
RSDL Workbench Results for OAEI 2014⋆

Simon Schwichtenberg1, Christian Gerth2, and Gregor Engels1

1 University of Paderborn, s-lab – Software Quality Lab, Germany

{simon.schwichtenberg,engels}@upb.de
2 Osnabrück University of Applied Sciences, Germany

c.gerth@hs-osnabrueck.de

Abstract The RSDL workbench was developed as a part of a service compo-

sition platform for service markets and provides tools to specify structural and

behavioral aspects of services based upon the Rich Service Description Lan-

guage (RSDL). Such comprehensive service descriptions allow a multi-faceted

matching of service requests and offers in terms of their data models, operations,

and protocols. Domains and application contexts of such service requests and of-

fers are not known to the matchers in advance. Our data model matcher exploits

several background ontologies to find corresponding data model elements. Data

model alignments are represented in the form of relational Query View Transfor-

mation (QVT) scripts that are used to normalize behavioral models, which is a

prerequisite for operation matching. For the OAEI campaign, we excluded back-

ground ontologies, because the involved additional costs did not justify the gain

yet. In this paper, we present our system and the results for the OAEI campaign.

1 Presentation of the system

RSDL Workbench (RSDLWB) is a collection of tools for the specification, discov-

ery and composition of services. A service discovery brings service requesters and

providers together by matching requirements and existing services. These requirements

or the offered functionality can be described in terms of the structural as well as behav-

ioral aspects of the service through RSDL [4]. An RSDL specification consists of a data

model, operation signatures, Visual Contracts (VCs) [2], and protocols. For the specifi-

cation of a service, a data model determines relevant data types and their relationships

in terms of a Unified Modeling Language (UML) class model. A VC is typed over such

and specifies the behavior of certain operations. In particular, a VC describes pre- and

postconditions of operation calls by graph grammar rules whose graphs conform to the

class model.

The domain(s) of the service requests and offers are not known to the matcher in

advance. Even though they share the same domain and describe semantically equiva-

lent concepts, their respective class models might be heterogeneous, because they are

created independently most likely. VCs might be heterogeneous as well, due to the het-

erogeneity of their respective class models they conform to. Consequently, VCs of a

requester and a provider and hence the behavior of service offers and requests cannot

be compared directly and must be normalized.

⋆ This work was partially supported by the German Research Foundation (DFG) within the

Collaborative Research Centre “On-The-Fly Computing” (SFB 901)

���������		�����������		����������
�������������
����� ����������
��������
�����

����������
��������
�����

����������������������������

������������������

���������������������������� ����������������������������

������������������

���������	�
���������	�

������	������	�����
������	������	������������������	����������������	���

�����������������	����������������������	�����

Figure 1: Matching Process [9]

Fig. 1 gives an overview of our approach: (1) The class models are matched and

a list of class, attribute, and association mappings is returned. (2) Based on the list of

mappings, a relational QVT [1] model transformation script is automatically generated

which allows bidirectional model transformations. The VCs of the requester are nor-

malized according to the providers’ class model by executing the model transformation.

The normalization of the VCs is a prerequisite for the operation matching. (3) Once all

VCs conform to the same class model, they can be compared directly. In a next step,

the operations are matched based on the normalized VCs, which is explained in detail

in [5].

The list of operation mappings is the input for the protocol matcher, that checks if

the operation invocation sequences requested by the requester match with the operation

invocation sequences allowed by the provider. The data model matcher and the trans-

formation script generation was previously presented in [9]. The system was realized as

an Eclipse plug-in and implements the interface of EMF Compare3 in order to reuse its

graphical user interface. This paper focuses on its data model matching techniques and

the results of the OAEI campaign.

1.1 State, purpose, general statement

As explained in Sect. 1, the purpose of the system is to match heterogeneous class mod-

els. The system automatically matches two UML class models that are part of respec-

tive RSDL specifications and generates a relational QVT model transformation script,

which acts as a mediator enabling the translation of behavioral models. If necessary, the

generated script can be manually revised.

In context of our system, the relevant OAEI tracks that we aim to compete in, are as

follows: benchmark, anatomy, and conference. In the future, we also plan to participate

in the multifarm, library, and largebio track. The tracks interactive, instance matching,

and ontology alignment for query answering are less relevant for RSDLWB and support

for these tracks is not scheduled.

In our knowledge, none of the existing matching system fulfills all the requirements

of RSDLWB class model matcher, i.e. (1) process UML class models as input, (2) cre-

ate 1:1, 1:n, n:1, n:m class mappings, (3) generate a transformation script from the

mappings.

3 http://www.eclipse.org/emf/compare/

1.2 Specific techniques used

According to the classification of [3], RSDLWB uses the following matching tech-

niques: 1. String-based (normalization), 2. Language-based (tokenization), 3. Constraint-

based (type similarity), 4. Linguistic resources / domain specific ontologies (back-

ground ontologies)4, 5. Taxonomy-based (upward cotopic similarity)4.

RSDLWB matches classes (DataProperties), attributes (DataProperties),

and associations (ObjectProperties) pairwise and independently. The similarity

of a pair is basically determined on the basis of their labels. In case of attributes, their

type similarities [10] are considered as tie breakers. Before labels of two concepts are

matched, they are split into tokens. Each single token is normalized by lowercasing and

suppression of non-alphabetical characters. Next, the tokens are matched for their part.

The overall label similarity arises from the average similarity of the token matching.

If two tokens have identical normalized strings, they are assumed to match and get the

highest similarity value.

The rest of this section addresses techniques that were not used in the OAEI cam-

paign for reasons that are explained in Sect. 3. When two tokens are not identical, their

Upward Cotopic (UC) similarity [6] is computed. The UC similarity is the quotient of

the number of the tokens’ shared hypernyms and the number of all their hypernyms

according to a Background Ontology (BO). Such a BO is selected when it contains two

concepts with the same normalized labels as the tokens to be matched. In particular, an

individual BO is selected for each label pair. BOs are stored in a relational database.

The transitive closure of the hypernyms is precalculated for each BO concept and also

stored in the database. We imported different ontologies to our database like WordNet

[8], DBpedia [7], etc.

ontologies

id INT(10)

name VARCHAR(255)

aliases

oid INT(10)

cid INT(10)

name VARCHAR(10)

concepts

oid INT(10)

id INT(10)

hypernymCount INT(10)

hypernyms TEXT

Figure 2: Database Tables and Foreign Key Relations

Fig. 2 shows the database schema: The ontologies table contains a row for each

imported BO. The alias table contains all synonyms for the concepts, which are stored

in a separate table. The column hypernyms stores all hypernyms as a list of concept ids.

Additionally, hypernymCount contains the number of hypernyms. The edges illustrate

foreign keys of the tables. A database index was added to aliases.name, which allows

faster lookups of hypernyms for inquired aliases.

Listing 1 shows an exemplary SQL query that illustrates how two tokens from the

input ontologies are anchored in a BO and how their hypernyms are retrieved. For each

pair of tokens, an individual BO is selected. It might happen that a token is anchored

in a BO by a homonym. The selection strategy prioritizes BOs with deeper taxonomic

4 Technique was not used in the OAEI campaign (c.f. Sect. 3)

SELECT c1.hypernyms AS hypernyms1, c2.hypernyms AS hypernyms2,

a1.oid AS id, LEAST(c1.hypernymCount, c2.hypernymCount) AS

prio FROM aliases AS a1, aliases AS a2, concepts AS c1,

concepts AS c2 WHERE a1.name = ’person’ AND a2.name = ’

author’ AND a1.oid=a2.oid AND c1.id=a1.cid AND c2.id=a2.cid

AND c1.oid=a1.oid AND c2.oid=a2.oid ORDER BY prio DESC LIMIT

1;

Listing 1: Querying Background Ontologies

hypernyms1 hypernyms2 id prio

160, 843, 138, 269, 515, 325, 932 346, 930, 431, 160, 843, 138, 269, 515, 325, 932 2 7

Table 1: Query Result

hierarchies, because shallow hierarchies produce UC similarity values that are close to

each other. Tab. 1 shows the query result set that contains the hypernyms of person and

author, the ontology id and the priority. Accordingly, the UC similarity is:

σUC =
|hypernyms1 ∩ hypernyms2|

|hypernyms1 ∪ hypernyms2|
=

7

10
= 0.7

To create n:m class mappings, a simple greedy algorithm is used. At first, the class

pairs are sorted in a descending order according to their similarity. The algorithm iter-

ates over the pairs and if none of the current pair’s classes is part of a mapping, a new

mapping is created. If one class is already part of a mapping and the second is not, the

second is added to the mapping the first is already part of. If both classes are part of a

mapping, the pair is ignored.

1.3 Generation of the Model Transformation

In this section, we want to explain briefly how the QVT transformation script is gen-

erated from the alignment. The generation is exemplified on the basis of the reference

alignment for the cmt and the confOf ontologies that are part of the conference track.

The UML diagram in Fig. 3a shows parts of these ontologies and is arranged in a way

so that some mappings of the reference alignment can easily be seen.

Fig. 3b shows the generated QVTr script: Each class mapping corresponds to a top

relation, which is a possible entry point for the transformation, e.g. <Person, Person>

(line 2). During the transformation, free variables (domains) like person1 are bound

to instances of the source class model at first. Accordingly, var email is bound to

person1’s data attribute email (l. 5). The enforce keyword directs the transforma-

tion to create proper instances in the target data model (if necessary). Once person2 is

bound to a (newly created) instance, its attribute hasEmail is bound to var email

(l. 8). Variables for object attributes (l. 13, 16) are delegated to other relations to bind

free variables (l. 19). The delegation is carried out in when clauses, which are precon-

ditions for the relations. The creation of the script is not trivial, because n:m mappings

have to be considered or mapped attributes do not necessarily belong to classes that have

been mapped for their part, etc. For a more detailed description on the script generation

and its current limitations, the reader is referred to [9].

(a) Excerpt of cmt and confOf Ontolo-

gies

transformation Cmt_ConfOf(cmt : cmt, confof : confof){

top relation Person_Person{

var_email:String;

enforce domain cmt person1 : Person {

email = var_email

};

enforce domain confof person2 : Person {

hasEmail = var_email

};

}

top relation Author_Author{

enforce domain cmt author1 : Author {

writePaper = var_paper1 : Paper{}

};

enforce domain confof author2 : Author {

writes = var_paper2 : PaperFullVersion{}

};

when{

Paper_PaperFullVersion(var_paper1, var_paper2);

}

}

top relation Paper_PaperFullVersion{

enforce domain cmt paper1 : Paper{};

enforce domain confof paper2 : PaperFullVersion{};

}

}

(b) Generated QVTr Script

1.4 Link to the system and provided alignments

The SEALS compliant5 RSDLWB 1.1 is available at http://goo.gl/3Uj9gS.

The provided alignments are available at http://goo.gl/JLsELe.

2 Results

The RSDLWB results are summarized in Tab. 2. The second column denotes how the

values for precision, F-measure, and recall were calculated. The harmonic mean of all

test cases is stated for benchmark, conference, and multifarm. The tracks anatomy and

library comprise only one test case. Concerning the conference track, the values are

calculated according two reference alignments ra1 and ra2. The multifarm track has two

kind of tasks: The first kind matches the same ontology in different languages (same)

and the second different ontologies in different languages (diff). Relating to largebio,

RSDLWB could only complete the test case FMA-NCI within 10 hours.

2.1 benchmark

The test cases of the benchmark track are systematically generated from three seed

ontologies – biblio, cose, and dog – by modifying or discarding ontology features. The

evaluation is conducted in a blind fashion, i.e. neither the participants nor the organizers

5 http://oaei.ontologymatching.org/2014/seals-eval.html

Track Runtime [h:m:s] Precision F-measure Recall

benchmark biblio H-Mean 00:01:26 .99 .66 .5

benchmark dog H-Mean 04:00:17 .99 .75 .6

anatomy Mouse-NCI 00:22:17 .978 .749 .607

conference H-Mean ra1 00:00:36 .81 .59 .47

conference H-Mean ra2 00:00:36 .76 .54 .42

multifarm H-Mean (diff) 00:18:00 .16 .04 .02

multifarm H-Mean (same) 00:18:00 .34 .02 .01

library TheSoz-STW 09:07:08 .781 .073 .038

largebio FMA-NCI 00:36:57 .956 .38 .237

Table 2: RSDL Workbench Results for OAEI 2014

know the generated test cases in advance. RSDLWB achieved very good results regard-

ing F-measure for the biblio and dog test cases. However, RSDLWB did not produce an

alignment for cose.

2.2 anatomy

The Adult Mouse Anatomy and a part of the National Cancer Institute Thesaurus (NCI)

describing the human anatomy are matched in the anatomy track. In regard to precision,

F-measure, and recall, RSDLWB performs slightly worse than baseline StringEquiv.

RSDLWB achieved high precision for the price of low recall compared to other systems.

2.3 conference

In the conference track, seven independent ontologies in the domain of organizing con-

ferences are matched pairwise, resulting in 21 test cases. The produced alignments from

the participants are evaluated against the reference alignments ra1 and ra2. The refer-

ence alignment ra2 is generated as the transitive closure computed on ra1. While ra1

was available to participants, ra2 was not. Regarding F-measure, RSDLWB performs

better than baseline StringEquiv, but slightly worse than baseline edna, which means an

average performance. Since RSDLWB relies only on string-based techniques the results

are similar to the baseline algorithms.

2.4 multifarm

The goal of this track is to evaluate the ability of the matcher to deal with ontologies

in different languages. The cross-lingual matching scenario is relevant for RSDLWB,

but we did not investigate on this scenario yet. The low precision, F-measure, and recall

values result from the fact, that labels in different languages share less common tokens.

Even with enabled BOs, the matcher does not support other languages than English at

the moment.

2.5 library

The task of the library track is to match the STW and the TheSoz thesaurus, which

include a huge amount of concepts and additional descriptions. These ontologies define

multiple labels per concept in different languages. However, RSDLWB does not support

multiple labels per concept yet. Rather, it selects an arbitrary label, so that these labels

are possibly in different languages, which leads to the same problems as for multifarm

and explains the weak results.

2.6 largebio

The data set of this track comprises the large biomedical ontologies Foundational Model

of Anatomy (FMA), SNOMED CT, and NCI. These ontologies are semantically rich

and contain a huge amount of concepts. The input size of the ontologies vary across the

six test cases. RSDLWB could only complete the smaller FMA-NCI test case within

the given time frame of 10 hours. For this particular test case, RSDLWB achieved sig-

nificantly lower F-measure than the average of all participants.

3 General comments

Several adjustments had been made to enable a participation of the RSDLWB in the

OAEI campaign: (1) An abstraction layer for the input models was introduced in order

to enable the matching of Web Ontology Language (OWL) ontologies. Since RSDLWB

was designed to match UML models, it does not support other OWL features except la-

bels of Classes, DataProperties, and ObjectProperties. (2) The matcher

was configured to create only 1:1 mappings instead of n:m mappings, because n:m map-

pings had a negative impact on the most tracks. (3) Originally, as presented in [9], the

matcher partially used some combinatorial algorithms which were replaced by simple

greedy algorithms to improve the runtime. (4) The UC similarity was disabled, because

the additional lookups of hypernyms in the BOs did not justified the matching results.

With enabled UC similarity, more false positives than true positives were created, re-

sulting in a decreased average F-measure.

3.1 Comments on the results

After the first participation of the RSDLWB in the OAEI campaign, we conclude that

the system is not optimal for the OAEI test tracks yet and that there were no improve-

ments in any of the OAEI disciplines. As the results show, the matcher heavily relies

on labels and rarely on other ontology features. Furhermore, the system in its current

shape is not suitable to match large ontologies.

3.2 Discussions on the way to improve the proposed system

RSDLWB depends very much on labels. To overcome this issue, similarity metrics must

be introduced that take e.g. structural features of the ontologies into account. Since

the importance of the similarity metrics varies between the test tracks and cases, the

matcher should be adaptive and adjust the weights for these metrics. RSDLWB failed

to complete test tracks with large ontologies in a reasonable time – even without us-

ing BOs. To improve the runtime of the matcher, we plan to parallelize the retrieval of

hypernyms and the calculation of similarities. When BOs are used, the system often

produces false negatives because it uses homonyms for the anchoring in BOs. There-

fore, we want to adjust the matcher so that it is aware of the matching task’s domain.

Furthermore, we want to address cross-lingual matching by importing multilingual data

sets of DBpedia or by integrating a translation service. We are confident that we can im-

prove the system once the BO can be exploited effectively.

4 Conclusion

The first evaluation of RSDL workbench in the OAEI 2014 campaign showed good re-

sults for the benchmark track, but average to weaker results for the other tracks. The

runtime and the quality of the matching results is improvable compared to other sys-

tems. We excluded the usage of background ontologies, because they increase the run-

time of the system, but did not improve the matching results on average. As soon as we

can effectively exploit BOs, we need to improve the systems’ efficiency, because the

retrieval of hypernyms has an extra effect on the runtime.

References

1. Meta Object Facility (MOF) 2.0 Query/View/Transformation Specification Version 1.1.

http://www.omg.org/spec/QVT/1.1/PDF/ (January 2011)

2. Engels, G., Güldali, B., Soltenborn, C., Wehrheim, H.: Assuring Consistency of Business

Process Models and Web Services Using Visual Contracts. In: Schürr, A., Nagl, M., Zündorf,

A. (eds.) AGTIVE, LNCS, vol. 5088, pp. 17–31. Springer (2007)

3. Euzenat, J., Shvaiko, P.: Ontology Matching, vol. 18. Springer (2007)

4. Huma, Z., Gerth, C., Engels, G., Juwig, O.: A UML-based Rich Service Description Lan-

guage for Automatic Service Discovery of Heterogeneous Service Partners. In: CAiSE Fo-

rum. pp. 90–97 (2012)

5. Huma, Z., Gerth, C., Engels, G., Juwig, O.: Towards an Automatic Service Discovery for

UML-based Rich Service Descriptions. In: France, R., Kazmeier, J., Breu, R., Atkinson, C.

(eds.) MODELS. LNCS, vol. 7590, pp. 709–725. Springer (2012)

6. Maedche, A., Zacharias, V.: Clustering Ontology-based Metadata in the Semantic Web. In:

Elomaa, T., Mannila, H., Toivonen, H. (eds.) PKDD 2002, LNCS (LNAI), vol. 2431, pp.

348–360. Springer (2002)

7. Mendes, P.N., Jakob, M., Bizer, C.: DBpedia for NLP: A Multilingual Cross-domain Knowl-

edge Base. In: Proc. of the 8th International Conference on Language Resources and Evalu-

ation (LREC) (2012)

8. Miller, G.A.: WordNet: A Lexical Database for English. Communications of the ACM

38(11), 39–41 (1995)

9. Schwichtenberg, S., Gerth, C., Huma, Z., Engels, G.: Normalizing Heterogeneous Service

Description Models with Generated QVT Transformations. In: Cabot, J., Rubin, J. (eds.)

Modelling Foundations and Applications, LNCS, vol. 8569, pp. 180–195. Springer (2014)

10. Tibermacine, O., Tibermacine, C., Cherif, F.: WSSim: a Tool for the Measurement of Web

Service Interface Similarity. In: Proceedings of the french-speaking Conference on Software

Architectures (CAL) (2013)

