

Friedman and Forbus [4] and Friedman [5] propose a tiered framework in which
explanations sit in a layer above that of justifications, which itself sits above a con-
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cept level. They demonstrate qualitative shifts in explanation-generation by exploiting
metaknowledge that provides information about the structures in each tier. They do
not, however, model explanation-generation for external preferences, but instead focus
on the self-explanation effect. Tailoring explanations based on the beliefs of others may
involve many types of reasoning, including modeling theory of mind [16], or having the
ability to represent nested beliefs (e.g. “I know that the person I'm talking to believes
that I believe X.”).

Let us make two broad observations from the preceding summaries of literature.
First, we see a form of metacognition in the work by Friedman and Forbus [4], in
that metaknowledge about the structures in each tier is produced, manipulated, and
reasoned over by the system. It is this sense of metacognition which we propose to
utilize in this paper, in order to (among other things) qualitatively constrain the types
of explanations which are generated by our model. The idea of qualitatively different
explanations connects to our second observation, which is that the current body of work
modeling explanation generation does not adequately address the cognitive processes
which vary the qualitatively different types of explanations and selects the ones which
are most appropriate.

Therefore, the work we propose in this paper distinguishes itself from the above
approaches, on whose shoulders our work stands, in four key ways. First, our approach
distinguishes between the full explanandum and its presentation. Second, we assume
that this presentation affects a metacognitive system which in turn constrains the type of
explanation that is generated. Third, we propose the use of specialized knowledge struc-
tures, such as templates and constraint chunks (both of which are described shortly), to
allow such constraints to take the form of highly expressive knowledge structures.

Finally, we acknowledge both explicit and implicit effects of the explanandum on
the explanation generation, and model both using the cognitive architecture CLARION,
in such a way as to take advantage of the features it provides. We next summarize the
aspects of CLARION we have used.

3 Explanation Generation in CLARION

CLARION is an integrative cognitive architecture with a several key features that we
take advantage of here. These features include dual representation, a division of cog-
nitive subsystems in a way that has previously been demonstrated to be psychologi-
cally plausible, and a flexible knowledge framework which can capture sub-conceptual,
unstructured-conceptual, and structured-conceptual knowledge simultaneously [23, 25,
14]. CLARION consists of two levels: an explicit top level and an implicit bottom
level. The top level typically contains knowledge structures and localist representations
(which may or may not be linguistic concepts) and the bottom level often contains micro
features and distributed representations. (Micro features, for our purposes here, can be
defined informally as low-level constructs that correspond to properties which are not
necessarily explicit, often because they are features that are not paid attention to by the
agent. For example, a micro feature chunk may correspond to a certain brightness of a
certain hue of the color red, or a very specific sound that can be heard precisely at three
minutes in to a specific performance of Beethoven’s 9th Symphony.) The top/bottom
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Chases

Fig. 1. A knowledge structure representing the proposition CHASES(DOG,CAT ). CDCs are pic-
tured as star-shaped. On the right is the simplified version, which omits the CDCs and many of
the ARs, though they are there (just not pictured).

level division is reflected in each of CLARION’s subsystems: the Motivational, Action-
Centered, Non-Action-Centered, and Meta-Cognitive Subsystems (MS, ACS, NACS,
and MCS, respectively). A primary focus of CLARION has been psychological plausi-
bility, and much work has been devoted to defining mechanisms within its subsystems
that are tied to known psychological phenomena and processes [22, 26, 27].

The focus in the present paper is exclusively on an interaction between the NACS
and MCS. In particular, recent work by Licato et al. has demonstrated how structured
knowledge can be represented and reasoned over using no more than the psychologi-
cally plausible mechanisms already defined in the NACS [14, 15]; we use and expand
on this method of representing structured knowledge to model explanation-generation
and its metacognitive control below.

The NACS contains declarative knowledge, or general knowledge about the world
that is not action-centered, which is often used for making inferences on the basis of its
knowledge. The top level of the NACS contains localist chunks linked to units on the
bottom level called DV pairs (Dimension-Value) pairs. The DV pairs can be linked to
each other, and the chunks can also be linked to each other. However, the links between
chunks are a special type of directed link called Associative Rules (ARs), which are
represented pictorially using arrows. All of the links between top and bottom level units
have weights that can be changed over time. This unique structure allows CLARION
to define a directed similarity measure between two chunks [30,21,26]. This simple
similarity measure can be used as part of larger algorithms used for analogical reason-
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ing, deductive reasoning, and general behaviors defined over structured representations
[14].

The MCS [24, 28] contains knowledge concerning the agent’s cognitive processes
and their outcomes, and also includes mechanisms that allow for active monitoring, reg-
ulation, and orchestration of the agent’s cognitive processes (often toward some prag-
matic goal that may be set by the MS). Like the other subsystems, the MCS is divided
into a top and bottom level; however, not much work has been focused on fully ex-
ploiting both levels productively. In [24] and [28], the MCS was mostly used as the
place where parameters which weighted processes in other subsystems were housed. In
this paper, we propose to expand on the role of the MCS by having it hold structured
knowledge analogous to that already defined in the NACS [14].

Structured knowledge in the NACS is achieved by first allowing top-level chunks to
differentiate into types: object chunks, proposition chunks, template chunks, etc. These
chunks are then linked using ARs and specialized chunks called Cognitively Distin-
guished Chunks (CDCs). For example, the proposition Chases(Dog,Cat) can be repre-
sented as in Figure 1.

3.1 Templates

Analogical and deductive reasoning are carried out by defining special structures called
Templates. These are essentially NACS structures that have been grouped under a single
Template Chunk (TC) using a CDC defined for that purpose. In deductive reasoning, a
template can specify the antecedent and consequent portions of a rule separately, so that
when a structure sufficiently matches the antecedent portion, the consequent contains
information on how to transfer the matched knowledge structure to create a new infer-
ence. Analogical reasoning can also be modeled by converting potential source analogs
into templates and relaxing the match requirements. Matching structures to templates
uses an Ant Colony Optimization algorithm inspired by [18], where the Template itself
determines what types of matches are acceptable [15].

Explanation-construction proceeds as follows. We assume that we are given a knowl-
edge base of templates. Each template is either a single structure, in which case it is to be
used as a source analog for analogical matching and inference, or the template consists
of an antecedent and consequent portion, in which case it is to be used as a deductive
inference rule (e.g. Figure 2).

Given some knowledge structure K and template 7', if a match is found from K to
T (using the minimum conditions for an acceptable match specified by T itself), then a
new structure K’ is created from the elements of K and the instructions provided by T
(these instructions are not explicitly stated by T in any way, rather they are implicit in
the template’s structure itself).!

Each template is grouped under a single Template Chunk (TC). The chunks in each
template may each be linked to DV pairs in the NACS bottom level, and the template’s
TC is linked to a disjunction of all DV pairs linked to all non-CDC chunks in the tem-
plate.

! For further detail, we direct interested readers to [14].
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Algorithm 1 The Template Selection algorithm. This is used to filter out the template
structures and select a subset of them based on how much they satisfy the constraints.

Require: Beliefs or knowledge the agent holds B = {B;}
Require: A set of template chunks 7 = {T;}
Require: A set of CCs C ={C;}
Define ¢ =0.2
forall 7, € T do
Set the activation level of T to ¢
end for
for all C; € C do
if C; is an excitatory chunk then
Set C;’s activation level to 2x ¢ [
else if C; is an inhibitory chunk then
Set C;’s activation level to —2x ¢ ]
end if
end for
Perform one iteration of Similarity-Based Reasoning to propagate activations
return Active set T, consisting of the n T; € T with the highest activation levels (typical value
for n is between 5 and 10).

3.2 Constraint Chunks and the General Explanation-Construction Algorithm

We can now introduce a new type of chunk, which we will call a Constraint Chunk
(CC). A CC is a chunk that resides on the top level of the MCS, and is used to either
bias the parameters of cognitive processes based in the other (non-MCS) subsystems,
or to point to the TC of a template which serves as a inviolable rule to constrain cogni-
tive processes. The precise way in which it performs this biasing function is described
shortly in the present section.

Just as the NACS chunks are linked to distributed units on the NACS bottom level,
CCs are also linked to distributed units on the bottom level of the MCS. However,
unless a similarity measure is defined between elements on the bottom levels of the
NACS and MCS, no similarity measure will exist between chunks on their top levels.
At least for this project, then, the design decision was made to allow the NACS and
MCS to draw from a common pool of bottom-level distributed units, so that the same
similarity measures used between two chunks of the NACS could be used from NACS
to MCS chunks.?

Explanation generation is a simple backward-chaining process that starts with a set
of knowledge structures B = {B;} corresponding to beliefs or knowledge that the agent
holds, which are not part of the full explanandum, a set of templates T = {T;}, a set of
CCs C = {C;}, and a full explanandum E.

The algorithm will start by selecting the relevant template structures. This requires
that we have a set of CCs which are currently created manually in order to allow external
users to set the qualitative features of the desired explanation, but the CCs are in such

2 This design decision is partially justified by CLARION’s view that meta-cognitive processes
are intermeshed with other processes, and although the MCS is treated as a separate subsystem,
it should really be viewed as closely integrated with the processes of the other subsystems [28].

Page 33 of 171



a form that they can later be set autonomously by the motivational or action-centered
subsystems. To carry out our demonstrations, we create two types of CCs: excitatory
CCs, used to bias certain templates into being selected; and inhibitory CCs, which in-
stead suppress and constrain the templates selected. Inhibitory and excitatory CCs can
be single chunks, or they may also serve as TCs for templated structures in the NACS.

Next, the algorithm selects 7; € T subject to the constraints set by the CCs. It does
this by activating all templates a fixed amount, and then activating excitatory CCs, al-
lowing the activation to propagate using similarity-based reasoning [20, 26] (a single
iteration was sufficient, though we could perform more later), and further activate cer-
tain templates. If any excitatory CCs serve as TCs for templated structures, then that
structure is matched with the structures in 7', and successful matches further activate
those templates. Next, inhibitory CCs are activated, but rather than further activating
similar templates, it lowers their activations.

As a result, we have a degree of activation for each 7; € T which reflects the con-
straints defined by the CCs. We collect the top n template chunks with the highest
activations. This resulting set of templates is called the active template set (Ty). The
pseudocode for the creation of 7y is shown in Algorithm 1.

The backward-chaining process can now begin. The algorithm starts by defining S
as the set of facts in the full explanandum E. The templates are momentarily reversed:
If some fact s € S matches the conclusion portion of a template in Ty, inference is
performed on the antecedent portion of that template to produce a new set of facts,
which replace s in S. If any of these newly added facts match beliefs in B, they are
removed from S. This constitutes a single iteration of the backward-chaining process,
which repeats until either S is empty, no more facts are found that can be added to S, or
a preset time limit is reached. The remaining facts in S are then outputted as abductive
assumptions.

We offer the pseudocode describing the general explanation-construction algorithm
in Algorithm 2.

Algorithm 2 The General Explanation Generation algorithm.

Require: Beliefs or knowledge the agent holds B = {B;}
Require: A set of active templates T4 obtained through Algorithm 1.
Require: Set of facts § = {s;} in full explanandum E.
Let currAssumptions < S
while currAssumptions ¢ B or timeout not yet reached do
for all7 € Ty do
if Consequent of 7 matches some f € currAssumptions and f ¢ B then
Let A = The facts comprising the antecedent of
currAssumptions < (currAssumptions — {f})|JA
end if
end for
end while
return currAssumptions as the abductive explanation of E.
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4 Demonstrations

Our very brief proof-of-concept demonstrations will serve as examples for testing the
model we describe in this paper. These examples attempt to construct explanations
when given a small knowledge-base, using the analogical comparison and transfer
mechanisms defined in the NACS and the constraints in the MCS.

A

Fig. 2. A template representing the inference that a certain fox (the subscript 3 is meant to denote
that it is a particular fox from a story with the label F3) wants grapes that he cannot reach, and
therefore he decides that those grapes are sour. Following the notation defined in [14], the chunks
with double lines are part of the consequent, and the horizontal double-lines connecting chunks
are identity links. Assume that there is a template with chunks a, b connected by an identity link.
Next, the template-matching algorithm may attempt to match two chunks ¢’ and b’ to a and b,
respectively. But because of the identity link, a’ and 5" must have an extremely high similarity
(using the measure defined in [26]).

4.1 Modeling F; and F Effects

In order to clarify how we model the implicit and explicit effects of full explanandum
presentation on explanation, we present a simple example demonstration that generates
explanations for why a chicken crossed the road. The two full explananda, presented
here in English for readability, are:

E; The chicken decided to cross the road; the chicken was heading East.

E, The chicken’s body moved, crossing the road; the chicken was heading
East.
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Note that there is a very subtle difference in presentation: E; invokes the concept
of “deciding” whereas E, does not. The algorithm will construct a new CC by simply
creating a new chunk whose connected DV pairs are the disjunction of the DV pairs
connected to the chunks in P(E), the presentation of the full explanandum. This new
CC bias the templates selected in the explanation-generation step, and thus will allow
us to test Fj constraints. The templates provided to the system would include:

— If there is wind blowing east, and that wind is blowing on an object o, then o will
move east.

— If ¢ wants to achieve goal g, and g requires that action a happen, then ¢ will decide
to perform action a.

— If there is an object o that is East of ¢, and c likes o, then ¢ will want to achieve the
goal of moving East.

— If the chicken wants to achieve the goal of moving East, then the action of the
chicken crossing the road must happen.

We now run the explanation-generation algorithm, and output the top explanation
generated. When full explanandum E; was used, the explanation generated the majority
of the time (presented here again in English for readability) was:

Assume there is an object o that is East of the chicken. Assume the chicken likes
0. The chicken will want to achieve the goal of moving East. The action of the
chicken crossing the road must happen. The chicken will decide to cross the
road.

Whereas when E, was used, the explanation was:

Assume that there is wind blowing east. Assume that wind is blowing on the
chicken. The chicken will move east.

Explicit effects are modeled by creating an inhibitory CC that is also the template
chunk for a structure corresponding to the proposition p = “The wind is blowing east.”
This will attempt to prevent any explanations that have p as one of its intermediate
structures.

We ran the trial with E), as the full explanandum, except this time the inhibitory
CC corresponding to p is included. As expected, the explanations which require that
the wind is blowing east are suppressed, and the explanation is generated as if E; were
provided instead.

5 Conclusion / Future Work

It is increasingly important that cognitive systems be able to explain and justify their
conclusions and choices to the humans they will inevitably work with. For such sys-
tems, generating qualitatively different types of explanations may be essential. Using
the work we have presented in this paper, such a thing can be accomplished with a
few parameter changes in a meta-cognitive system. These parameters may be changed
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autonomously according to contextual factors, or by normal processes rooted in CLAR-
ION’s subsystems, such as the ACS, MCS, or MS. We have presented a model that can
explain produce explanations at different levels of abstraction, like £y and E; in this
paper’s introduction.

The work here is certainly not complete; a much wider variety of explanations must
eventually be addressed. For example, the ability to justify behaviors using a proof de-
fined in a fully formalized logic is (for some domains) a glaring absence to be tackled
soon, but the work in this paper can be used as a springboard for moving in that direc-
tion.

An obvious next step is to flesh out the proof-of-concept demonstration briefly de-
scribed in this paper, and to examine how it performs when provided with a much larger
knowledge-base. Furthermore, more sophisticated deductive reasoning is necessary to
augment the part of our explanation-generation algorithm that uses inhibitory CCs cor-
responding to full structures. In the demonstration we presented herein, p =*“The wind
is blowing east.” was used to find and suppress templates that may have led to inter-
mediate propositions equivalent to p. But if a template leads to a logically equivalent
proposition such as “The wind is not not blowing east,” our algorithm would have failed.

Finally, our current system does not demonstrate learning. If the templates drawn
on by the explanation generator are insufficient, then presumably a human would even-
tually learn a new set of templates, somehow; this is not modeled in the present work.
Clearly, there is much to do.

This work was funded by grant NO00141310342 from the Office of Naval Research.
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