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Abstract

Clustering is an unsupervised learning tech-
nique used to group a set of elements into non-
overlapping clusters based on some predefined
dissimilarity function. In our context, we rely
on clustering algorithms to extract points of
interest in human mobility as an inference at-
tack for quantifying the impact of the privacy
breach. Thus, we focus on the input param-
eters selection for the clustering algorithm,
which is not a trivial task due to the direct im-
pact of these parameters in the result of the
attack. Namely, if we use too relax parame-
ters we will have too many point of interest
but if we use a too restrictive set of parame-
ters, we will find too few groups. Accordingly,
to solve this problem, we propose a method to
select the best parameters to extract the opti-
mal number of POIs based on quality metrics.

1 Introduction

The first step in inference attacks over mobility
traces is the extraction of the point of interest (POI)
from a trail of mobility traces. Indeed, this phase
impacts directly the global accuracy of an inference
attack that relies on POI extraction. For instance,
if an adversary wants to discover Alice’s home and
place of work the result of the extraction must be as
accurate as possible, otherwise they can confuse or
just not find important places. In addition, for a more
sophisticated attack such as next place prediction, a
mistake when extracting POIs can decrease signif-
icantly the global precision of the inference. Most
of the extraction techniques use heuristics and clus-
tering algorithms to extract POIs from location data.

On one hand, heuristics rely on the dwell time, which
is the lost of signal when user gets into a building.
Another used heuristic is the residence time, which
represents the time that a user spends at a particu-
lar place. On the other hand, clustering algorithms
group nearby mobility traces into clusters.

In particular, in the context of POI extraction, it is
important to find a suitable set of parameters, for a
specific cluster algorithm, in order to obtain a good
accuracy as result of the clustering. The main contri-
bution of this paper is a methodology to find a “op-
timal” configuration of input parameters for a clus-
tering algorithm based on quality indices. This op-
timal set of parameters allows us to have the appro-
priate number of POIs in order to perform another
inference attack. This paper is organized as follows.
First, we present some related works on parameters
estimation techniques in Section 2. Afterwards, we
describe the clustering algorithms used to perform
the extraction of points of interests (POIs) as well as
the metrics to measure the quality of formed clusters
in sections 3 and 4, respectively. Then, we introduce
the method to optimize the choice of the parameters
in Section 5. Finally, Section 6 summarizes the re-
sults and presents the future directions of this paper.

2 Related works

Most of the previous works estimate the parameters
of the clustering algorithms for the point of interest
extraction by using empirical approaches or highly
computationally expensive methods. For instance,
we use for illustration purpose two classical cluster-
ing approaches, K-means (MacQueen et al., 1967)
and DBSCAN (Ester et al., 1996). In the former
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clustering algorithm, the main issue is how to deter-
mine k, the number of clusters. Therefore, several
approaches have been proposed to address this issue
(Hamerly and Elkan, 2003; Pham et al., 2005). The
latter algorithm relies on OPTICS (Ankerst et al.,
1999) algorithm, which searches the space of param-
eters of DBSCAN in order to find the optimal num-
ber of clusters. The more parameters the clustering
algorithm has, the bigger the combinatorial space of
parameters is. Nevertheless, the methods to calibrate
cluster algorithm inputs do not guarantee a good ac-
curacy for extracting meaningful POIs. In the next
section, we described the cluster algorithms used in
our study.

3 Clustering algorithms for extraction of
points of interest

To perform the POI extraction, we rely on the fol-
lowing clustering algorithms:

3.1 Density Joinable Cluster (DJ-Cluster)
DJ-Cluster (Zhou et al., 2004) is a clustering algo-
rithm taking as input a minimal number of points
minpts, a radius r and a trail of mobility traces
M . This algorithm works in two phases. First, the
pre-processing phase discards all the moving points
(i.e. whose speed is above ✏, for ✏ a small value)
and then, squashes series of repeated static points
into a single occurrence for each series. Next, the
second phase clusters the remaining points based
on neighborhood density. More precisely, the num-
ber of points in the neighborhood must be equal or
greater than minpts and these points must be within
radius r from the medoid of a set of points. Where
medioid is the real point m that minimizes the sum of
distances from the point m to the other points in the
cluster. Then, the algorithm merges the new cluster
with the clusters already computed, which share at
least one common point. Finally, during the merg-
ing, the algorithm erases old computed clusters and
only keeps the new cluster, which contains all the
other merged clusters.

3.2 Density Time Cluster (DT-Cluster)
DT-Cluster (Hariharan and Toyama, 2004) is an iter-
ative clustering algorithm taking as input a distance
threshold d, a time threshold t and a trail of mobil-
ity traces M . First, the algorithm starts by building

a cluster C composed of all the consecutive points
within distance d from each other. Afterwards, the
algorithm checks if the accumulated time of mobil-
ity traces between the youngest and the oldest ones
is greater than the threshold t. If it is the case, the
cluster is created and added to the list of POIs. Fi-
nally as a post-processing step, DT-Cluster merges
the clusters whose medioids are less than d/3 far
from each other.

3.3 Time Density (TD-Cluster)
Introduced in (Gambs et al., 2011), TD-Cluster is
a clustering algorithm inspired from DT Cluster,
which takes as input parameters a radius r, a time
window t, a tolerance rate ⌧ , a distance threshold d
and a trail of mobility traces M . The algorithm starts
by building iteratively clusters from a trail M of mo-
bility traces that are located within the time window
t. Afterwards, for each cluster, if a fraction of the
points (above the tolerance rate ⌧ ) are within radius
r from the medoid, the cluster is integrated to the list
of clusters outputted, whereas otherwise it is simply
discarded. Finally, as for DT Cluster, the algorithm
merges the clusters whose medoids are less than d
far from each other.

3.4 Begin-end heuristic
The objective of the begin and end location finder
inference attack (Gambs et al., 2010) is to take as
meaningful points the first and last of a journey.
More precisely, this heuristic considers that the be-
ginning and ending locations of a user, for each
working day, might convey some meaningful infor-
mation.

Since we have introduced the different clustering
algorithms to extract points of interest, we present in
the next section the indices to measure the quality of
the clusters.

4 Cluster quality indices
One aspect of the extraction of POIs inference at-
tacks is the quality of the obtained clusters, which
impacts on the precision and recall of the attack.
In the following subsection we describe some met-
rics to quantify how accurate or “how good“ is the
outcome of the clustering task. Intuitively, a good
clustering is one that identifies a group of clusters
that are well separated one from each other, compact
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and representative. Table 1 summarizes the notation
used in this section.

Symbol Definition
C An ensemble of clusters.
ci The ith cluster of C.
nc The number of clusters in C.
mi The medoid point of the ith cluster.

d(x, y) The Euclidean distance between x and y.
|ci| The number of points in a cluster ci.
m0 The closest point to the medoid mi.
m00 The second closest point to the medoid mi.
|C| The total number of points in a set of C.

Table 1: Summary of notations

4.1 Intra-inter cluster ratio
The intra-inter cluster ratio (Hillenmeyer, 2012)
measures the relation between compact (Equation 1)
and well separated groups (Equation 3). More pre-
cisely, we first take the inter-cluster distance, which
is the average distance from each point in a cluster
c
i

to its medoid m
i

.
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Then, the average intra-cluster distance (DIC) is
computed using Equation 2.
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Afterwards, the mean distance among all medoids
(DOC) in the cluster C is computed, using Equation
3.
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Finally, the ratio intra-inter cluster rii is given by the
Equation 4 as the relationship between the average
intra cluster distance divided by the inter-cluster dis-
tance.

rii(C) =
AV G DIC(C)

DOC(C)
(4)

The intra-inter ratio has an approximate linear com-
plexity in the number of points to be computed and
gives low values to well separated and compact clus-
ter.

4.2 Additive margin
Inspired by the Ben-David and Ackerman (Ben-
David and Ackerman, 2008) k-additive Point Mar-
gin (K-AM) metric , which evaluates how well cen-
tered clusters are. We measure the difference be-
tween the medoid m

i

and its two closest points m0

and m00 of a given group c
i

belonging to a cluster C
(Equation 5).
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Since the average of the k-additive point margins for
all groups c

i

in a cluster C is computed, we take the
ratio between the average k-additive Point Margin
and the minimal inter-cluster distance (Equation 1)
as shown in Equation 6.

AM(C) = min
ci2C
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P
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The additive margin method has a linear complexity
in the number of clusters. This metric gives a high
value for a well centered clusters.

4.3 Information loss
The information loss ratio is a metric inspired by the
work of Sole and coauthors (Solé et al., 2012). The
basic idea is to measure the percent of information
that is lost while representing original data only by
a certain number of groups (e.g., when we represent
the POIs by the cluster medoids instead of the whole
set of points). To evaluate the percent of information
loss, we compute the sum of distance of each point
represented by x

i

to its medoid m
i

for all clusters
c
i

2 C as we shown in Equation 7.
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ncX
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j

,m
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) (7)

Then, we estimate the accumulated distance of all
points of a trail of mobility traces in the cluster C to
a global centroid (GC) using the following equation
Equation 8.

SST (C) =

|C|X

xi2C
d(x

i

, GC) (8)

Finally, the ratio between aforementioned distances
is computed using Equation 9, which results in the

16



information loss ratio.

IL(C) =
SSE(C)

SST (C)
(9)

The computation of this ratio has a linear complex-
ity. The lowest is the value of this ratio, the more
representative the clusters are.

4.4 Dunn index
This quality index (Dunn, 1973; Halkidi et al., 2001)
attempts to recognize compact and well-separated
clusters. The computation of this index relies on
a dissimilarity function (e.g. Euclidean distance d)
between medoids and the diameter of a cluster (c.f,
Equation 10) as a measure of dispersion.

diam(c
i

) = max
x,y2ci,x 6=y

d(x, y) (10)

Then, if the clustering C is compact (i.e, the diam-
eters tend to be small) and well separated (distance
between cluster medoids are large), the result of the
index, given by the Equation 11, is expected to be
large.
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The greater is this index, the better the performance
of the clustering algorithm is assumed to be. The
main drawbacks of this index is the computational
complexity and the sensitivity to noise in data.

4.5 Davis-Bouldin index
The objective of the Davis-Bouldin index (DBI)
(Davies and Bouldin, 1979; Halkidi et al., 2001) is to
evaluate how well the clustering was performed by
using properties inherent to the dataset considered.
First, we use a scatter function within the cluster c

i

of the clustering C (Equation 12).
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Then, we compute the distance between two differ-
ent clusters c

i

and c
j

, given by Equation 13.
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Afterwards, a similarity measure between two clus-
ters c

i

and c
j

, called R-similarity, is estimated, based
on Equation 14.
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After that, the most similar cluster c
j

to c
i

is the
one maximizing the result of the function R

all

(c
i

),
which is given by Equation 15 for i 6= j.
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Finally, the DBI is equal to the average of the simi-
larity between clusters in the clustering set C (Equa-
tion 16).

DBI(C) =
1

n
c

ncX

ci2C
R

all

(c
i

) (16)

Ideally, the clusters c
i

2 C should have the mini-
mum possible similarity to each other. Accordingly,
the lower is the DB index, the better is the cluster-
ing formed. These indices would be used to maxi-
mize the number of significant places a cluster algo-
rithm could find. More precisely, in the next section
we evaluate the cluster algorithm aforementioned as
well as the method to extract the meaningful places
using the quality indices.

5 Selecting the optimal parameters for
clustering

In order to establish how to select the best set
of parameters for a given clustering algorithm, we
have computed the precision, recall and F-measure
of all users of LifeMap dataset (Chon and Cha,
2011). One of the unique characteristic of this
dataset is that the POIs have been annotated by
the users. Consequently, given a set of clusters
c
i

2 C such that C = {c1, c2, c3, . . . , cn} and a
set of points of interest (POIs) defined by the users
P
poi

= {p
poi 1, ppoi 2, ppoi 3, . . . , ppoi n} we were

able to compute the precision, recall and f-measure
as we detail in the next subsection.

5.1 Precision, recall and F-measure
To compute the recall (c.f. Equation 17), we take as
input a clustering set C, the ground truth represented
by the vector P

poi

(which was defined manually by
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each user) as well as a radius to count all the clus-
ters c 2 C that are within the radius of p

poi

2 P
poi

,
which represents the ”good clusters”. Then, the ratio
of the number of good clusters compared to the total
number of found clusters is computed. This measure
illustrates the ratio of extracted cluster that are POIs
divided by the total number of extracted clusters.

Precision =
good clusters

total number extracted clusters
(17)

To compute the recall (c.f. Equation 18), we take
as input a clustering set C, a vector of POIs P

poi

as
well as a radius to count the discovered POIs p

poi

2
P
poi

within a radius of the clusters c 2 C, which
represents the ”good POIs”. Then, the ratio between
the number of good POIs and the total number of
POIs is evaluated. This metric represents the percent
of the extracted unique POIs.

Recall =
good POIs

total number of POIs
(18)

Finally, the F-measure is defined as the weighted
average of the precision and recall as we can see in
Equation 19.

F �measure = 2⇥ precision⇥ recall

precision+ recall
(19)

We present the dataset used for our experiments in
the next subsection.

5.2 Dataset description
In order to evaluate our approach, we use the
LifeMap dataset (Chon et al., 2012), which is com-
posed of mobility traces of 12 user collected for a
year in Seoul, Korea. This dataset comprises lo-
cation (latitude and longitude) collected with a fre-
quency between 2 to 5 minutes with the user defined
point of interest as true if the mobility trace is con-
sidered as important or meaningfull for each user.
Table 2 summarizes the main characteristics of this
dataset, such as the collect period, the average num-
ber of traces per user, the total number of mobility
traces in the dataset, the minimal and maximal num-
ber of users’ mobility traces.

Since we have described our dataset, we present
the results of our experiments in the next subsection.

Characteristics LifeMap
Total nb of users 12

Collection period (nb of days) 366
Average nb of traces/user 4 224

Total nb of traces 50 685
Min #Traces for a user 307
Max #Traces for a user 9 473

Table 2: Main characteristics of the LifeMap
dataset.

5.3 Experimental results
This section is composed of two parts, in the first
part we compare the performance of the previously
described clustering algorithms, with two base-
line clustering algorithms namely k-means and DB-
SCAN. In the second part, a method to select the
most suitable parameters for a clustering algorithm
is presented.

Input parameters Possible values D
B

SC
A

N

D
J

cl
us

te
r

D
T

cl
us

te
r

K
-m

ea
ns

TD
cl

us
te

r

Tolerance rate (%) {0.75, 0.8, 0.85, 0.9} y Y y y y
Tolerance rate (%) {0.75, 0.8, 0.85, 0.9} 7 7 7 7 3
Minpts (points) {3, 4, 5, 6, 7, 8, 9, 10, 20, 50} 3 3 7 7 7
Eps (Km.) {0.01, 0.02, 0.05, 0.1, 0.2} 3 3 3 7 3
Merge distance (Km.) {0.02, 0.04, 0.1, 0.2, 0.4} 7 7 3 7 3
Time shift (hour) {1, 2, 3, 4, 5, 6} 7 7 3 7 3
K (num. clusters) {5, 6, 7,8, 9} 7 7 7 3 7

Table 3: Summary of input parameters for clustering
algorithms.

Precision Recall F-measure Time(s) Number of
parameters Complexity

DBSCAN 0,58 0,54 0,48 316 3 O(n2)

DJ-Cluster 0,74 0,52 0,52 429 3 O(n2)

DT-Cluster 0,38 0,47 0,39 279 3 O(n2)
k-means 0,58 0,51 0,49 299 2 O(n)

TD-Cluster 0,43 0,54 0,44 362 4 O(n2)

Table 4: The characteristics of the clustering algo-
rithms.

In order to compare the aforementioned clustering
algorithms, we have take into account the precision,
recall, F-measure obtained, average execution time,
number of input parameters and time complexity.
To evaluate these algorithms, we used the LifeMap
dataset with POIs annotation and a set of different
parameters configurations for each algorithm, which
are summarized in Table 3. After running these con-
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figurations, we obtained the results shown in Table
4 for the different input values.

DBSCAN DJ Cluster DT Cluster

k_means Resume TD Cluster
-1.0
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Figure 1: Correlation of quality indices with the
computed F-measure. Where A) is the correlation
measured between the user annotation and the cen-
troid at 20 m of radius B) at 35 m radius C) at
50 m radius, D) at 100 m radius and DBI=Davis-
Bouldin index, DI=Dunn index, IL=Information
loss, kAM=Additive margin and RII= Ratio intra-
inter cluster.

It is possible to observe that the precision of DJ-
Cluster out performs better than the other cluster-
ing algorithms. In terms of recall DBSCAN and
TD-Cluster perform the best but DJ-Cluster is just
behind them. Moreover, DJ-Cluster has the best
F-measure. Regarding the execution time, DT-
Clustering the fastest one while DJ-Cluster is the
slowest algorithm due to the preprocessing phase.
Despite the high computational time of DJ-Cluster,
this algorithm performs well in terms of F-measure.

In the following, we describe our method to
choose “optimal” parameters for obtaining a good
F-measure. We have used the aforementioned algo-
rithms with a different set of input parameters con-
figurations for users with POIs annotations in the
LifeMap dataset (Chon and Cha, 2011). Once clus-
ters are built, we evaluate the clusters issued from

different configurations of distinct algorithms us-
ing the previously described quality indices. After-
wards, we were able to estimate the precision, recall
and F-measure using the manual annotation of POIs
by the users in the LifeMap dataset.

Regarding the relation between the quality indices
and the F-measure, we studied the relationship be-
tween these factors, in order to identify the indices
that are highly correlated with the F-measure, as
can be observed in Figure 1. We observe that the
two best performing indices, except for k-means,
are IL and DBI. The former shows a negative cor-
relation with respect to the F-measure. While the
latter, has a positive dependency to the F-measure.
Our main objective is to be able to identify the rela-
tionship between quality and F-measure among the
previous evaluated clustering algorithms. Accord-
ingly, we discard the inter-intra cluster ratio (RII)
and the adaptive margin (AM), which only perform
well when using k-means and the DJ clustering al-
gorithms. Finally, we observe that the Dunn index
has a poor performance. Based on these observa-
tions, we were able to propose an algorithm to auto-
matically choose the best configuration of input pa-
rameters.

5.4 Parameter selection method
Let us define a vector of parameters p

i

2 P and P a
set of vectors, such that P = {p1, p2, p3, . . . , pn},
a trail of mobility traces M of a user. From
previous sections we have the clustering function
C(p

i

) and the quality metrics Information Loss
IL(C) and Davis-Bouldin index DBI(C). Thus,
for each vector of parameters we have a tuple com-
posed of the trail of mobility traces, the result
of the clustering algorithm and the quality metrics
(p

i

,M,C
pi , ILCpi

, DBI
Cpi

). When we compute
the clustering algorithm and the quality metrics for
each vector of parameter for a given user u. We de-
fine also a �0

u

matrix, which the matrix �
u

sorted by
IL ascending. Finally, the result matrix �

u

is of the
form:

�
u

=

����������

p1 M C
p1 IL

Cp1
DBI

Cp1

p2 M C
p2 IL

Cp2
DBI

Cp2

p3 M C
p3 IL

Cp3
DBI

Cp3

. . .
p
n

M C
pn IL

Cpn
DBI

Cpn

����������
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Figure 2: Comparison between F-measure and parameters selection based on schema in Figure ??. Where
DBI=Davis-Bouldin index, IL=Information loss, IL DBI= combination of IL and DBI and MAX is the maximal
computed F-measure (taken as reference to compare with IL DBI). Resume is the average of all the results using
different clustering algorithms.

Therefore, the parameter selection function
S(�

u

) could be defined as:

S(�
u

) =

(
p
i

, if max
pi(DBI) & min

pi(IL)

p0
i

, if max
p

0
i
(DBI) in 1st quartile

(20)
In detail, the function S takes as input a � matrix

containing the parameters vector p
i

, a trail of mobil-
ity traces M , the computed clustering C(p

i

,M) as
well as the quality metrics, such as Information loss
(IL(C)) and the Davis-Bouldin index (DBI(C)).
Once all these values have been computed for each
evaluated set of parameters, two cases are possible.
In the first case, both IL and DBI agree on the same

set of input parameters. In the second situation, both
IL and DBI refer each one to a different set of pa-
rameters. In this case, the algorithm sorts the values
by IL in the ascending order (i.e., from the small-
est to the largest information loss value). Then, it
chooses the set of parameters with the greatest DBI
in the first quartile.

For the sake of evaluation, our methodology was
tested using the LifeMap dataset to check if the cho-
sen parameters are optimal. We have tested the
method with the seven users of LifeMap that have
annotated manually their POIs. Consequently, for
every set of settings of each clustering algorithm, we
have computed the F-measure because we have the
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ground truth as depicted in Figure 2. The ”MAX”
bar represents the best F-measure for the given user
and it is compare to the F-measures obtained when
using the ”DBI”, ”IL” or ”IL DBI” as indicators to
choose the best input parameters configuration. Fi-
nally, this method has a satisfactory performance ex-
tracting a good number of POIs for maximizing the
F-measure achieving a difference of only 9% with
respect to the F-measure computed from the data
with the ground truth.

6 Conclusion

In the current paper, we have presented a method
to extract the a optimal number of POIs. Conse-
quently, based on the method described in tis paper,
we are able to find an appropriate number of POIs
relying only on the quality metrics of the extracted
clusters and without the knowledge of the ground
truth. Nonetheless, we are aware of the small size
of dataset but the results encourage us to continue in
this direction.

Therefore, in the future we plan to test our method
in a larger dataset and in presence of noise like
downsamplig or random distortion. Another idea is
to evaluate the impact of this method in more com-
plex attacks like prediction of future locations or de-
anonymization to verify if this step can affect the
global result of a chain of inference attacks.
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