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Abstract 

The sequential pattern mining stems from the 
need to obtain patterns that are repeated in 
multiple transactions in a database of se-
quences, which are related to time, or another 
type of criterion. This work presents the pro-
posal of a new technique for the discovery of 
sequential patterns from a database of se-
quences, where the patterns not only provide 
information on how these relate to the time, 
but also, that in the mining process itself 
should be included the quantity factors asso-
ciated with each of the items that are part of a 
sequence, and as a result of this process can 
be obtain information relating to how they re-
late these items with regard to the amounts 
associated. The proposed algorithm uses di-
vide and conquer techniques, as well as in-
dexing and partitioning of the database. 
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been adapted from the instructions for earlier 
ACL. 

2 Introduction 

The sequential pattern mining is the process 
by which you get the relationships between oc-
currences of sequential events, to find if there is 
a specific order in which these events occur. In 
relation to this area of study there are many in-
vestigations, all of them makes use of the re-
striction of minimal support, some include other 
restrictions, such as for example the time interval 
in which it is required that the events happen, 
also the use of taxonomies as defined by the user, 
and the fact of allowing the items in a sequence 
not necessarily must have occurred in a single 
transaction, but could be in two or more, always 
and when their times of each of these transac-
tions is within some small window of time de-
termined by the user. 

In addition, the algorithms for mining sequen-
tial patterns of dealing with the previous sequen-
tial patterns in a uniform manner, despite the fact 
that these patterns individually in a sequence can 
have important differences such as the associated 
amount to each item that make up each pattern. 

For the foregoing reasons, in the present paper 
proposes a technique by which it is intended to 
exploit these intrinsic relationships of the se-
quential patterns, in this specific case the rela-
tionship to the amount of each of the items. The 
inclusion of this aspect in the sequential pattern 
mining, you can afford to get a set of sequential 
patterns that are not only common but also let us 
know how these amounts associated with each 
item that is included in a sequential pattern fre-
quent relates. The inclusion of the restriction of 
quantity within the extraction process of the fre-
quent sequential patterns we could provide in-
formation much more meaningful. 

The article is organized as follows: Section 2 
is on the previous work. Section 3 gives a de-
scription of the problem. Section 4 introduces the 
technical proposal. Section 5 shows the experi-
ments and results. The conclusions and future 
work are shown in section 6 and finally the ref-
erences. 

3 Previous works 

The techniques of discovery of association 
rules are essentially boolean, due to which are 
discarded the quantities of the items purchased 
and only pay attention to if something was pur-
chased or not. An important area of study is the 
sequential pattern mining that involves the ex-
traction of patterns that are repeated in multiple 
transactions in a transactional database, which 
are related to time or another type of sequence. 

The problem of the sequential pattern mining 
was introduced by Agrawal and Srikant (1995) 
set the example of the typical income of clients 
in a rental shop videos. Customers often rent 
"Star Wars", then "Empire Strikes Back" and 
then "Return of the Jedi".  All these incomes not 
necessarily should have been made consecutive-
ly, that is to say, there could be customers that 
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leased any other video in the middle of the pre-
vious sequence, so that these sequences of trans-
actions also fall into the same pattern. 

The researches on mining sequential patterns 
are based on events that took place in an orderly 
fashion at the time.  

Most of the implemented algorithms for the 
extraction of frequent sequences, using three dif-
ferent types of approaches according to the form 
of evaluating the support of the candidate se-
quential patterns. The first group of algorithms is 
based on the ownership apriori, introduced by 
Agrawal and Srikant (1994) in the mining of as-
sociation rules. This property suggests that any 
sub pattern from a frequent pattern is also fre-
quent, allowing pruning sequences candidates 
during the process of lead generation. Based on 
this heuristics, Agrawal and Srikant (1995) pro-
posed algorithms as the AprioriAll and Apri-
oriSome. The substantial difference between the-
se two algorithms is that the AprioriAll generates 
the candidates from all the large sequences 
found, but that might not be lowest panning val-
ues, however, AprioriSome only counts those 
sequences that are large but lowest panning val-
ues, thus reducing the search space of the pat-
terns. 

In subsequent work, Srikant and Agrawal 
(1996) propose the same algorithm GSP (Gener-
alization Sequential Patterns), also based on the 
technical apriori, surpassing previous in 20 mag-
nitudes of time. Until this time, the algorithms 
that had been proposed for mining sequential 
patterns focused on obtaining patterns taking into 
account only the minimal support given by the 
user. But these patterns could fit into transactions 
that had been given at intervals of time very dis-
tant, which was not convenient for the purposes 
of mining. So, in this paper, we propose the idea 
that in addition to the minimal support, the user 
could be in the ability to specify your interest in 
obtaining patterns that fit into transactions that 
have been given in certain periods of time, and 
this is made from the inclusion of restrictions on 
the maximum and minimum distance, the size of 
the window in which the sequences and the in-
heritance relationships - taxonomies, which are 
cross-relations through a hierarchy. 

In these algorithms based on the principle of 
apriori, the greater effort focused on developing 
specific structures that allow sequential patterns 
represent the candidates and in this way make the 
counting operations support more quickly. 

The second group is the algorithms that seek 
to reduce the size of the set of scanned data, by 

means of task execution of projection of the ini-
tial data base and the obtaining of patterns, with-
out involving a process of lead generation. Using 
this technique and approach under the divide and 
rule, Han et al. (1996) proposed the algorithm 
FreeSpan (Frecuent Pattern-Project Sequential 
Pattern mining), and Pei et al. (2001) proposes 
PrefixSpan (Prefix-projected Sequential Pattern 
mining).  In these algorithms the database of se-
quences is projected recursively in a set of small 
databases from which the fragments of sub se-
quences grow based on the current set of fre-
quent sequences, where the patterns are extract-
ed. 

Han et al. (1996)] show that FreeSpan extracts 
the full set of patterns and is more efficient and 
considerably faster than the algorithm GSP. 
However, a sub sequence can be generated by 
the combinations of sub strings in a sequence, 
while the projection in FreeSpan must follow the 
sequence in the initial database without reducing 
the length. In addition, it is very expensive the 
fact that the growths of a sub sequence it will be 
explored in any point of the division within a 
candidate sequence. As an alternative to this 
problem, Pei (2001) proposes PrefixSpan. The 
general idea is to examine only the prefixes for 
the sub project only sequences and their corre-
sponding sub sequences postfijas within data-
bases planned. In each of these databases 
planned, it will find the sequential patterns ex-
panded exploration only local patterns frequent-
ly. PrefixSpan extracts the full set of patterns and 
their efficiency and implementation are consid-
erably better both GSP and FreeSpan. 

The third group is formed by algorithms that 
kept in memory only information necessary for 
the evaluation of the bracket. These algorithms 
are based on the calls of occurrence lists that 
contain the description of the location where the 
patterns occur in the database. Under this ap-
proach, Zaki (2001) proposes the SPADE algo-
rithm (Sequential Pattern Discovery using 
Equivalence classes) where he introduces the 
technical processing of the data base to vertical 
format, in addition there is a difference from the 
algorithms based on apriori, it does not perform 
multiple passes on the database, and you can ex-
tract all the frequent sequences in only three 
passes. This is due to the incorporation of new 
techniques and concepts such as the list of identi-
fiers (id-list) with vertical format that is associat-
ed with the sequences. In these lists by means of 
temporary unions can be generated frequent se-
quences. Also used the grid based approach to 
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break down the search space in small classes that 
can be processed independently in the main 
memory. Also, uses the search in both breadth 
and depth to find the frequent sequences within 
each class. 

In addition to the techniques mentioned earli-
er, Lin and Lee (2005) proposes the first algo-
rithm that implements the idea of indexing called 
Memisp memory (Memory Indexing for sequen-
tial pattern mining).  The central idea of Memisp 
is to use the memory for both the data streams as 
to the indexes in the mining process and imple-
ment a strategy of indexing and search to find all 
frequent sequences from a sequence of data in 
memory, sequences that were read from the da-
tabase in a first tour. Only requires a tour on the 
basis of data, at most, two for databases too 
large. Also avoids the generation of candidates 
and the projection of database, but presented as 
disadvantage a high CPU utilization and 
memory. 

The fourth group of algorithms is composed of 
all those who use fuzzy techniques. One of the 
first work performed is the Wang et al. (1999), 
who propose a new data-mining algorithm, 
which takes the advantages of fuzzy sets theory, 
to enhance the capability of exploring interesting 
sequential patterns from the databases with quan-
titative values. The proposed algorithm integrates 
concepts of fuzzy sets and the AprioriAll algo-
rithm to find interesting sequential patterns and 
fuzzy association rules from transaction data. 
The rules can thus predict what products and 
quantities will be bought next for a customer and 
can be used to provide some suggestions to ap-
propriate supervisors. 

Wang et al. (1999) propose fuzzy quantitative 
sequential patterns (FQSP) algorithm, where an 
item’s  quantity  in  the  pattern  is  represented  by  a  
fuzzy term rather than a quantity interval. In their 
work an Apriori-like algorithm was developed to 
mine all FQSP, it suffers from the same weak-
nesses, including: (1) it may generate a huge set 
of candidate sequences and (2) it may require 
multiple scans of the database. Therefore, an 
Apriori-like algorithm often does not have a 
good performance when a sequence database is 
large and/or when the number of sequential pat-
terns to be mined is large. 

Chen et al. (2006) propose divide-and-conquer 
fuzzy sequential mining (DFSM) algorithm, to 
solve the same problem presented by Hong using 
the divide-and-conquer strategy, which possesses 
the same merits as the PrefixSpan algorithm; 

consequently, its performance is better than 
Wang et al. 

Fiot (2008) in her work suggests that an item 
quantitative is partitioned into several fuzzy sets. 
In the context of fuzzy logic, a diffuse item is the 
association of a fuzzy set b to its corresponding 
item x, i.e. [x,b].  In the DB each record is asso-
ciated with a diffuse item [x,b] according to their 
degree of membership. A set of diffuse items 
will be implicated by the pair (X,B), where X is 
the set of items, and B is a set of fuzzy sets. 

In addition, it argues that a sequence g-k-
sequence (s1, s2,…, sp) is formed by g item sets 
diffuse s=(X,B) grouped to diffuse k items [x,b], 
therefore the sequential pattern mining diffuse 
consists in finding the maximum frequency dif-
fuse g-k-sequence. 

Fiot (2008), provides a general definition of 
frequency of a sequence, and presents three algo-
rithms to find the fuzzy sequential patterns: 
SpeedyFuzzy, which has all the objects or items 
of a fuzzy set, regardless of the degree, if it is 
greater than 0 objects have the same weight, 
MiniFuzzy is responsible for counting the objects 
or items of a fuzzy set, but supports only those 
items of the sequence that candidate have a 
greater degree of belonging to a specified thresh-
old; and TotallyFuzzy that account each object 
and each sequence. In this algorithm takes into 
account the importance of the set or sequence of 
data, and is considered the best grade of mem-
bership. 

4 Description of the Problem 

A sequence s, denoted by <e1e2…  in>, is an or-
dered set of n elements, where each element ei is 
a set of objects called itemset.  An itemset, which 
is denoted by (x1 [c1], x2 [c2]   ,  …,  Xq[cq] ), is a 
non-empty set of elements q, where each element 
xj is an item and is represented by a literal, and cj 
is the amount associated with the item xj that is 
represented by a number in square brackets. 
Without loss of generality, the objects of an ele-
ment are supposed to be found in lexicographical 
order by the literal. The size of the sequence s, 
denoted by |s|, is the total number of objects of 
all elements of the s, so a sequence s is a k-
sequence, if |s|=k.  

For example, <(a[5])(c[2])(a[1])>, 
<(a[2],c[4])(a[3])> and <(b[2])(a[2],e[3])> are 
all 3-sequences. A sequence s = <e1e2…  in> is a 
sub-sequence of another sequence of s'=<e1'e2'…  
em'> if there are 1≤i1<i2<…<in≤m such that e1⊆ 
ei1', e2⊆ei2 ', ... , and en⊆ ein'.  The sequence s' 
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contains the sequence s if s is a sub-sequence of 
s'. 

Similarly, <(b,c)(c)(a,c,e)> contains 
<(b)(a,e)> where the quantities may be different. 

The support (sup) of a sequential pattern X is 
defined as the percentage on the fraction of rec-
ords that contains X the total number of records 
in the database. The counter for each item is in-
creased by one each time the item is found in 
different transactions in the database during the 
scanning process. This means that the counter of 
support does not take into account the quantity of 
the item. For example, in a transaction a custom-
er buys three bottles of beer, but only increases 
the number of the counter to support {beer} by 
one; in other words, if a transaction contains an 
item, then, the support counter that item only is 
incremented by one. 

Each sequence in the database is known as a 
sequence of data. The support of the sequence s, 
is denoted as s.sup, and represents the number of 
sequences of data that contain s divided by the 
total number of sequences that there is in the da-
tabase. minSup threshold is the minimum speci-
fied by the user. A sequence s is frequent if 
s.sup≥minSup, therefore it will be a sequential 
pattern frequently. 

Then, given the value of the minSup and a da-
tabase of sequences, the problem of the sequen-
tial pattern mining is to discover the set of all 
sequential patterns whose supports are greater 
equal to the value of the minimum support 
(s.sup≥  minSup). 

Definition: given a  pattern and a frequent 
item x in the database of sequences, ' is a: 
 Pattern Type-1: if ' can be formed by add-

ing to  the itemset that contains the item x, 
as a new element of . 

 Pattern Type-2: if ' can be formed by the 
extension of the last element of  with x. 

The item x is called stem of the sequential pat-
tern ', and   prefix is the pattern of '. 

That is, the following database of sequences of 
figure 1, which includes amounts for the items 
and that, has six sequences of data. 

 
Sequences 

C1 = <(a[1],d[2]) (b[3],c[4]) (a[3],e[2])> 
C2 = <(d[2],g[1]) (c[5],f[3]) (b[2],d[1])> 
C3 = <(a[5],c[3]) (d[2]) (f[2]) (b[3])> 
C4 = <(a[4],b[2],c[3],d[1]) (a[3]) (b[4])> 
C5 = <(b[3],c[2],d[1]) (a[3],c[2],e[2]) (a[4])> 
C6 = <(b[4],c[3]) (c[2]) (a[1],c[2],e[3])> 

Figure 1. Database of sequences 
 

Consider the sequence C6, which consists of 
three elements, the first has the objects b and c, 
the second has the object c, and the third has the 
objects a, c, and e. Therefore, the support of 
<(b)(a)> is 4/6 since all the sequences of data 
with the exception of C2 and C3 contain a 
<(b)(a)>.  The sequence <(a,d)(a)> is a sub se-
quence of both C1 and C4; and therefore, 
<(a,d)(a)>.sup=2/6. 

Given the pattern <(a)> and the frequent item 
b, gets the pattern type-1 <(a)(b)> adding (b) to 
<(a)>, and the pattern type-2 <(a,b)> by the 
extension of <(a)> with b. 

Similarly, <(a)> is the prefix pattern (_pat) 
which in turn is a frequent sequence, and b is the 
stem of both: <(a)(b)> and <(a,b)>. 

Note that the sequence null, denoted by <>, is 
the _pat of any 1-frequent sequence. Therefore, 
a k-sequence is like a frequent pattern type-1 or 
type-2 of a (k-1)-frequent sequence. 

5 Algorithm for the discovery of se-
quential patterns with quantity fac-
tors - MSP-QF 

The algorithm for mining sequential patterns 
with quantity factors, arises from the need to dis-
cover from a database of sequences, the set of 
sequential patterns that include the amounts as-
sociated with each of the items that are part of 
the transactions in the database, since having this 
additional information can be known with greater 
precision not only what is the relationship with 
respect to the time that exists between the vari-
ous items involved in the transactions of a se-
quence, but also as is the relationship to the 
amount of these items. 

The algorithm MSP-QF, it is based on the idea 
of the use of prefixes, and the creation of indexes 
from the database of sequences or other indices 
that are generated during the mining process, 
where recursively searching for frequent pat-
terns. As a result of the exploration of a particu-
lar index, fewer and shorter sequences of data 
need to be processed, while the patterns that are 
found will be made longer. 

In addition, if the database is very large se-
quence uses the techniques of partitioning in a 
manner that the algorithm is applied to each of 
the partitions as if it were a database of lesser 
size. 
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5.1 Procedure of the algorithm MSP-QF 
Listed below are the steps of the proposed al-

gorithm. 
 
Step 1: Partitioning and scanning of the data-

base of sequences. Depending on the size of the 
database are applicable to so it can be partitioned 
and formatted through and then to scan each of 
the partitions of independently. For each parti-
tion, the sequences are constructed and stored in 
the structure DBSeq. At the same time generates 
the index of items where is stored the support for 
each one of them, which is found during the 
scanning process. 

 
Step 2: The index of items are filtered out 

those that are frequent, i.e., whose support is 
greater than or equal to minSup determined by 
the user. All these items come to form sequences 
of size |s| =1, therefore, form the set of 1-
sequences. For all these sequences frequent item 
is to write the amounts associated with each item 
to the time it is saved in the whole of frequent 
patterns. 

 
Step 3: For each one of the frequent patterns 

, found in step 2, or as a result of the step 4, the 
index is constructed _idx, with inputs (ptr_ds, 
pos), where ptr_ds refers to a sequence of the DB 
in which appears the  pattern, and pos is the 
pair (posItemSet, posItem), where posItemSet is 
the position of the itemset in the sequence and 
posItem the position of the item in the itemset 
from the sequence where the pattern appears. 
The values of pos allow the following scans are 
performed only on the basis of these positions in 
a certain sequence. 

 
Step 4: Find the stems of type-1 and/or type-2 

for each  pattern and its corresponding index 
_idx generated in the previous step, considering 
only those items of the sequences referred to in 
_idx and the respective values of pos. At the 
same time as are the stems are calculated their 
supports, and in addition is added to the list of 
quantities of the item that is part of the stem the 
amount referred to in the item of the sequence of 
the DB which is being examined. The infor-
mation of the stems and their quantities are 
stored in another index of stems. This step is re-
peated for the same pattern, until they were no 
longer more stems from this. 

 

Step 5: When there is no more stems, filtered 
index stems all those who are frequent. For all 
stems (sequences) frequently, we proceed to dis-
cretize the quantities that were associated with 
each item and stored in the set of frequent pat-
terns. For this, before adding it to the set of fre-
quent patterns, we proceed to verify that the 
common pattern found recently has not already 
been added before this set as a result of applying 
the algorithm to a partition of the database that 
was processed with previously. If frequent pat-
tern already exists in the set of frequent patterns, 
the discretization process is again applied to the 
set of quantities associated with the sequence is 
stored as a frequent pattern and set of quantities 
of newly discovered frequent pattern; otherwise, 
the common pattern found in the current partition 
is added directly to the set of frequent patterns. 

Then we proceed to perform recursively steps 
3, 4 and 5 with each one of the frequent patterns 
that are found in the process. 

 
Discretization Function: This function is re-

sponsible for making the set of quantities associ-
ated with an item, the range of values given by 
the mean and standard deviation of this set. For 
example, given the sequences of the figure 1, the 
set of quantities associated with the item <(a)> 
is: 1,5,4,3,1, which after being discretized would 
be the interval formed by: [ 2.8±1.6 ] 

 
To summarize the steps carried out in the pro-

posed algorithm, figure 3 shows a schematic of 
the entire procedure. 

 

5.2 Algorithm specification MSP-QF  
Here we show the specification of the pro-

posed algorithm MSP-QF. 
 

Algorithm MSP-QF 
In:   DB = database sequences 

minSup = minimum support 
partition = number of sequences included in each of the partitions 

Out: set of all sequential patterns with quantity factors. 

Procedure: 
1. Partitioning the DB  

2. Each partition scan it in main memory and:  

(i) build sequences and store them in DBSeq structure.  

(ii) index the items and determine the support of each item.  

(iv) associate the quantities of each item in a sequence list of item 

quantities in the index.  

3. Find the set of frequent items  

4. For each frequent item x,  

(i) form the sequential pattern  = <(x)>  

(ii) call Discretize() to discretize the set of quantities associated 

with each item x.  

(iii) storing  in the set frequent patterns.  

(iv) call Indexing (x, <>, DBSeq) to build the -idx  index.  

(v) call Mining (, -idx) to obtain patterns from index -idx. 
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Subrutine Indexing (x, , set_Seq) 
Parameters:  

x = one stem type-1 or type-2; 

 = prefix pattern (-pat); 
set_Seq = set of data sequences 

/ * If set_Seq is an index, then each data sequence in the index is 

referenced by the element ptr_ds¸ which is formed at the input 

(ptr_ds, pos) index * / 

Out: índex '-idx, where ' represents the pattern formed by the stem x 

and prefix pattern -pat. 
Procedure: 
1. For each data sequence ds of set_Seq 

(i) If set_Seq = DBSeq the pos_inicial = 0, else pos_inicial = pos. 

(ii) Find the stem in each sequence ds from the position 

(pos_inicial + 1), 

1. If the stem x is in position pos in ds, then insert a pair (ptr_ds, 
pos) in '-idx index, where ptr_ds reference to ds. 

2. If the stems x is equal to the item x’  of the ds sequence, add-

ed the quantity q associated with the item x’,  to the list of 

quantities related to x. 

2. Return the '-idx index. 
 
 

Subrutine Mining(,-idx) 
Parameters:  

 = a pattern; 

-idx = an índex. 

Procedure: 
1. For each data sequence ds referenced by ptr_ds of input (ptr_ds, 

pos) in -idx,  

(i) Starting from the (pos +1) position until |ds|, determining poten-

tial stems and increase in one support each of these stems.  

2. Filter those stems that have a large enough support.  

 

3. For each stem x found in the previous step,  

(i) form a sequential pattern '' from the prefix pattern -pat and 

the stem x. 

(ii) call Discretize(') to discretize the amounts associated with 

the items of '. 

(iii) call Index(', , ’-idx) to build the index ’-idx. 

(iv) call Mining(’, '-idx) to discover sequential patterns from 

index ’-idx 
 
 

Subrutina Discretize() 
Parameters:  

 = a pattern that is a sequence;  

Output: the arithmetic mean and standard deviation of the amounts 

associated with each item  pattern.  

Procedure:  
1. For each itemset       do  

a) For each item  x    do  

(i) Calculate the arithmetic mean and standard deviation of 

the set of quantities associated with the item x  

(ii) storing the arithmetic mean and standard deviation in the 

pattern  
 
 

 
Figure 2. Specification of the algorithm MSP-QF 

 
 
 
 

 
Figure 3. Schema of the procedures of the algorithm MSP-QF 
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6 Experiments and Result 

The experiments to test the technical proposal 
were implemented in two different scenarios, 
which are described below. 

6.1 Scenario 1: Real data 
The technique was applied in the analysis of 

the market basket of a supermarket. These tests 
consisted of obtain the set of frequent sequential 
patterns from the basis of data obtained in the 
course of three non-consecutive periods. The 
first period goes from mid-December of 1999 
until mid-January 2000. The second period goes 
from early 2000 until the beginning of June of 
the same year. The third period goes from late 
August 2000 until the end of November 2000. 
This database consists of 88163 transactions, 
3000 items unique to approximately 5133 cus-
tomers. 

The purpose of testing is to discover patterns 
of customer usage in the supermarket, plus get 
the amount of each of the items that will be pur-
chased by these customers as a result of applying 
the proposed technique, which will allow us to 
have more accurate and significant in terms of 
the quantity purchased of each of the items. 

Seven tests were carried out with minimum 
media 10 %, 2%, 1.5%, 1.0%, 0.75%, 0.50% and 
0.25%, which were observed in figure 4. These 
results were compared with results of the tech-
nical Memisp. 

 
minSup 

(%) 
MEMISP MSP-QF 

Exe.Time 
(seg.) 

No. 
Patterns 

Exe.Time 
(seg.) 

No. 
Patterns 

10.00 4 50 5 50 

2.00 12 824 15 824 

1.50 16 1371 19 1371 

1.00 22 2773 27 2773 

0.75 28 4582 35 4582 

0.50 39 9286 50 9286 

0.25 72 30831 89 30831 

 

 
Figure 4. Results of the tests for scenario 1 

 

In the test with minSup=2% were obtained 
824 sequential patterns with quantity factors, 
some of which are: 

Olive[ 1.06±0.51 ]$ 

Olive[ 1.03±0.5 ]$ Paprika[ 0.37±0.23 ]$ 

Olive[ 1.01±0.5 ]$ Porro[ 0.57±0.27 ]$ 

Celery[ 0.56±0.25 ]$ Lettuce[ 0.53±0.24 ], Lentils[ 0.54±0.23 ]$ 

Celery[ 0.56±0.26 ]$ Lettuce[ 0.55km Air ±0.24 ], 

 Paprika[ 0.34±0.17 ]$ 

Lettuce[ 0.61±0.25 ], Lentils[ 0.56±0.26 ]$ Porro[ 0.59±0.24 ], 

 Paprika[ 0.33±0.15 ]$ 

Porro[ 0.54±0.27 ], Lentils[at 0.62±0.25 ]$ Lentils[ 0.58±0.25 ]$ 

Paprika[ 0.35±0.17 ]$ 

 
Of these sequential patterns we can clarify the 

following with regard to purchases made by cus-
tomers: 
• Customers buy only olives in a quantity of 

1.06±0.51. 
• Customers who have purchased a first time only 

olive, returning a next time for chili or by porro, 
with quantities of 0.37±0.23 and 0.57±0.27 re-
spectively . Those who buy after pepper, pur-
chased before olives in a quantity equal to 
1.03±0.5, while those who acquire porro did so 
with an amount equal to 1.01±0.5. 

• Those who buy lettuce at the same time buy lentils 
in amounts equal to 0.61±0.25 and 0.56±0.26 re-
spectively. Later, these same customers buy porro 
and paprika with amounts equal to 0.59±0.24 and 
0.33±0.15. 

• Those who buy porro, in the same transaction also 
buy lentils. Later return to buy only lentils, and a 
next time buy only paprika, in the amounts listed 
in the pattern. 

6.2 Scenario 2: Synthetic data 
This second scenario is generated multiple da-

tabases (datasets) of synthetic form by means of 
the Synthetic Data Generator Tool. 

The process followed to synthetic generation 
of the dataset, it is the describing Agrawal and 
Srikan (1995), and under the parameters referred 
to in the work of Lin and Lee (2005).  

In this scenario, tests were carried out both of 
effectiveness, efficiency and scalability. 

The evidence of effectiveness and efficiency 
were made with dataset generated with the fol-
lowing parameters: NI = 25000, NS = 5000, N = 
10000, |S| = 4, |I| = 1.25, corrS = 0.25, crupS = 
0.75, corrI = 0.25 and crupI = 0.75. 

The results of these tests were compared with 
the results obtained for the algorithms Pre-
fixSpan-1, PrefixSpan-2 and Memisp. 

 
Efficiency Tests: Ran a first subset of tests for 

|C|=10 and a database of 200,000 sequences, 
with different values for minSup. The results are 
shown in figure 5. 
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Figure 5. Test results for |C|=10 and |DB|=200K 

 
The second subgroup of tests was conducted 

with a dataset with values for |C| and |T| of 20 
and 5 respectively. This value of |T| implies that 
the number of items of transactions increases, 
which represents that the database is also larger 
and more dense with respect to the number of 
frequent sequential patterns that may be ob-
tained. The results of these tests are those seen in 
figure 6. 

 

 
Figure 6. Test results for |C|=20, |T|=5 and 

|DB|=200K  
 
A last subset of efficiency tests were carried 

out under the same parameters of the subset 
above with the exception of |T| increased to 7.5. 
The results are shown in figure 7. 

 

 
Figure 7. Test results for |C|=20, |T|=7.5 and 

|DB|=200K 

Efficacy tests: Were carried out 92 efficacy 
trials with the same dataset of the tests of effi-
ciency. In four of the tests carried out with values 
|C| =20 and |T| equal to 2.5, 5 and 7.5 respective-
ly, it did not achieve the same amount of sequen-
tial patterns found with the algorithms Pre-
fixSpan-1 and PrefixSpan-2. These 4 tests repre-
sent 4% of the total. 

 
Scalability tests: The scalability tests were 

used datasets synthetically generated with the 
same values of the parameters of the first subset 
of tests of efficiency, and with minimal support 
equal to 0.75%.  The amount of sequences in the 
dataset for these tests ranged from |DB|=1000K 
to 10000K, i.e. of a million to 10 million se-
quences. In figure 8, you can watch the results of 
these tests. 

 

 
Figure 8, Results of scalability tests for min-
sup=0.75% and different sizes of datasets 

7 Conclusion 

We have proposed an algorithm for the dis-
covery of sequential patterns that allows, as part 
of the mining process, to infer from the amounts 
associated with each of the items of the transac-
tions that make up a sequence, the quantity fac-
tors linked to the frequent sequential patterns. 

The technical proposal has been designed in 
such a way that uses a compact set of indices in 
which focuses the search for the sequential pat-
terns from frequent patterns that have already 
been found earlier and that represent the prefixes 
of the patterns to find. That is why the size of the 
indexes is decreasing in accordance with the 
mining process progresses. 

In addition, there has been that the information 
provided by the frequent patterns with factors of 
quantity, is much more accurate, since not only 
gives us information on how is the temporal rela-
tionship of the items in the various transactions, 
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but also, what is the relationship of the quantities 
of some items to others, which enriches the se-
mantics provided by the set of sequential pat-
terns. 

Finally, the results obtained in section 5, we 
can conclude by saying that the technical pro-
posal meets the objectives of the mining process; 
it is effective, is efficient and is scalable because 
it has a linear behavior in accordance with the 
sequence database grows, and that when applied 
to large data bases his performance turned out to 
be better than the techniques discussed in this 
work. 
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