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Abstract. Symbolic accounts of cognitive architecture most often have a central 
hub where information is processed (e.g. the production process in ACT-R [1]).  
An alternative approach is to model cognition as the interaction of multiple 
largely autonomous subsystems [2, 3].  This latter, Interacting Subsystems, ap-
proach is explored in the GLAM-PS cognitive architecture, a theory that opera-
tionalizes many of the assumptions of strongly grounded approaches to cogni-
tion [4].  The GLAM-PS model of problem solving in algebra is described. 
Control in the algebra model is passed between three subroutines when solving 
a problem.  These subroutines emerge from the interaction of different subsys-
tems and are not explicitly programmed into the model.  By systematically var-
ying two short-term memory parameters it is shown that the model’s successful 
performance of the task depends on the interaction of the contributing modules, 
and that this interaction demonstrates complexity, with additional memory re-
sources not always improving performance. 
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1 The Interacting Subsystems approach to cognition 

Cognitive Architecture has been established as a key research area within Cognitive 
Science following seminal work between 1970 and 1990 [5, 6, 7].   Although a lot of 
recent work has focused on either the ACT-R Architecture (e.g. [1]) or large-scale 
neural network models (e.g. [8]), there remain a wide variety of approaches to 
modeling Cognitive Architecture (e.g. [3], [9]).  The purpose of the current paper is to 
look at cognitive control within a particular subset of these approaches. 

In ACT-R and other notable architectures cognitive control is an aspect of cognition 
that is explicitly modeled, with specialist cognitive modules taking responsibility for 
the representation of goals and the selection of action.   This reflects a consensus view 
of how the physical brain is specialized within different anatomical areas, notably the 
identification of the basal ganglia with action selection, and the frontal areas of the 
brain with the influence of intention [1], [8].  Thus in ACT-R the matching of IF-
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THEN production rules is centralized in a module that is mapped on to the basal 
ganglia, with the representation of goals handled by a separate module mapped on to 
the anterior cingulate cortex (a frontal area) [1].  In the SPAUN Architecture intention 
is controlled in neural networks mapped on to the frontal cortex and action selection 
is mapped on to the basal ganglia [8]. 

However there are logical objections to this approach that become particularly 
apparent when one examines the relationship between neural networks and production 
systems.  Both in essence are doing the same thing, the association of an output with a 
particular configuration of inputs.  Whilst there are clearly differences between 
production systems and neural networks in how areas such as partial matching of 
configurations, generalization and one trial learning are handled, both can be 
considered methods of representing configural associations.  The logical objections 
arise because anatomically there are networks of neurons present throughout the brain 
and it follows that these will be able to compute configural associations.   Symbolic 
approaches to cognition clearly indicate that configural associations are the key 
underlying process in action selection and cognitive control.  Therefore it would seem 
particularly strange that these key processes are modeled as strongly centralized in 
leading Cognitive Architectures when configural associations can be computed in 
many distinct parts of the brain. 

An alternative approach is found in Architectures that use distributed interacting 
subsystems.  Barnard’s Interacting Cognitive Subsystems (ICS) approach [2] to 
cognition and emotion theorized how such an approach could model complex tasks. 
In Barnard’s theory there are separate morphonolexical, propositional, object and 
implicational subsystems, each of which processes and translates symbolic output 
from the other subsystems.  Whilst ICS has proved influential in highlighting the 
potential of interacting subsystems, the approach was not computationally 
implemented in full and did not compute configural associations (it’s subsystems 
simply translated one symbol into another).  A more recent interacting subsystems 
approach is 4CAPs [3], an example of a Cognitive Architecture that was directly 
inspired by knowledge from neuroscience.  The emphasis on 4CAPS is on modeling 
higher cognition, with amodal subsystems modeled including Left and Right 
Hemisphere Spatial and Executive centres.   

The focus however within this paper is on GLAM-PS an interacting subsystems 
approach to embodied cognition.   The idea of emergent control and action selection 
in a distributed system is particularly relevant to modeling embodied cognition 
because of the emphasis therein on modal rather than amodal cognitive systems.  
Modal subsystems are those directly associated with perception and action, in which 
the grounding of symbols (see [10]) in the external world is clearly indicated.  
Amodal subsystems are those that are not directly associated with perception or action 
(e.g. the goal module in ACT-R).   

The plan for the paper is as follows, to briefly describe the GLAM-PS cognitive 
architecture, to demonstrate how cognitive control is modeled in a simple algebra 
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problem solving task, and then finally to demonstrate the emergence of complexity in 
the algebra model by exploring the effects of small variations in the starting parame-
ters of the GLAM-PS Architecture in the algebra task.  Algebra was chosen because it 
is a paradigmatic task for studying Cognitive Architecture that has often been used by 
John Anderson to illustrate how ACT-R works (e.g. [1]).  In the remainder of the 
paper ACT-R is used as for comparison purposes as an example of a mature, widely 
used symbolic Cognitive Architecture. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. A simplified view of the GLAM-PS architecture showing the four modules used in the 
Algebra Model and communication between these modules.  PM is the Production Memory. 

2 The GLAM-PS Cognitive Architecture 

GLAM-PS shares a distributed modular structure with 4CAPS and ICS, however, 
whilst these Architectures make widespread use of amodal representation, GLAM-PS 
is intended to explore the implications of a strongly grounded distributed Architecture 
for cognition (see [4] for a review on Grounded Cognition).  Whilst comparisons with 
ICS are difficult as it was never fully implemented, if we compare GLAM-PS to 
4CAPS (arguably the most similar Architecture) it can be seen that GLAM-PS takes 
an outside-to-inside approach to modeling Cognitive Architecture, wherein peripheral 
processes dominate cognition.  By contrast 4CAPS takes an inside-to-outside 
approach.  The anatomical areas of the brain featured in 4CAPS do not map easily on 
to the modules described by GLAM-PS, instead the latter features modules that map 
on to the sensory and motor areas of the cortex.   Grounded Cognition [4] suggests 
much of cognition is driven by these peripheral systems and a major novel 
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contribution of GLAM-PS is to implement these ideas computationally in a symbolic 
architecture.  

A simplified diagrammatic representation of the Architecture is shown in Fig. 1, with 
the two perception and two action modules used in the algebra task model included 
(no other modules are used for modeling this task).  Both long-term and short-
term/working memories are stored and revivified in the modules that originally 
processed what is being remembered.  However, each module influences the behavior 
of other modules via the mechanism of inter-module communication of the current 
contents of working memory.  In this manner the actions (productions) chosen in a 
module are based upon a composite view of working memory across all modules.  
Whilst this mostly acts like a single unified working memory there is a delay 
associated with inter-module communication.  The implication of this is that a given 
module has an up-to-date view of its own working memory, but a delayed view of 
working memory in other modules (! is the GLAM-PS global parameter defining this 
delay in term of production cycles, it is set to 4 in the model reported here). 

All long-term memories are stored as productions in GLAM-PS (following early 
SOAR [8]) using a classic IF-THEN structure.  For simplicity and to improve 
plausibility all productions can only have a single action associated with the THEN 
side and the IF side is only able to check for the presence or absence of a 
representation (no programming code is allowed).  When actions are represented in 
the action modules they are not necessarily executed and can be used to reason 
without action.  Actions are only executed once they become ‘Super Activated’, a 
process whereby their activation level is raised substantially above the level needed 
for representation. Only once an Action Execution Threshold (global parameter !) is 
surpassed will the action be executed.  Thus GLAM-PS is able to represent and then 
reason about actions without necessarily executing them. 

Whilst the modules shown in Fig. 1 can be thought of as mapping on to sensory and 
motor areas of the brain, the processes associated with inter-module communication 
can be thought of as mapping on to the higher cortical areas (e.g. prefrontal cortex).  
This is a distinctly different interpretation of cortical function from many existing 
accounts.  Whilst currently GLAM-PS makes no specific claims about how inter-
module communication should be mapped on to the brain anatomically, it is 
nevertheless a potentially interesting future direction. 

3 Cognitive Control in the GLAM-PS Algebra Model 

The GLAM-PS Algebra Model (GAM) solves simple linear problems of the form 
!"! + !!! = !!, for instance 2!! + !4! = !10 (where the solution is !! = !3).  To solve 
the problem GLAM-PS, like most human solvers [1], must proceed through three 
distinct stages or sub-goals, first reading and encoding the problem, then resolving the 
addend (the ! term), before resolving the multiplier (the ! term).  The cognitive steps 
used by GLAM-PS are in essence the same as those used by Anderson’s ACT-R 
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model of the same task [4], what differs here however is how cognitive control is 
achieved. 

Two types of cognitive control problems occur in GAM, firstly moving between sub-
goals and secondly combining actions in such as was as to solve each sub-goal.  The 
latter of these is relatively easy for GLAM-PS as it typically involves a sequence of 
actions where the result of the preceding action acts as the trigger for the next action 
in the sequence.  In the failed runs reported in section 4 it is rarely the case (< 1%) 
that failure occurs because of a failure to sequence actions within a sub-goal, instead 
failures occur because the actions needed to begin a sequence that achieves a sub-goal 
are not initiated. Hence it is the first type of cognitive control, moving between sub-
goals, that GLAM-PS finds difficult (for example beginning the process of resolving 
the addend once the problem has been encoded). 

 

 

 

 

 

 

 

 

 

Fig. 2. Visualization of state of the GLAM-PS Algebra Model (GAM) when the control state 
has been established that begins transition from the Reading sub-goal to Solving the Addend 
sub-goal when solving 3!! + !5! = !11.  Working memory elements (WMEs) are depicted as 
squares with area proportional to their activation.  The WMEs contributing to the control state 
are circled in red, with their locus of action indicated by arrows pointing to the Visual Input 
production memory.  GAM’s current eye fixation is depicted on the left. Cycle indicates the 
number of production cycles from the beginning of simulation run. 

Here we refer to the conditions that need to be satisfied to begin solving a sub-goal as 
the Control State.  Within a distributed cognitive architecture the Control State needed 
to begin a new sub-goal will often be based on the state of multiple subsystems.   If 
each of these subsystems is largely independent of one another then it can become 
difficult to achieve the required Control State.  This is less of a problem in centralized 
architectures where a higher degree of control is possible and there is no need to 
coordinate representations across multiple subsystems.   The control state needed to 
move between reading the algebra problem and solving it is shown in Fig 2. 
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In Fig 2. the state of GLAM-PS’s working memory is visualised after the GAM has 
read the equation.   As well as visual representations of the equation in the Visual 
Input module, GLAM-PS also has phonological representations of the equation in the 
Speech output module, the result of having read the equation.  The lines between 
representations indicate structural links.  The control state necessary to begin the 
solving of the equation by unwinding the addend consists of four representations 
across three different modules, these are the visual representation of the ‘3!’ and the 
‘+5’, the oculomotor representation of the ‘+5’ location (indicating attention is 
focused on the ‘+5’) and the phonological representation of the ‘11’ (indicating that 
the last element of the equation has been read and thus that the equation has been 
encoded).  The production that matches this control state is a Visual Input production 
that acts by inhibiting the representation of the ‘+5’.  Once this representation is 
inhibited a sequence of actions is initiated that relocates the ‘+5’ to after the ‘11’ in 
the equation (using imagery that is projected into the visual input module), GLAM-PS 
then changes the sign and then computes their combined value (eleven minus five).    

 

 

 

 

 

 

 

 

 

 

Fig. 3. Visualisation of the state of GAM when the control state has been established that be-
gins the sub-goal of resolving the multiplier (the ‘3’ in ‘3!’). See caption to Fig 2. for key. 

The control state that is required to move between resolving the addend and the 
subsequent sub-goal of resolving the multiplier (the ‘3’ in the example) is shown in 
Fig 3.  Again, the control state is established through the combined presence of four 
working memory elements, this time across two modules.  This consists of visual 
representations of the ‘3!’ and a projected/imagined ‘6’ (the result of the last sub-
goal) and adjacent phonological representations of the ‘3!’ and the ‘=’, together 
these confirm that the addend has been resolved (the phonological representation is 
needed to confirm there are no other unresolved terms on the ‘3!’ side of the 
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equation).  The sequence of actions needed to resolve the multiplier is then initiated 
by a production in the Visual Input module that inhibits the ‘3!’ visual representation, 
allowing it to be subsequently broken into ‘3’ and ‘!’ elements using imagery. 

A key point is that in both of the transitions illustrated in Fig. 2 and Fig. 3 the control 
state consists of combinations of perceptual and motor representations, each of these 
representations is also used for perception or action (respectively), there are no 
abstract context or goal representations to force a particular cognitive subroutine to 
take control.  This compares to ACT-R and other architectures where sub-goaling is 
used to ensure that only productions that solve the active sub-goal can be matched and 
executed, by contrast in GLAM-PS all productions are considered all of the time by 
the production matching process.  Despite this GLAM-PS is able to demonstrate both 
task sufficiency and subroutine following in an Algebra task that can be considered a 
classic sub-goaling paradigm.  This control is characterised as emergent because of 
the absence of any explicit control process within the modelling of the task. 

In conclusion cognitive control in the GLAM-PS Algebra Model emerges from the 
interaction of working memory elements in multiple cognitive subsystems.  When 
information from these different subsystems is combined there is sufficient 
information to indicate what actions the systems has taken previously and what still 
needs to be achieved.  In Taatgen’s work on the Minimal Control Principle [11] he 
indicates that often there will be sufficient information in a system to control action 
with only minimal need for explicit control representations.  Whilst Taatgen clearly 
imagines that some form of goal representation will remain, in this GLAM-PS model 
there is no need for explicit goal representation.  In short control is totally emergent 
[12].  Whether some form of goal representation would be needed once a more 
complex, multi-faceted model is considered is an open question.  Certainly sometimes 
people want to simply read and equation, whilst at other times they need to solve 
them, though it could be the case that there are always enough clues in the external or 
internal environment to distinguish the two scenarios and establish an appropriate 
Control State. 

4 The Emergence of Complexity in Interacting Cognitive 
Subsystems 

Symbolic cognitive architectures often behave in a very predictable way, something 
that is often true of Production System Architectures.  Once a set of productions has 
been ‘programmed’ into the system then these productions will provide a stable 
model of performance.  This typically reflects the explicit use of goal representation 
that guides performance toward the achievement of that goal.  Failure to achieve the 
goal would typically be modelled by the forgetting of the goal due to distraction [13].  
Sometimes multiple strategies of achieving a set goal might be modelled and it is 
often the case that random ‘noise’ parameters will be used to help capture the 
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variation in human performance that is observed from trial to trial in individual 
participants (e.g. [14]).   

Much of the stability seen in established architectures is the result of centralised 
decision making.   For example only one goal can be followed at a time in ACT-R [1] 
(though see [15]).  When an architecture utilising multiple Interacting Subsystems is 
considered then complexity and instability may well emerge from the unpredictable 
interaction of the multiple distinct decision cycles in the component subsystems.  If 
information from one module arrives at another module just one decision cycle later 
in one simulation run as compared to another, then the behaviour of the whole system 
might change very significantly over the full course of that run.    

In order to explore the nature of the interaction of the multiple subsystems used in the 
GLAM-PS Algebra Model (GAM) a series of 1,170 simulation runs were conducted 
of the model with systematic variation of two working memory parameters.  Note that 
the model used in the runs was deterministic without any randomised elements. 

Working memory in GLAM-PS is module specific, with each module’s working 
memory currently governed by the same global parameters and equations.  Each 
working memory element has an activation varying from 0 to 1.  To be matched by a 
production then a working memory element must have an activation greater than 
global parameter !.   Each working memory also has a total activation limit, global 
parameter !.  If the creation or change in activation of a working memory element 
takes the total activation within a module’s working memory above !, then the 
activation associated with all other elements in that module’s working memory is 
adjusted so that total activation is equal to !.  

To explore the impact of small changes in working memory availability on GAM the 
parameter ! was systematically varied from .01 to .39 in increments of .01, this was 
combined the systematic variation of ! from 1.0 to 3.9 in increments of .1.   On each 
simulation run the total number of cycles taken to solve the algebra equation 
3!! + !5! = !11 was measured.  The results of these simulation runs are displayed 
graphically in Fig 4. 

The first aspect to consider of the results of these simulations runs is the vulnerability 
of the GAM model to failure.  As ! dips below 3.0 and as ! increases it becomes 
increasingly more likely that GLAM-PS will not be able to solve the equation.  An 
examination of failed runs clearly indicates that almost all (>99%) result from the 
failure to establish a control state that allows transition between one sub-goal and the 
next.  According to the GAM model establishing that one sub-goal has been 
completed and then finding a suitable way to begin the next is difficult and prone to 
failure if working memory is compromised (e.g. by distraction).  This broadly fits in 
with what has been observed in human participants, who typically take more time to 
complete steps of a problem that involve starting a new sub-goal [13]. 
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The second aspect we see in the simulation runs is the emergence of complexity.  One 
might reasonably expect that as each module’s total working memory capacity, !, 
increases then the likelihood of solving the equation would also increase.  This is 
broadly the case, but there are many exceptions to this shown in Fig 4.   Similarly as 
the production matching process becomes increasingly strict, matching fewer working 
memory elements (as ! increases), one would expect failures to become more likely, 
but again this is not always the case. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. A graphical display of the number of decision cycles needed to complete the equation 
3!! + !5! = !11 by the GLAM-PS Algebra Model when working memory capacity (!) and the 
activation needed to match productions (!) were systematically varied.  Light blue indicates the 
model did not solve the equation.  The data is displayed in partial 3D and lit from the x-axis.  

 

Indeed if one examines Fig 4, the parameters determining failure and success appear 
to influence these outcomes in a non-linear manner.  If one considers the point where 
! = 2.3 and ! = .13 then GAM fails, yet if we were to either increase or decrease 
either parameter by a fraction then GAM succeeds.  Instead of a smooth curve or a 
straight line defining the regions where we see success versus where we see failure, 
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what is shown in Fig 4. has more similarity to a geographical coastline.   Even where 
there are successes the number of cycles taken to succeed varies unpredictably, the 
smoothness of the area in the top left (around ! = 3.5, ! = .03; though note the 
failures at ! > 3.7, ! < .04) can be contrasted with the peaks and troughs found in 
other areas where successes prevail (e.g. around ! = 3, ! = .1, the default parameter 
settings).  The pattern observed in Fig 4. reflects the chaotic nature of the interaction 
of the multiple subsystems in the GLAM-PS Algebra Model.  In short, complexity 
emerges from Interacting Subsystems.  

5 Conclusion 

The GLAM-PS Algebra Model demonstrates how both cognitive control and 
complexity emerges from the Interaction of Multiple Subsystems in Cognitive 
Architectures that adopt an Interacting Cognitive Subsystems approach [2].  The 
model is notable for not using any explicit goal representation, instead showing how 
control is based on Control States in working memory.  Each of these Control States 
contain sufficient information about what the system has done previously and about 
what the system needs to do, to enable the initiation of purposeful, self-perpetuating 
sequences of behaviour.  The simulation runs reported, exploring working memory 
parameter space, demonstrate how the model is vulnerable to failure when working 
memory is reduced or compromised, and how the interaction of cognitive subsystems 
is chaotic and somewhat unpredictable in nature. 

 

References 

1. Anderson, J. R.: How Can the Human Mind Occur in the Physical Universe? Oxford Uni-
versity Press, New York (2007) 

2. Barnard, P. J.: Interacting Cognitive Subsystems: Modelling Working Memory Phenome-
na Within a Multiprocessor Architecture. In A. Miyake & P. Shah (Eds.) Models of Work-
ing Memory: Mechanisms of Active Maintenance and Executive Control, pp. 298-339, 
Cambridge University Press, Cambridge, UK (1999) 

3. Just, M. A., Varma, S.: The Organization of Thinking: What Functional Brain Imaging 
Reveals About the Neuroarchitecture of Complex Cognition. Cognitive, Affective, & Be-
havioural Neuroscience 7, 153-191 (2007) 

4. Barsalou, L. W.: Grounded Cognition. Annual Review of Psychology 59, 617-645 (2008) 
5. Newell, A., Simon, H. A.: Human Problem Solving. Prentice-Hall, Englewood Cliffs, NJ 

(1972) 
6. Anderson, J. R.: The Architecture of Cognition. Harvard University Press, Cambridge, MA 

(1983) 
7. Newell, A.: Unified Theories of Cognition. Harvard University Press, Cambridge, MA 

(1990) 
8. Eliasmith, C.: How to Build a Brain: A Neural Architecture for Biological Cognition. Ox-

ford University Press, New York (2013) 

Page 48 of 171



9. Sun, R.: Duality of the Mind: A Bottom-up Approach Toward Cognition.: Lawrence Erl-
baum Associates,  Mahwah, NJ (2002) 

10. Harnad, S.: The Symbol Grounding Problem. Physica D 42, 335-346 (1990) 
11. Taatgen, N. A.: The Minimal Control Principle. In W. Gray (Ed.), Integrated Models of 

Cognitive Systems. Oxford University Press, New York (2007) 
12. Cooper, R. P.: Cognitive Control: Componential or Emergent? Topics in Cognitive Sci-

ence 2, 593-613 (2010) 
13. Altmann, E. M., Trafton, J. G.: Memory for Goals: An Activation-Based Model.  Cogni-

tive Science 26, 39-83 (2002) 
14. Lovett, M. C., Daily, L. Z., Reder, L. M.: Modeling Individual Differences in Working 

Memory Performance: A Source Activation Account in ACT-R. Cognitive Science 25, 
315-353 (2001) 

15. Salvucci, D. D., Taatgen, N. A.: Threaded Cognition: An Integrated Theory of Concurrent 
Multitasking. Psychological Review 115, 101-130 (2008) 

Page 49 of 171


