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Abstract. A two-step procedure for learning a link-discovery blocking
scheme is presented. Link discovery is the problem of linking entities be-
tween two or more datasets. Identifying owl:sameAs links is an impor-
tant, special case. A blocking scheme is a one-to-many mapping from en-
tities to blocks. Blocking methods avoid O(n2) comparisons by clustering
entities into blocks, and limiting the evaluation of link specifications to
entity pairs within blocks. Current link-discovery blocking methods use
blocking schemes tailored for owl:sameAs links or that rely on assump-
tions about the underlying link specifications. The presented framework
learns blocking schemes for arbitrary link specifications. The first step
of the algorithm is unsupervised and performs dataset mapping between
a pair of dataset collections. The second supervised step learns blocking
schemes on structurally heterogeneous dataset pairs. Application to RDF
is accomplished by representing the RDF dataset in property table form.
The method is empirically evaluated on four real-world test collections
ranging over various domains and tasks.

Keywords: Heterogeneous Blocking, Instance Matching, Link Discov-
ery

1 Introduction

With the advent of Linked Data, discovering links between entities has emerged
as an active area of research [7]. Given a link specification, a naive approach
would discover links by conducting O(n2) comparisons on the set of n enti-
ties. In the Entity Resolution (ER) community, a preprocessing technique called
blocking mitigates full pairwise comparisons by clustering entities into blocks.
Only entities within blocks are paired and compared [3]. Blocking is critical in
data integration systems [5],[3].

Blocking methods require a blocking scheme to cluster entities. Advanced
methods have been proposed to use a given blocking scheme effectively; relatively
fewer works address the learning of blocking schemes. Even within ER, blocking
scheme learners (BSLs) have met practical success only recently [2],[14],[10]. In
the Semantic Web, the problem has received attention as scalably discovering
owl:sameAs links [19]. ER is an important, but special, case of the link discovery
problem, where the underlying link specification can be arbitrary. Such specifica-
tions can be learned, but brute-force applications would still be O(n2). Current
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Fig. 1. Cases decided in Colombia must be linked to relevant sections of the constitu-
tion used in deciding that case. Only the single number 2 is relevant here for linking.

link discovery systems aim to be efficient by using token-based pre-clustering or
metric space assumptions [7],[15].

Learning link-discovery blocking schemes for arbitrary underlying links re-
mains unaddressed. Because the link can be arbitrary, a training corpus is re-
quired. Consider the example in Figure 1. Given a small number of such ex-
amples, the proposed BSL adaptively learns a scheme that covers true positives
while reducing full quadratic cost, without relying on the formal link specifica-
tion itself. Note that the learned blocking scheme is different from a learned link
specification. In this paper, we exclusively address blocking.

In the Big Data era, scalability, automation and heterogeneity are essential
components of systems and hence, practical requirements for real-world link
discovery. Scalability is addressed by blocking, but current work assumes that
the dataset pairs between which entities are to be linked are provided. In other
words, datasets A and B are1 input to the pipeline, and entities in A need to be
linked to entities in B. Investigations in some important real-world domains show
that pairs of dataset collections also need to undergo linking. Each collection is
a set of datasets. An example is government data. Recent government efforts
have led to release of public data as batches of files, as one of our real-world test
sets demonstrates. Thus, two scalability issues are identified: at the collection
level, and at the dataset level. That is, datasets in one collection first need to
be mapped to datasets in the second collection, after which a blocking scheme
is learned (and later, applied) on each mapped dataset pair.

Automation implies that human intervention needs to be kept to a minimum.
In practice, this means that methods need to rely on fewer training examples. Fi-
nally, a heterogeneity issue arises if datasets in the collections are in two different
data models, such as RDF and tabular.

The proposed BSL addresses these challenges in a combined setting. It takes
as input two collections of datasets, with each collection an arbitrary mix of
RDF and tabular datasets. The first step of the BSL performs unsupervised
dataset mapping by relying on document similarity and efficient solutions to the
Hungarian algorithm [9]. Each chosen dataset pair is input to the second step,
which learns a link-discovery blocking scheme given a constant size training cor-

1 If A and B are the same dataset, the problem is commonly denoted deduplication.
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pus that does not require growing with the dataset. RDF datasets are reconciled
with tabular datasets by representing them as property tables [22]. The problem
thus reduces to learning schemes on tabular datasets with different schemas.
Elmagarmid et al. refer to this as the structural heterogeneity problem [5]. To
robustly deal with small, constant training sets, the BSL uses bagging [20]. To
the best of our knowledge, this is the first paper that uses bagging, dataset map-
ping and property tables to address automation, scalability and heterogeneity
respectively in the link-discovery blocking context.

The rest of this paper is structured as follows. Section 2 describes the related
work in this area. Section 3 describes the property table representation and
the BSL in detail. Section 4 describe the experimental results, and the paper
concludes in Section 5.

2 Related Work

Link Discovery has been researched actively since the original Silk paper [21],
which currently uses genetic programming to learn links [7]. Since we discuss
learning of blocking schemes, most link specification learners are compatible, not
competitive, with the proposed system. A full pipeline that can perform data fu-
sion is RDF-AI [18]. We note that active learning techniques have been proposed
to address the automation issue [16]; in this paper, we show a complementary
solution using bagging.

Blocking has been extensively studied in the record linkage community [5],
with a comprehensive survey by Christen [3]. Initial BSLs were supervised [2],[14].
Recently, an unsupervised feature selection based BSL was proposed by us, but
assumed only owl:sameAs links and did not use bagging [10]. Token-based clus-
tering has also been applied to the problem [13], together with Locality Sensitive
Hashing (LSH) techniques [11]. However, LSH is usually applicable only to select
distance measures like Jaccard or cosine. As such, it is more popularly applied
to ontology matching [4],[6]. Other Semantic Web efforts for owl:sameAs include
the approach by Song and Heflin [19]. Ma et al. proposed a system based on type
semantics exclusively for ER on two individual datasets [12].

Multiple techniques for using blocking schemes have been investigated in
the Semantic Web community [17]. An example (used in the Silk framework) is
MultiBlock [8]. Another effort that assumes metric spaces is LIMES [15]. Finally,
an advanced survey of bagging can be found in the work by Verikas et al. [20].

3 Algorithm

In this section, the two steps of the overall BSL in Figure 3 are described.
Note that dataset mapping is an optional2 step, but the second step (the core
learner) is essential. As a preliminary, the property table representation is also
summarized.

2 Albeit empirically advantageous, when applied, as Section 4 will show.
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Fig. 2. The property table representation. For subjects ‘missing’ a property, the re-
served keyword null is entered. ; is a reserved delimiter allowing fields to be sets.

Fig. 3. The overall framework proposed in the paper.

3.1 Property Table Representation

Property tables were first proposed as physical data structures to efficiently
implement triple stores [22]. This is the first application using them for link-
discovery blocking. Figure 2 shows an example. Property tables reduce the prob-
lem of linking RDF and tabular datasets (and also RDF-RDF linkage) to tabular
structural heterogeneity, that is, tables with different schemas. The rest of the
paper assumes property table representation of RDF.

3.2 Dataset Mapping

The pseudocode for dataset mapping is given in Algorithm 1. The inputs to
the algorithm are the dataset collections R and S and a boolean confidence
function that is subsequently described. We define a dataset collection as a set
of independently released datasets. Without loss of generality, assume that |R| ≤
|S|. The output desired is a confident mapping M⊆ R× S.

Algorithm 1 represents each dataset in each collection as a term frequency
(TF) vector. The TF vector for each dataset is constructed by assigning a unique
position to each distinct token and recording the count of that token in the
dataset. Each TF vector is normalized by dividing each element by the total
count of the respective token in the corresponding collection. A normalized TF
vector is different from a TFIDF3 vector.

3 The TFIDF vector is constructed by dividing each element of a TF vector by the
number of datasets in the corresponding collection in which the token occurred at
least once (in lines 6 and 7) rather than the total count of the token in that collection.
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A matrix Q is initialized with Q[i][j] containing the dot product of normal-
ized TF vectors Ri and Sj . Once the matrix is constructed, the max Hungarian
algorithm is invoked on the matrix, which has at least as many columns as rows,
by the assumption above [9]. The algorithm must assign each row to some col-
umn, such that the sums of corresponding matrix entries are maximized. The
problem is also equivalent to maximum weighted bipartite graph matching.

The confidence of each mapping is evaluated by C. As an example of a confi-
dence function, suppose the function returns True for a returned mapping (i, j)
iff Q[i][j] is the dominating score, that is, greater than every score in its con-
stituent row and column. Intuitively, this means that the mapping is not only
the best possible, but also non-conflicting. In some sense, this assumes an ag-
gressive strategy against false positives. Other4 strategies can be formulated for
other requirements; we leave these for future work.

Assuming the dominating strategy a priori, the Hungarian algorithm can be
modified to terminate in linear time (in R and S), otherwise it is cubic in the
collection size [9]. Empirically, a reasonable confidence strategy would lead to
savings if the total number of records is far greater than the number of datasets.
For large collections, preferrable strategies should have theoretical guarantees,
like the dominating strategy. We observed dataset mapping to achieve near-
instantaneous runtime, even with a standard Hungarian implementation.

Intuitively, dataset mapping is expected to be a well-performing heuristic
because constituent datasets are independently released. Algorithms like LIMES,
Canopy Clustering and unsupervised methods benefit because they can cluster
entities in isolated dataset pairs, rather than all the entities in the collection.
With correct mapping, both quality and scalability are expected to improve.
Experimentally, the gains are demonstrated in Section 4.

3.3 Heterogeneous Blocking Scheme Learner

Given two structurally heterogeneous tabular sources, the goal of the second step
is supervised learning of a heterogeneous blocking scheme. In earlier works, DNF
blocking schemes were found to be fairly representative and learned using set-
covering algorithms [2],[14]. In recent work, we showed that a feature selection
technique outperformed state-of-the-art DNF BSLs [10]. To summarize the work
briefly, given training sets D and N containing duplicate and non-duplicate
tuple pairs respectively, each pair is first converted into a vector with O(m1m2)
binary features, where m1, m2 is the number of attributes in datasets R1,R2

respectively. Thus, two sets FD and FN containing labeled feature vectors are
obtained. A set of features must now be chosen such that a minimum fraction
ε of positives are covered, and with no individual feature covering more than a
fraction η of negatives. For further details on these parameters and the feature
conversion and selection process, we refer the reader to the original work [10].

Note that the originally proposed algorithm had no concept of bagging and
assumed the training set was representative enough. Algorithm 2 shows how bag-

4 For example, using a threshold to map multiple datasets to each other.
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Algorithm 1 Perform dataset mapping.

Input: Dataset Collections R and S, boolean confidence function C
Output: A mapping M between R and S

1. for all datasets Ri ∈ R do−→
TR
i := Term Frequency vector of terms in Ri

2. end for
3. for all datasets Si ∈ S do−→

TS
i := Term Frequency vector of terms in Si

4. end for
5. Construct vectors

−−−→
TR,S , with jth element

−−−→
TR,S [j] := Σi

−−−→
TR,S
i [j]

6. Normalize each
−→
TR
i by applying once, ∀j,

−→
TR
i [j] :=

−→
TR
i [j]/

−→
TR[j]

7. Normalize each
−→
TS
i by applying once, ∀j,

−→
TS
i [j] :=

−→
TS
i [j]/

−→
TS [j]

8. Initialize empty matrix Q with |R| rows and |S| columns
9. for all i ∈ 1 . . . |R| do

for all j ∈ 1 . . . |S| do
Q[i][j] :=

−→
TR
i .
−→
TS
j

end for
10. end for
11. Let M be the results of running max Hungarian algorithm on Q
12. for all (i, j) ∈M do

if applying C on score(Ri, Sj) yields False then
Remove (Ri, Sj) from M

end if
13. end for
14. return M

ging can be incorporated, to work with small5 training sets. Bagging parameters
τ, β are now also input. β specifies the number of bagging iterations and τ is the
sampling rate for bagging. In each bagging iteration, a fraction τ of the overall
training sample is chosen to undergo feature selection by calling FisherDisjunc-
tive (Algorithm 3 in [10]). A feature is technically a specific blocking predicate
(SBP) e.g. CommonToken(Last Name, Name). Intuitively, the SBP implies that
two entities (from different datasets) with a common token in their respective
Last Name and Name field values share a block. Features (or SBPs) chosen in
each bagging iteration are added to B′. The final DNF blocking scheme B is
heterogeneous precisely because it accommodates two different schemas, as the
SBP example above shows.

In some cases, training examples might not be available at all. If the task
is learning owl:sameAs links, the automatic training set generator in our orig-
inal work can be used to generate noisy training samples [10]. The rest of the
procedure remains the same. We evaluate this scenario in one of our test suites.

5 Small training sets affects learning algorithm quality, but compensate well for
O(m1m2) feature-vector dimensionality. Bagging allows controlled compromise be-
tween scalability and quality.
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Algorithm 2 Learn Link-Specific Blocking Scheme

Input : Positive feature-vectors set FD, negative feature-vectors set FN , coverage
parameter ε, pruning parameter η, bagging iterations β, sampling size τ
Output : Blocking scheme B

1. Initialize B′ := φ
2. for all iter = 1 . . . β do

Randomly sample (with replacement) τ |FD| and τ |FN | vectors from FD and
FN , insert into new sets F ′

N and F ′
D respectively

B′ := B′ ∪ FisherDisjunctive(F ′
D, F

′
N , ε, η)

3. end for
4. Output disjunction of elements in B′ as B

Table 1. Test dataset details. The notation, where applicable, is (first collec-
tion)/(second collection) or (first collection)×(second collection)

Collection Number of
datasets

Task Total entity
pairs

True positive
pairs

Data
model

Case Law/Constitute
(Colombia)

1/2 non-
ER

1204 × 2220 ≈
2.67 million

5577 RDF/RDF

Case Law/Constitute
(Venezuela)

1/2 non-
ER

1503 × 1601 ≈
2.4 million

555 RDF/RDF

JCT/Treasury 5/5 non-
ER

1135 × 845 ≈ 1
million

24,227 Tab./Tab.

Dbpedia/vgchartz 1/1 ER 16740 ×
20000 = 334.8
million

10,000 RDF/Tab.

4 Experiments

In this section, the algorithm is experimentally evaluated. Datasets, metrics and
baseline are first described, followed by a set of results and a discussion.

4.1 Datasets

The algorithm is evaluated on four real-world dataset collections over three dif-
ferent domains, described in Table 1. In the first test set, the first collection
consists of a single RDF dataset describing court cases decided in Colombia,
along with various properties of those cases. The second collection has two RDF
datasets, only one of which is relevant for linkage. This dataset describes article
numbers (as literal object values) in the Colombia constitution6. The task is to
predict links between the cases in the first collection and the articles in the sec-
ond collection used to decide the case. An example was shown in Figure 1. The
second test set is similar, but for Venezuela. The third test set consists of ten US

6 constituteproject.org
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government estimated budget datasets from 2009 to 2013, released separately
by the Treasury department and the Joint Committee on Taxation. All datasets
in this collection were published in tabular form, but the two collections are
structurally heterogeneous. The goal is to link entities (describing a particular
budget allocation) that share the same budget function (such as health) in the
same year. These three test cases are proper dataset collections, given at least
one collection contains more than one dataset. Other such collections can also
be observed on the respective website7.

The fourth test set contains collections derived from the video games domain
and differs from the other three test sets in three important respects. First, the
dataset mapping step is not applicable, since each collection only contains one
dataset. Note that the datasets in this test set are large compared with the other
test sets. Second, the first dataset is RDF and was queried from DBpedia8 while
the second dataset is tabular and from a popular charting website9. Finally, the
noisy training set generator can be used, given the link is owl:sameAs. We have
collected all publicly available test cases on a single portal10, along with other
implementation details such as the features (or SBPs) used in the experiments.

4.2 Metrics

We adopted two metrics, Pairs Completeness (PC) and Reduction Ratio (RR),
from the blocking literature [3]. PC measures recall or effectiveness in the block-
ing setting; specifically, the ratio of true positives that have fallen within the
block and the total number of true positives. RR is the percentage of compar-
isons that have been avoided compared to full quadratic cost and represents
efficiency. For example, an RR of 99 percent means that the blocking scheme
has reduced the complexity of the full pairwise task by that amount. Note that
the optimal RR for 100 percent PC for the datasets in Table 1 can be calculated
by using the formula 1 − C5/C4 where Cp stands for Column p. Following pre-
vious research, PC-RR graphs are used to quantify the effectiveness-efficiency
tradeoff [2].

4.3 Baseline

As earlier stated, many popular link discovery systems like Silk [7] use token-
based pre-matching to reduce complexity. Canopy Clustering, originally pro-
posed by McCallum et al. [13], represents such methods since it is token-based,
makes few assumptions and has been shown to be experimentally robust [1].
It was also used as the baseline in another competitive system [2]; hence, we
use it as our baseline. In the best performing implementation11, the algorithm

7 e.g. http://www.pewstates.org/research/reports/ for the third test case.
8 dbpedia.org
9 vgchartz.com

10 https://sites.google.com/a/utexas.edu/mayank-kejriwal/datasets
11 Documented by Baxter et al. [1].
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randomly chooses a seed entity from one dataset to represent a cluster, and all
entities in the second dataset with TFIDF scores above a threshold are placed
in that cluster. Clusters may overlap.

4.4 Methodology

The dataset mapping step was applied on the first three test sets in Table 1. It is
not applicable to the fourth test set. The dominating strategy introduced earlier
was used as the confidence function in Algorithm 1. For the second step, note
that the baseline chooses seeds randomly. We compensated by conducting ten
trials for each run of the algorithm, and averaging PC and RR. The threshold
was tuned and set to a low value of 0.0005 to maximize baseline recall.

The parameters in Algorithm 2 were set to values that were found after some
initial tuning (on a subset of the first test collection). The size of initial training
set was set to 300 each for both duplicates (|FD|) and non-duplicates (|FN |). β
was set to 10, τ to 30, ε to 0.8 and η to 0.2. In additional experiments, we varied
each of these parameters by 50%. There was no significant difference from the
results we subsequently show with these parameter settings. Future work will
investigate automatic parameter tuning. In our earlier work, the feature selection
was also found robust to varying parameters [10]. Note that the training set is
kept constant, regardless of dataset growth.

To evaluate the learned blocking scheme in a practical blocking method, one
additional parameter, maxBucketPairs is used to enable a technique called block
purging [17]. The technique discards blocks that have more than maxBucket-
Pairs candidate pairs, since the cost of processing these blocks is greater than
expected gain. Block purging was also used in the baseline, for consistency. Vary-
ing maxBucketPairs from values typically ranging from 1000 to 100,000 effec-
tively varies RR. Data points showing PC at different values of RR are obtained
and plotted. All experiments were run on an Intel Core 2 Duo machine with 3
GB of memory and 2.4 GHz clock speed. All code was implemented in Java.

4.5 Results and Discussion

With the dominating strategy, dataset mapping yielded perfect mappings for
all three test sets. We ran some additional experiments, including using more
government test data (from years 2003-2013 instead of 2009-2013) and Constitute
and Case Law data from other countries, and the mappings were still perfect.
It would seem, therefore, that the normalized TF measures and the dominating
strategy are suited to the problem, at least on the tested domains.

Figure 4 shows the PC-RR tradeoff results of the learned blocking scheme
for Canopy Clustering and the proposed method both with and without dataset
mapping12, on the Colombia and Venezuela collections. The gains of dataset

12 Recall that dataset mapping was designed to be compatible with other algorithms
as well, including Canopy Clustering.
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Fig. 4. Results of the proposed method (Hetero) against baseline (CC ) on the (a)
Colombia and (b) Venezuela datasets, with SS indicating that dataset mapping (or
Source Selection as it is denoted in the codebase) was utilized. PC is Pairs Complete-
ness and RR is Reduction Ratio.

Fig. 5. Hetero vs. CC on the (a) government 2009-13 budget and (b) video game
datasets. In (b), the underlying link was owl:sameAs. The noisy training set genera-
tor was used for the unsup version of Hetero, while perfectly labeled examples were
provided for semi. Note the changed scale (esp. X-axis) in (b).

mapping are readily apparent for CC in both cases. The proposed method, Het-
ero, outperforms the non dataset-mapping version of CC but the gap narrows
considerably when dataset mapping is employed. This shows that, in cases where
training sets are not readily available, an off-the-shelf dataset mapping algorithm
can boost performance. The dataset mapping gains for Hetero aren’t significant
on Venezuela, mainly because the algorithm performs well on this dataset even
without mapping. On CC, however, the gains are again apparent. Note that
Venezuela ((b) in Figure 4) represents some of the challenges of doing link dis-
covery versus just ER. The proposed BSL was able to overcome these challenges
by employing bagging and feature selection.

Figure 5a shows the results on the five-pair government budget data. For this
collection, the gains of dataset mapping are amplified. This is because there are
more datasets in the collection, so the dataset mappings are particularly useful.
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We ran further experiments on the full government data (from years 2003-2013)
and confirmed this. This time, Hetero also shows noticeable gains, with the
curve shifting to the right when dataset mapping is employed. Figure 5b shows
the results for learning blocking schemes for ER. The BSL is able to significantly
outperform CC, regardless of whether it is completely unsupervised or with a
provided perfectly labeled training set.

Finally, we repeated the experiments above but without bagging. Highest f-
scores13 of PC and RR declined on all cases by at least 5%, with 95% statistical
significance using Student’s distribution. Otherwise, the graphical trends were
similar. We do not repeat the figures here.

5 Future Work and Conclusion

In this paper, a link-discovery blocking scheme learner was proposed. The first
step of the method operates in an unsupervised fashion and performs dataset
mapping by employing document-level similarity measures. It is compatible with
existing clustering and blocking algorithms, experimental savings demonstrated
on two such methods. The second step is a heterogeneous BSL that uses tech-
niques like bagging to achieve robust performance, even as the training sets
remain constant and the datasets grow in size.

Future work will evaluate the dataset mapping step and the accompanying
confidence strategies more extensively, and develop parameter tuning techniques
for the learner itself. Another important aspect is investigating scalability of the
learner; in particular, we are developing techniques for ‘pruning’ property tables
so that the learner can efficiently scale by learning schemes in a reduced feature
space. We believe that this provides an excellent opportunity for cross-fertilizing
ongoing scalability efforts in the ontology matching community [6].

Acknowledgments. The authors would like to thank Juan Sequeda for pro-
viding the Constitute and Case Law datasets.
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