
Biologically Plausible Modelling of Morality

Alessio Plebe

Department of Cognitive Science – University of Messina
v. Concezione 8, Messina, Italy

aplebe@unime.it

Abstract. Neural computation has an extraordinarily influential role in
the study of several human capacities and behavior. It has been the dom-
inant approach in the vision science of the last half century, and it is cur-
rently one of the fundamental methods of investigation for several higher
cognitive functions. Yet, no neurocomputational models have been pro-
posed for morality. Computational modeling in general has been scarcely
pursued in morality, and existent non-neural attempts have failed to ac-
count for the mental processes involved during moral judgments. In this
paper we argue that in the past decade the situation has evolved in
a way that subverted the insu�cient knowledge on the basic organiza-
tion of moral cognition in brain circuits, making the project of modeling
morality in neurocomputational terms feasible. We will sketch an original
architecture that combines reinforcement learning and Hebbian learning,
aimed at simulating forms of moral behavior in a simple artificial con-
text.
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1 Introduction

Neural computation has an extraordinarily influential role in the study of several
human capacities and behavior, however no neurocomputational models have
been proposed yet for morality, a failure clearly due to the lack of empirical
brain information.

On the other hand, there have been computational approaches oriented to-
ward an understanding of morality di↵erent from neurocomputation, we will
briefly review two main directions: formal logic and the so-called Universal Moral
Grammar. It will be shown that both lines of research, despite their merits, will
fail in giving an account of the mental processes involved during moral cognition.

In this paper we argue that in the past decade the situation has evolved in a
way that makes the project of modeling morality in neurocomputational terms
feasible. Even if there are no moral models yet, existing developments in simu-
lating emotional responses and decision making are already o↵ering important
frameworks that we think can support the project of modeling morality. The
existing models deemed closer to what pertains to morality will be shortly re-
viewed. We will also sketch an original architecture that combines reinforcement
learning and Hebbian learning, aimed at simulating forms of moral behavior in
a simple artificial context, and show its few preliminary results.
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2 Other approaches to moral computing

Two computational accounts of morality, di↵erent from neurocomputation, will
be briefly reviewed here.

The first, with the longest tradition, has been aimed at including morality
within formal logic. Hare [18] assumed moral sentences to belong to the gen-
eral class of prescriptive languages, for which meaning come in two components:
the phrastic which captures the state to be the case, or command to be made
the case, and the neustic part, that determines the way the sentence is nodded
by the speaker. While Hare did not provided technical details of his idea for
prescriptive languages, in the same years Wright [31] developed deontic logic,
the logical study of normative concepts in language, with the introduction of the
monadic operators O(·), F (·), and P (·) for expressing obligation, prohibition and
permission. It is well known that all the many attempts in this directions engen-
der a set of logical and semantic problems, the most severe is the Frege-Geach
embedding problem [12]. Since the semantics of moral sentences is determined
by a non-truth-apt component, like Hare’s neustic, it is unclear how they can be
embedded into more complex propositions, for example conditionals. This issue
is related with the elimination of the mental processes within the logic formal-
ism, and in fact viable solutions are provided by proponents of expressivism,
the theory that moral judgments express attitudes of approval or disapproval,
attitudes that pertains to the mental world.

One of the best available attempt in this direction has been given by Black-
burn [3] with variants of the deontic operators, like H!(·) and B!(·), that merely
express attitudes regards their argument: “Hooray!” or “Boo!”. Every expres-
sive operator has its descriptive equivalent, given formally by the |·| operation.
An alternative has been proposed by Gibbard [13] in possible worlds semantics,
defining an equivalent expressivist friendly concept, that of factual-normative
world hW,Ni where W is an ordinary Kripke-Stalnaker possible world, while N ,
the system of norms, is characterized by a family of predicates like N -forbidden,
N -required. If a moral sentence S is N -permitted in hW,Ni then it is said to
hold in that factual-normative world. Both proponents acknowledge the need
of moving toward a mental inquire, but their aim did never translated into an
e↵ective attempt to embed genuine mental processes in a logic system.

The second account here sketched, was apparently motivated by filling the
gap left by formal logic, the lack of the mental processes in morality. The idea
that there exists a Universal Moral Grammar, that rules human moral judgments
in analogy with Chomsky’s Universal Grammar, was proposed several decades
ago [26], but remained disregarded until recently, when resuscitated by Mikhail
[22], who fleshed it out in great detail.

His fragment of Universal Moral Grammar is entirely fit to the “trolley
dilemma”, the famous mental experiment invented by Foot [10], involving the
so-called doctrine of the double e↵ect, which di↵erentiates between harm caused
as means and harm caused as a side e↵ect, like deviating a trolley to save peo-
ple, but killing another one. Mikhail refined importantly the trolley dilemma, by
inventing twelve subcases that catch subtle di↵erences. subjects. The model he
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developed had the purpose of computing the same average responses given by
subjects on the twelve trolley subcases. It is conceived in broad analogy with a
grammatical parser, taking as input a structured description of the situation and
a potential action, the moral grammar, and producing as output the decision if
the potential action is permissible, forbidden, or obligatory. At the core of the
grammar there is a “moral calculus”, including rewriting rules from actions to
moral e↵ects.

The rules are carefully defined in compliance with American jurisprudence,
therefore this grammatical approach looks like a potential alternative to logical
models of jurisprudence, but it is claimed to simulate the mental processes of
morality. Unfortunately nothing in his model is able to support such claim. The
incoherence is that all the focus in the development of Mikhail is in the de-
scriptive adequacy, the simplicity, and the formal elegance of the model, without
any care on the mental plausibility. This is correct for an external epistemology,
which was probably the original position of Rawls. But a model constructed
on a strict external project, and in analogy with a well established mathemat-
ical framework (formal grammar) could well have principles quite at odds with
anything that is subserved by a specific mental mechanism.

3 Toward moral neurocomputing

It is manifest that for the internal enterprise, the modeling of choice should be
neural computation, the attempt to imitate the computational process of the
brain, in certain tasks. Neurocomputational approaches to morality were unfea-
sible without a coverage of empirical brain information [16]. A main realization
to emerge from all the work done so far is that there is no unique moral module.
There is no known brain region activated solely during moral thinking, while a
relatively consistent set of brain areas that become engaged during moral rea-
soning, is also active in di↵erent non moral tasks. In brief, the areas involved in
morality are also related to emotions, and decision making in general [15, 23, 6].

Not every human decision is morally guided, nor does moral cognition neces-
sarily produce decisions, however, investigations on the computational processes
in the brain during decision taking, are precious for any neurocomputational
moral model. Reinforcement learning [27] is the reference formalization of the
problem of how to learn from intermittent positive and negative events in order
to improve action selection through time and experience. It has been the basis
of early models using neuronlike elements [1], and the concepts of reinforcement
learning have been later fitted into the biology of neuromodulation and decision
making [8, 5].

The model GAGE [32] assembles groups of artificial neurons corresponding
to the ventromedial prefrontal cortex, the hippocampus, the amygdala, and the
nucleus accumbens. It hinges on the somatic-marker idea [7], feelings that have
become associated through experience with the predicted long-term outcomes
of certain responses to a given situation. GAGE implementation of somatic-
markers was based on Hebbian learning only, while reinforcement learning has
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been adopted in ANDREA [21], a model where the orbitofrontal cortex, the
dorsolateral prefrontal cortex, and the anterior cingulate cortex interact with
basal ganglia and the amygdala. This model was designed to reproduce a well
known phenomenon in economics: the common hypersensitivity to losses over
equivalent gains, analyzed in the prospect theory [19]. The overall architecture of
these models have several similarities with those of [11], in which the orbitofrontal
cortex interacts with the basal ganglia, but more oriented to dichotomic on/o↵
decisions. A main drawback of all the models here mentioned is the lack of
sensorial areas, that makes them unfit to be embedded even in the simplest form
of environment in which a moral situation could be simulated.

4 The proposed model

LGN

taste

vmPFC

Amygdala

OFC

retina
retina’

LGN’

VS

MD

Fig. 1. Overall scheme of the model, composed by LGN (Lateral Geniculate Nucleus),
V1 (Primary Visual Area), OFC (OrbitoFrontal Cortex ), VS (Ventral Striatum), MD
(Medial Dorsal Nucleus), Amyg (Amygdala), vmPFC (ventromedial PreFrontal Cor-
tex ).

The proposed model is able to simulate one specific moral situation, by in-
cluding parts of the sensorial system, in connections to emotional and decision
making areas. In the world seen by this artificial moral brain architecture there
are three types of objects, two are neutral, and only one, resembling an apple, is
edible, and its taste is pleasant. However, fruits in one quadrant of the scene are
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forbidden, like belonging to a member of the social group, and to collect these
fruits would be a violation of her/his property, that would trigger an immediate
reaction of sadness and anger. This reaction is perceived in the form of a face
with a marked emotion. The overall scheme is shown in Fig. 1. It is composed
by a series of sheets with artificial neural units, labeled with the acronym of the
brain structure that is supposed to reproduce. It is implemented using the To-
pographica neural simulator [2], and each cortical sheet adheres to the LISSOM
(Laterally Interconnected Synergetically Self-Organizing Map) concept [30].

There are two main circuits that learn the emotional component that con-
tributes to the evaluation of potential actions. A first one comprises the or-
bitofrontal cortex, with its processing of sensorial information, reinforced with
positive perspective values by the loop with the ventral striatum and the medial
dorsal nucleus of the thalamus. The second one shares the representations of
values from the orbitofrontal cortex, which are evaluated by the ventromedial
prefrontal cortex against conflicting negative values, encoded by the closed loop
with the amygdala. The subcortical sensorial components comprise LGN at the
time when seeing the main scene, the LGN deferred in time, when a possibly
angry face will appear, and the taste information.

4.1 Equations at the single neuron level

The basic equation of the LISSOM describes the activation level xi of a neuron
i at a certain time step k:

x(k)
i = f

⇣
�Aai · vi + �Eei · x (k�1)

i � �Hhi · x (k�1)
i

⌘
(1)

The vector fields vi, ei, xi are circular areas of radius rA for a↵erents, rE
for excitatory connections, rH for inhibitory connections. The vector ai is the
receptive field of the unit i. Vectors ei and hi are composed by all connection
strengths of the excitatory or inhibitory neurons projecting to i. The scalars
�A, �E, �H, are constants modulating the contribution of a↵erents, excitatory,
inhibitory and backward projections. The function f is a piecewise linear approx-
imation of the sigmoid function, k is the time step in the recursive procedure.
The final activation of neurons in a sheet is achieved after a small number of
time step iterations, typically 10.

All connection strengths adapt according to the general Hebbian principle,
and include a normalization mechanism that counterbalances the overall increase
of connections of the pure Hebbian rule. The equations are the following:

�arA,i =
arA,i + ⌘AxivrA,i

karA,i + ⌘AxivrA,ik
� arA,i, (2)

�erE,i =
erE,i + ⌘ExixrE,i

karE,i + ⌘ExixrE,ik
� erE,i, (3)

�irI,i =
irI,i + ⌘IxixrI,i

kirI,i + ⌘IxixrI,ik
� irI,i, (4)

where ⌘{A,E,I} are the learning rates for the a↵erent, excitatory, and inhibitory
weights, and k · k is the L1-norm.

Page 54 of 171



4.2 Cortical components

The first circuit in the model learns the positive reward in eating fruits. The
orbitofrontal cortex is the site of several high level functions, in this model infor-
mation from the visual stream and taste have been used. There are neurons in
the orbitofrontal cortex that respond di↵erentially to visual objects depending
on their taste reward [29], and others which respond to facial expressions [28],
involved in social decision making [7].

OFC has forward and feedback connections with the Ventral Striatum, VS,
which is the crucial center for various aspects of reward processes and motivation
[17], and reprojects through MD, the medial dorsal nucleus of the thalamus,
which, in turn, projects back to the prefrontal cortex. The global e�ciency of
the dopaminergic backprojections to OFC are modulated by a global parameter,
used to simulate the hunger status of the model.

The second main circuit in the model is based on the ventromedial prefrontal
cortex, vmPFC, and its connections from OFC and the amygdala. The ventro-
medial prefrontal cortex is long since known to play a crucial role in emotion
regulation and social decision making [7]. More recently it has been proposed
that the vmPFC may encode a kind of common currency enabling consistent
value based choices between actions and goods of various types [14]. It is in-
volved in the development of morality, in a study [9] older participants showed
significant stronger coactivation between vmPFC and amygdala when attending
to scenarios with intentional harm, compared to younger subjects. The amyg-
dala is the primary mediator of negative emotions, and responsible for learning
associations that signal a situation as fearful [20]. In the model it is used specif-
ically for capturing the negative emotion when seeing the angry face, a function
well documented in the amygdala [4].

Fig. 2. Images seen by the model in the first phase of learning. On the left the patterns
used for the development of the visual system. The other three images depict the objects
that populate the simulated world: apples, +-shaped and ⇥-shaped.

4.3 First learning stages

The artificial brain is first exposed to a series of experiences, starting with a
preliminary phase of development of the visual system with generic patterns, as
those shown on the left in Fig. 2. These patterns mimic the retinal waves ex-
perienced before eye opening in humans, and allow the formation of retinotopy
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and orientation domains in the model V1 area, similarly to the process described
in [25]. When the visual system is mature, the model is presented with samples
from the collection of three simple objects, in random positions, as shown in Fig.
2. At the same time their taste is perceived too, and only one of the objects, the
apple, has a good taste. The connection loop between OFC, and the dopaminer-
gic areas VS, MD, attain an implicit reinforcement learning, where the reward
is not imposed externally, but acquired by the OFC map, through its taste sen-
sorial input. The amygdala has no interaction during this stage. The model will
gradually become familiar with the objects, and learn how pleasant apples are,
in its OFC model area. In order to characterize the ensemble activation pattern
of the OFC neurons, and decode the objects categorization, a population code
method is applied. The overall population is clustered according to those neu-
rons, which were active in response to di↵erent classes of objects, compared to
those which were not responsive, mathematical details are in [24].

Fig. 3. Neural coding of the three objects in the model OFC area: apple on the left,
the ⇥-shaped in the center, and the ⇥-shaped on the right.

In Fig. 3 is shown the resulting coding of the three categories of objects in
the OFC model area, with neurons that are selectively activated by objects of
one class, independently on their position in space.

In a second stage the model receives additional experiences, that of the moral
learning, with the same objects as stimuli. The model can choose between two
possible behaviors: collect and eat an object, or refrain from doing it, a selection
coded in the vmPFC component. Now, if the model decides to pick apples in a
certain area of the world, that shown in the central image in Fig. 4, suddenly
an angry face will appear, like those shown in the right of Fig. 4. Fruits in
this portion of the space may belong to a member of the social group, and to
collect these fruits would be a violation of her/his property, that would trigger
an immediate reaction of sadness and anger.

Now the amygdala gets inputs from both the OFC map and directly from
the thalamus, when the angry face appears. There is an implicit reinforcement,
with the negative reward embedded in the input projections to the amygdala.
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Fig. 4. Images seen by the model in the second phase of learning. On the left an apple
in a part of the world where it is allowed to pick it. The center image is an apple in
the forbidden area, if the model attempts to pick it, the angry face shown on the right
will suddenly appear.

4.4 Surviving without stealing

Finally, the developed artificial agent is embedded in its simple world, where all
possible objects may randomly appear, and she can choose to grasp them or not.
There is a parameter in the model which is used to modulate its state of hunger,
in the dopaminergic circuit, which detailed equations are the following:

x(OFC) = f

✓
�(OFC V1)
A a

(OFC V1)
rA · v(V1)

rA + �(OFC })
A a

(OFC })
rA · v(})

rA +

�(OFC �)
A a

(OFC �)
rA · v(�)

rA + �(OFC MD)
B b

(OFC)
rB · v(MD)

rB +

�(OFC)
E e

(OFC)
rE · x(OFC)

rE � �(OFC)
H h

(OFC)
rH · x(OFC)

rH

◆
(5)

x(VS) = f

✓
�(VS OFC)
A a

(VS OFC)
rA · v(OFC)

rA + �(VS �)
A a

(VS �)
rA · v(�)

rA +

�(VS)
E e

(VS)
rE · x(VS)

rE � �(VS)
H h

(VS)
rH · x(VS)

rH

◆ (6)

x(MD) = f
⇣
�(MD VS)
A a

(MD VS)
rA · v(VS)

rA

⌘
(7)

These two equations are just specialization of the general equation (1), for areas
VS and MD. The a↵erent signals v(OFC) come from the OFC model area, v(�) is
the taste signal, and [} the output of the LGN deferred in time, when a possibly
angry face will appear. The output x(MD) computed in (7) will close the loop

into the prefrontal cortex. The parameter �(OFC MD)
B is a global modulatory

factor of the amount of dopamine signaling for gustatory reward, and therefore
it is the most suitable parameter for simulating hunger states.

A simulation is performed by letting the model meeting with random objects,
at random positions in the world. Now there will be no more angry face in case
the model steal an apple in the forbidden place, whoever, it is expected that the
moral norm to avoid stealing will work, at least up to a certain level of hunger.
There is no more learning in any area of the model. At every simulation step the
modulation parameter is updated as following:

�(OFC MD)
B  

(
�(OFC MD)
B � � when an apple is grasped

�(OFC MD)
B + � otherwise

(8)

Page 57 of 171



Where � is the amount of nutriment provided by an apple, and � is the
decrease of metabolic energy in time.

In Fig. 5 the decisions to grasp are shown, as a function of the hunger level,
after 50000 simulation steps. Neutral objects are grasped occasionally, about one
over three, almost independently from hunger. Allowed apples are grasped more
frequently with hunger, every time with level over 0.1, while it can be seen the
strong inhibition to grasp apples in the forbidden sector, with few attempts at
extreme hunger level only, over 0.3.

-0.2 -0.1 0.0 0.1 0.2 0.3

0.2

0.4

0.6

0.8

1.0

Fig. 5. Percentage of grasping decisions as a function of hunger level. Green: allowed
apples, blue: neutral objects, red: forbidden apples.

In conclusion, we believe that the neurocomputational approach is an addi-
tional important path in pursuing a better understanding of morals, and this
model, despite the limitation in its cortical architecture, and the crudely simpli-
fied external world, is a valid starting point. It picks up on one core aspect of
morality: the emergence of a norm, not to steal, induced by a moral emotion.
Obeying this norm is an imperative that supersedes other internal drives, like
hunger, up to a certain extent. It has to be warned again, that morality is a
collection of several, partially dissociated mechanisms, and the presented model
is able to simulate only one kind of moral situation, the temptation of stealing
food, and the potential consequent feelings of guilt. Further work will address
other type of morality, that will need di↵erent scenarios to be simulated.
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