
Discovery of Sequential Patterns with Quantity Factors

Karim Guevara Puente de la Vega

Universidad Católica de Santa María /Arequipa
Universidad Nacional de San Agustín / Arequipa

kguevara@ucsm.edu.pe

 Cesar Beltrán Castañón
Departamento de Ingeniería

Pontificia Universidad Católica del Perú / Lima
cbeltran@pucp.pe

Abstract

The sequential pattern mining stems from the
need to obtain patterns that are repeated in
multiple transactions in a database of se-
quences, which are related to time, or another
type of criterion. This work presents the pro-
posal of a new technique for the discovery of
sequential patterns from a database of se-
quences, where the patterns not only provide
information on how these relate to the time,
but also, that in the mining process itself
should be included the quantity factors asso-
ciated with each of the items that are part of a
sequence, and as a result of this process can
be obtain information relating to how they re-
late these items with regard to the amounts
associated. The proposed algorithm uses di-
vide and conquer techniques, as well as in-
dexing and partitioning of the database.

1 Credits

This document was written as part of the devel-
opment of the 1st Symposium on Information
Management and Big Data, SIMBig 2014. It has
been adapted from the instructions for earlier
ACL.

2 Introduction

The sequential pattern mining is the process
by which you get the relationships between oc-
currences of sequential events, to find if there is
a specific order in which these events occur. In
relation to this area of study there are many in-
vestigations, all of them makes use of the re-
striction of minimal support, some include other
restrictions, such as for example the time interval
in which it is required that the events happen,
also the use of taxonomies as defined by the user,
and the fact of allowing the items in a sequence
not necessarily must have occurred in a single
transaction, but could be in two or more, always
and when their times of each of these transac-
tions is within some small window of time de-
termined by the user.

In addition, the algorithms for mining sequen-
tial patterns of dealing with the previous sequen-
tial patterns in a uniform manner, despite the fact
that these patterns individually in a sequence can
have important differences such as the associated
amount to each item that make up each pattern.

For the foregoing reasons, in the present paper
proposes a technique by which it is intended to
exploit these intrinsic relationships of the se-
quential patterns, in this specific case the rela-
tionship to the amount of each of the items. The
inclusion of this aspect in the sequential pattern
mining, you can afford to get a set of sequential
patterns that are not only common but also let us
know how these amounts associated with each
item that is included in a sequential pattern fre-
quent relates. The inclusion of the restriction of
quantity within the extraction process of the fre-
quent sequential patterns we could provide in-
formation much more meaningful.

The article is organized as follows: Section 2
is on the previous work. Section 3 gives a de-
scription of the problem. Section 4 introduces the
technical proposal. Section 5 shows the experi-
ments and results. The conclusions and future
work are shown in section 6 and finally the ref-
erences.

3 Previous works

The techniques of discovery of association
rules are essentially boolean, due to which are
discarded the quantities of the items purchased
and only pay attention to if something was pur-
chased or not. An important area of study is the
sequential pattern mining that involves the ex-
traction of patterns that are repeated in multiple
transactions in a transactional database, which
are related to time or another type of sequence.

The problem of the sequential pattern mining
was introduced by Agrawal and Srikant (1995)
set the example of the typical income of clients
in a rental shop videos. Customers often rent
"Star Wars", then "Empire Strikes Back" and
then "Return of the Jedi". All these incomes not
necessarily should have been made consecutive-
ly, that is to say, there could be customers that

33

leased any other video in the middle of the pre-
vious sequence, so that these sequences of trans-
actions also fall into the same pattern.

The researches on mining sequential patterns
are based on events that took place in an orderly
fashion at the time.

Most of the implemented algorithms for the
extraction of frequent sequences, using three dif-
ferent types of approaches according to the form
of evaluating the support of the candidate se-
quential patterns. The first group of algorithms is
based on the ownership apriori, introduced by
Agrawal and Srikant (1994) in the mining of as-
sociation rules. This property suggests that any
sub pattern from a frequent pattern is also fre-
quent, allowing pruning sequences candidates
during the process of lead generation. Based on
this heuristics, Agrawal and Srikant (1995) pro-
posed algorithms as the AprioriAll and Apri-
oriSome. The substantial difference between the-
se two algorithms is that the AprioriAll generates
the candidates from all the large sequences
found, but that might not be lowest panning val-
ues, however, AprioriSome only counts those
sequences that are large but lowest panning val-
ues, thus reducing the search space of the pat-
terns.

In subsequent work, Srikant and Agrawal
(1996) propose the same algorithm GSP (Gener-
alization Sequential Patterns), also based on the
technical apriori, surpassing previous in 20 mag-
nitudes of time. Until this time, the algorithms
that had been proposed for mining sequential
patterns focused on obtaining patterns taking into
account only the minimal support given by the
user. But these patterns could fit into transactions
that had been given at intervals of time very dis-
tant, which was not convenient for the purposes
of mining. So, in this paper, we propose the idea
that in addition to the minimal support, the user
could be in the ability to specify your interest in
obtaining patterns that fit into transactions that
have been given in certain periods of time, and
this is made from the inclusion of restrictions on
the maximum and minimum distance, the size of
the window in which the sequences and the in-
heritance relationships - taxonomies, which are
cross-relations through a hierarchy.

In these algorithms based on the principle of
apriori, the greater effort focused on developing
specific structures that allow sequential patterns
represent the candidates and in this way make the
counting operations support more quickly.

The second group is the algorithms that seek
to reduce the size of the set of scanned data, by

means of task execution of projection of the ini-
tial data base and the obtaining of patterns, with-
out involving a process of lead generation. Using
this technique and approach under the divide and
rule, Han et al. (1996) proposed the algorithm
FreeSpan (Frecuent Pattern-Project Sequential
Pattern mining), and Pei et al. (2001) proposes
PrefixSpan (Prefix-projected Sequential Pattern
mining). In these algorithms the database of se-
quences is projected recursively in a set of small
databases from which the fragments of sub se-
quences grow based on the current set of fre-
quent sequences, where the patterns are extract-
ed.

Han et al. (1996)] show that FreeSpan extracts
the full set of patterns and is more efficient and
considerably faster than the algorithm GSP.
However, a sub sequence can be generated by
the combinations of sub strings in a sequence,
while the projection in FreeSpan must follow the
sequence in the initial database without reducing
the length. In addition, it is very expensive the
fact that the growths of a sub sequence it will be
explored in any point of the division within a
candidate sequence. As an alternative to this
problem, Pei (2001) proposes PrefixSpan. The
general idea is to examine only the prefixes for
the sub project only sequences and their corre-
sponding sub sequences postfijas within data-
bases planned. In each of these databases
planned, it will find the sequential patterns ex-
panded exploration only local patterns frequent-
ly. PrefixSpan extracts the full set of patterns and
their efficiency and implementation are consid-
erably better both GSP and FreeSpan.

The third group is formed by algorithms that
kept in memory only information necessary for
the evaluation of the bracket. These algorithms
are based on the calls of occurrence lists that
contain the description of the location where the
patterns occur in the database. Under this ap-
proach, Zaki (2001) proposes the SPADE algo-
rithm (Sequential Pattern Discovery using
Equivalence classes) where he introduces the
technical processing of the data base to vertical
format, in addition there is a difference from the
algorithms based on apriori, it does not perform
multiple passes on the database, and you can ex-
tract all the frequent sequences in only three
passes. This is due to the incorporation of new
techniques and concepts such as the list of identi-
fiers (id-list) with vertical format that is associat-
ed with the sequences. In these lists by means of
temporary unions can be generated frequent se-
quences. Also used the grid based approach to

34

break down the search space in small classes that
can be processed independently in the main
memory. Also, uses the search in both breadth
and depth to find the frequent sequences within
each class.

In addition to the techniques mentioned earli-
er, Lin and Lee (2005) proposes the first algo-
rithm that implements the idea of indexing called
Memisp memory (Memory Indexing for sequen-
tial pattern mining). The central idea of Memisp
is to use the memory for both the data streams as
to the indexes in the mining process and imple-
ment a strategy of indexing and search to find all
frequent sequences from a sequence of data in
memory, sequences that were read from the da-
tabase in a first tour. Only requires a tour on the
basis of data, at most, two for databases too
large. Also avoids the generation of candidates
and the projection of database, but presented as
disadvantage a high CPU utilization and
memory.

The fourth group of algorithms is composed of
all those who use fuzzy techniques. One of the
first work performed is the Wang et al. (1999),
who propose a new data-mining algorithm,
which takes the advantages of fuzzy sets theory,
to enhance the capability of exploring interesting
sequential patterns from the databases with quan-
titative values. The proposed algorithm integrates
concepts of fuzzy sets and the AprioriAll algo-
rithm to find interesting sequential patterns and
fuzzy association rules from transaction data.
The rules can thus predict what products and
quantities will be bought next for a customer and
can be used to provide some suggestions to ap-
propriate supervisors.

Wang et al. (1999) propose fuzzy quantitative
sequential patterns (FQSP) algorithm, where an
item’s quantity in the pattern is represented by a
fuzzy term rather than a quantity interval. In their
work an Apriori-like algorithm was developed to
mine all FQSP, it suffers from the same weak-
nesses, including: (1) it may generate a huge set
of candidate sequences and (2) it may require
multiple scans of the database. Therefore, an
Apriori-like algorithm often does not have a
good performance when a sequence database is
large and/or when the number of sequential pat-
terns to be mined is large.

Chen et al. (2006) propose divide-and-conquer
fuzzy sequential mining (DFSM) algorithm, to
solve the same problem presented by Hong using
the divide-and-conquer strategy, which possesses
the same merits as the PrefixSpan algorithm;

consequently, its performance is better than
Wang et al.

Fiot (2008) in her work suggests that an item
quantitative is partitioned into several fuzzy sets.
In the context of fuzzy logic, a diffuse item is the
association of a fuzzy set b to its corresponding
item x, i.e. [x,b]. In the DB each record is asso-
ciated with a diffuse item [x,b] according to their
degree of membership. A set of diffuse items
will be implicated by the pair (X,B), where X is
the set of items, and B is a set of fuzzy sets.

In addition, it argues that a sequence g-k-
sequence (s1, s2,…, sp) is formed by g item sets
diffuse s=(X,B) grouped to diffuse k items [x,b],
therefore the sequential pattern mining diffuse
consists in finding the maximum frequency dif-
fuse g-k-sequence.

Fiot (2008), provides a general definition of
frequency of a sequence, and presents three algo-
rithms to find the fuzzy sequential patterns:
SpeedyFuzzy, which has all the objects or items
of a fuzzy set, regardless of the degree, if it is
greater than 0 objects have the same weight,
MiniFuzzy is responsible for counting the objects
or items of a fuzzy set, but supports only those
items of the sequence that candidate have a
greater degree of belonging to a specified thresh-
old; and TotallyFuzzy that account each object
and each sequence. In this algorithm takes into
account the importance of the set or sequence of
data, and is considered the best grade of mem-
bership.

4 Description of the Problem

A sequence s, denoted by <e1e2… in>, is an or-
dered set of n elements, where each element ei is
a set of objects called itemset. An itemset, which
is denoted by (x1 [c1], x2 [c2] , …, Xq[cq]), is a
non-empty set of elements q, where each element
xj is an item and is represented by a literal, and cj
is the amount associated with the item xj that is
represented by a number in square brackets.
Without loss of generality, the objects of an ele-
ment are supposed to be found in lexicographical
order by the literal. The size of the sequence s,
denoted by |s|, is the total number of objects of
all elements of the s, so a sequence s is a k-
sequence, if |s|=k.

For example, <(a[5])(c[2])(a[1])>,
<(a[2],c[4])(a[3])> and <(b[2])(a[2],e[3])> are
all 3-sequences. A sequence s = <e1e2… in> is a
sub-sequence of another sequence of s'=<e1'e2'…
em'> if there are 1≤i1<i2<…<in≤m such that e1⊆
ei1', e2⊆ei2 ', ... , and en⊆ ein'. The sequence s'

35

contains the sequence s if s is a sub-sequence of
s'.

Similarly, <(b,c)(c)(a,c,e)> contains
<(b)(a,e)> where the quantities may be different.

The support (sup) of a sequential pattern X is
defined as the percentage on the fraction of rec-
ords that contains X the total number of records
in the database. The counter for each item is in-
creased by one each time the item is found in
different transactions in the database during the
scanning process. This means that the counter of
support does not take into account the quantity of
the item. For example, in a transaction a custom-
er buys three bottles of beer, but only increases
the number of the counter to support {beer} by
one; in other words, if a transaction contains an
item, then, the support counter that item only is
incremented by one.

Each sequence in the database is known as a
sequence of data. The support of the sequence s,
is denoted as s.sup, and represents the number of
sequences of data that contain s divided by the
total number of sequences that there is in the da-
tabase. minSup threshold is the minimum speci-
fied by the user. A sequence s is frequent if
s.sup≥minSup, therefore it will be a sequential
pattern frequently.

Then, given the value of the minSup and a da-
tabase of sequences, the problem of the sequen-
tial pattern mining is to discover the set of all
sequential patterns whose supports are greater
equal to the value of the minimum support
(s.sup≥ minSup).

Definition: given a  pattern and a frequent
item x in the database of sequences, ' is a:
 Pattern Type-1: if ' can be formed by add-

ing to  the itemset that contains the item x,
as a new element of .

 Pattern Type-2: if ' can be formed by the
extension of the last element of  with x.

The item x is called stem of the sequential pat-
tern ', and  prefix is the pattern of '.

That is, the following database of sequences of
figure 1, which includes amounts for the items
and that, has six sequences of data.

Sequences

C1 = <(a[1],d[2]) (b[3],c[4]) (a[3],e[2])>
C2 = <(d[2],g[1]) (c[5],f[3]) (b[2],d[1])>
C3 = <(a[5],c[3]) (d[2]) (f[2]) (b[3])>
C4 = <(a[4],b[2],c[3],d[1]) (a[3]) (b[4])>
C5 = <(b[3],c[2],d[1]) (a[3],c[2],e[2]) (a[4])>
C6 = <(b[4],c[3]) (c[2]) (a[1],c[2],e[3])>

Figure 1. Database of sequences

Consider the sequence C6, which consists of
three elements, the first has the objects b and c,
the second has the object c, and the third has the
objects a, c, and e. Therefore, the support of
<(b)(a)> is 4/6 since all the sequences of data
with the exception of C2 and C3 contain a
<(b)(a)>. The sequence <(a,d)(a)> is a sub se-
quence of both C1 and C4; and therefore,
<(a,d)(a)>.sup=2/6.

Given the pattern <(a)> and the frequent item
b, gets the pattern type-1 <(a)(b)> adding (b) to
<(a)>, and the pattern type-2 <(a,b)> by the
extension of <(a)> with b.

Similarly, <(a)> is the prefix pattern (_pat)
which in turn is a frequent sequence, and b is the
stem of both: <(a)(b)> and <(a,b)>.

Note that the sequence null, denoted by <>, is
the _pat of any 1-frequent sequence. Therefore,
a k-sequence is like a frequent pattern type-1 or
type-2 of a (k-1)-frequent sequence.

5 Algorithm for the discovery of se-
quential patterns with quantity fac-
tors - MSP-QF

The algorithm for mining sequential patterns
with quantity factors, arises from the need to dis-
cover from a database of sequences, the set of
sequential patterns that include the amounts as-
sociated with each of the items that are part of
the transactions in the database, since having this
additional information can be known with greater
precision not only what is the relationship with
respect to the time that exists between the vari-
ous items involved in the transactions of a se-
quence, but also as is the relationship to the
amount of these items.

The algorithm MSP-QF, it is based on the idea
of the use of prefixes, and the creation of indexes
from the database of sequences or other indices
that are generated during the mining process,
where recursively searching for frequent pat-
terns. As a result of the exploration of a particu-
lar index, fewer and shorter sequences of data
need to be processed, while the patterns that are
found will be made longer.

In addition, if the database is very large se-
quence uses the techniques of partitioning in a
manner that the algorithm is applied to each of
the partitions as if it were a database of lesser
size.

36

5.1 Procedure of the algorithm MSP-QF
Listed below are the steps of the proposed al-

gorithm.

Step 1: Partitioning and scanning of the data-

base of sequences. Depending on the size of the
database are applicable to so it can be partitioned
and formatted through and then to scan each of
the partitions of independently. For each parti-
tion, the sequences are constructed and stored in
the structure DBSeq. At the same time generates
the index of items where is stored the support for
each one of them, which is found during the
scanning process.

Step 2: The index of items are filtered out

those that are frequent, i.e., whose support is
greater than or equal to minSup determined by
the user. All these items come to form sequences
of size |s| =1, therefore, form the set of 1-
sequences. For all these sequences frequent item
is to write the amounts associated with each item
to the time it is saved in the whole of frequent
patterns.

Step 3: For each one of the frequent patterns

, found in step 2, or as a result of the step 4, the
index is constructed _idx, with inputs (ptr_ds,
pos), where ptr_ds refers to a sequence of the DB
in which appears the  pattern, and pos is the
pair (posItemSet, posItem), where posItemSet is
the position of the itemset in the sequence and
posItem the position of the item in the itemset
from the sequence where the pattern appears.
The values of pos allow the following scans are
performed only on the basis of these positions in
a certain sequence.

Step 4: Find the stems of type-1 and/or type-2

for each  pattern and its corresponding index
_idx generated in the previous step, considering
only those items of the sequences referred to in
_idx and the respective values of pos. At the
same time as are the stems are calculated their
supports, and in addition is added to the list of
quantities of the item that is part of the stem the
amount referred to in the item of the sequence of
the DB which is being examined. The infor-
mation of the stems and their quantities are
stored in another index of stems. This step is re-
peated for the same pattern, until they were no
longer more stems from this.

Step 5: When there is no more stems, filtered
index stems all those who are frequent. For all
stems (sequences) frequently, we proceed to dis-
cretize the quantities that were associated with
each item and stored in the set of frequent pat-
terns. For this, before adding it to the set of fre-
quent patterns, we proceed to verify that the
common pattern found recently has not already
been added before this set as a result of applying
the algorithm to a partition of the database that
was processed with previously. If frequent pat-
tern already exists in the set of frequent patterns,
the discretization process is again applied to the
set of quantities associated with the sequence is
stored as a frequent pattern and set of quantities
of newly discovered frequent pattern; otherwise,
the common pattern found in the current partition
is added directly to the set of frequent patterns.

Then we proceed to perform recursively steps
3, 4 and 5 with each one of the frequent patterns
that are found in the process.

Discretization Function: This function is re-

sponsible for making the set of quantities associ-
ated with an item, the range of values given by
the mean and standard deviation of this set. For
example, given the sequences of the figure 1, the
set of quantities associated with the item <(a)>
is: 1,5,4,3,1, which after being discretized would
be the interval formed by: [2.8±1.6]

To summarize the steps carried out in the pro-

posed algorithm, figure 3 shows a schematic of
the entire procedure.

5.2 Algorithm specification MSP-QF
Here we show the specification of the pro-

posed algorithm MSP-QF.

Algorithm MSP-QF
In: DB = database sequences

minSup = minimum support
partition = number of sequences included in each of the partitions

Out: set of all sequential patterns with quantity factors.

Procedure:
1. Partitioning the DB

2. Each partition scan it in main memory and:

(i) build sequences and store them in DBSeq structure.

(ii) index the items and determine the support of each item.

(iv) associate the quantities of each item in a sequence list of item

quantities in the index.

3. Find the set of frequent items

4. For each frequent item x,

(i) form the sequential pattern  = <(x)>

(ii) call Discretize() to discretize the set of quantities associated

with each item x.

(iii) storing  in the set frequent patterns.

(iv) call Indexing (x, <>, DBSeq) to build the -idx index.

(v) call Mining (, -idx) to obtain patterns from index -idx.

37

Subrutine Indexing (x, , set_Seq)
Parameters:

x = one stem type-1 or type-2;

 = prefix pattern (-pat);
set_Seq = set of data sequences

/ * If set_Seq is an index, then each data sequence in the index is

referenced by the element ptr_ds¸ which is formed at the input

(ptr_ds, pos) index * /

Out: índex '-idx, where ' represents the pattern formed by the stem x

and prefix pattern -pat.
Procedure:
1. For each data sequence ds of set_Seq

(i) If set_Seq = DBSeq the pos_inicial = 0, else pos_inicial = pos.

(ii) Find the stem in each sequence ds from the position

(pos_inicial + 1),

1. If the stem x is in position pos in ds, then insert a pair (ptr_ds,
pos) in '-idx index, where ptr_ds reference to ds.

2. If the stems x is equal to the item x’ of the ds sequence, add-

ed the quantity q associated with the item x’, to the list of

quantities related to x.

2. Return the '-idx index.

Subrutine Mining(,-idx)
Parameters:

 = a pattern;

-idx = an índex.

Procedure:
1. For each data sequence ds referenced by ptr_ds of input (ptr_ds,

pos) in -idx,

(i) Starting from the (pos +1) position until |ds|, determining poten-

tial stems and increase in one support each of these stems.

2. Filter those stems that have a large enough support.

3. For each stem x found in the previous step,

(i) form a sequential pattern '' from the prefix pattern -pat and

the stem x.

(ii) call Discretize(') to discretize the amounts associated with

the items of '.

(iii) call Index(', , ’-idx) to build the index ’-idx.

(iv) call Mining(’, '-idx) to discover sequential patterns from

index ’-idx

Subrutina Discretize()
Parameters:

 = a pattern that is a sequence;

Output: the arithmetic mean and standard deviation of the amounts

associated with each item  pattern.

Procedure:
1. For each itemset    do

a) For each item x  do

(i) Calculate the arithmetic mean and standard deviation of

the set of quantities associated with the item x

(ii) storing the arithmetic mean and standard deviation in the

pattern 

Figure 2. Specification of the algorithm MSP-QF

Figure 3. Schema of the procedures of the algorithm MSP-QF

38

6 Experiments and Result

The experiments to test the technical proposal
were implemented in two different scenarios,
which are described below.

6.1 Scenario 1: Real data
The technique was applied in the analysis of

the market basket of a supermarket. These tests
consisted of obtain the set of frequent sequential
patterns from the basis of data obtained in the
course of three non-consecutive periods. The
first period goes from mid-December of 1999
until mid-January 2000. The second period goes
from early 2000 until the beginning of June of
the same year. The third period goes from late
August 2000 until the end of November 2000.
This database consists of 88163 transactions,
3000 items unique to approximately 5133 cus-
tomers.

The purpose of testing is to discover patterns
of customer usage in the supermarket, plus get
the amount of each of the items that will be pur-
chased by these customers as a result of applying
the proposed technique, which will allow us to
have more accurate and significant in terms of
the quantity purchased of each of the items.

Seven tests were carried out with minimum
media 10 %, 2%, 1.5%, 1.0%, 0.75%, 0.50% and
0.25%, which were observed in figure 4. These
results were compared with results of the tech-
nical Memisp.

minSup

(%)
MEMISP MSP-QF

Exe.Time
(seg.)

No.
Patterns

Exe.Time
(seg.)

No.
Patterns

10.00 4 50 5 50

2.00 12 824 15 824

1.50 16 1371 19 1371

1.00 22 2773 27 2773

0.75 28 4582 35 4582

0.50 39 9286 50 9286

0.25 72 30831 89 30831

Figure 4. Results of the tests for scenario 1

In the test with minSup=2% were obtained
824 sequential patterns with quantity factors,
some of which are:

Olive[1.06±0.51]$

Olive[1.03±0.5]$ Paprika[0.37±0.23]$

Olive[1.01±0.5]$ Porro[0.57±0.27]$

Celery[0.56±0.25]$ Lettuce[0.53±0.24], Lentils[0.54±0.23]$

Celery[0.56±0.26]$ Lettuce[0.55km Air ±0.24],

 Paprika[0.34±0.17]$

Lettuce[0.61±0.25], Lentils[0.56±0.26]$ Porro[0.59±0.24],

 Paprika[0.33±0.15]$

Porro[0.54±0.27], Lentils[at 0.62±0.25]$ Lentils[0.58±0.25]$

Paprika[0.35±0.17]$

Of these sequential patterns we can clarify the

following with regard to purchases made by cus-
tomers:
• Customers buy only olives in a quantity of

1.06±0.51.
• Customers who have purchased a first time only

olive, returning a next time for chili or by porro,
with quantities of 0.37±0.23 and 0.57±0.27 re-
spectively . Those who buy after pepper, pur-
chased before olives in a quantity equal to
1.03±0.5, while those who acquire porro did so
with an amount equal to 1.01±0.5.

• Those who buy lettuce at the same time buy lentils
in amounts equal to 0.61±0.25 and 0.56±0.26 re-
spectively. Later, these same customers buy porro
and paprika with amounts equal to 0.59±0.24 and
0.33±0.15.

• Those who buy porro, in the same transaction also
buy lentils. Later return to buy only lentils, and a
next time buy only paprika, in the amounts listed
in the pattern.

6.2 Scenario 2: Synthetic data
This second scenario is generated multiple da-

tabases (datasets) of synthetic form by means of
the Synthetic Data Generator Tool.

The process followed to synthetic generation
of the dataset, it is the describing Agrawal and
Srikan (1995), and under the parameters referred
to in the work of Lin and Lee (2005).

In this scenario, tests were carried out both of
effectiveness, efficiency and scalability.

The evidence of effectiveness and efficiency
were made with dataset generated with the fol-
lowing parameters: NI = 25000, NS = 5000, N =
10000, |S| = 4, |I| = 1.25, corrS = 0.25, crupS =
0.75, corrI = 0.25 and crupI = 0.75.

The results of these tests were compared with
the results obtained for the algorithms Pre-
fixSpan-1, PrefixSpan-2 and Memisp.

Efficiency Tests: Ran a first subset of tests for

|C|=10 and a database of 200,000 sequences,
with different values for minSup. The results are
shown in figure 5.

0
10
20
30
40
50
60
70
80
90

100

10 2 1.5 1 0.75 0.5 0.25

Ex
ec

ut
io

n
tim

e
(s

eg
.)

Minimal Support (%)

Analysis of the market basket

MEMISP

MSP-QF

39

Figure 5. Test results for |C|=10 and |DB|=200K

The second subgroup of tests was conducted

with a dataset with values for |C| and |T| of 20
and 5 respectively. This value of |T| implies that
the number of items of transactions increases,
which represents that the database is also larger
and more dense with respect to the number of
frequent sequential patterns that may be ob-
tained. The results of these tests are those seen in
figure 6.

Figure 6. Test results for |C|=20, |T|=5 and

|DB|=200K

A last subset of efficiency tests were carried

out under the same parameters of the subset
above with the exception of |T| increased to 7.5.
The results are shown in figure 7.

Figure 7. Test results for |C|=20, |T|=7.5 and

|DB|=200K

Efficacy tests: Were carried out 92 efficacy
trials with the same dataset of the tests of effi-
ciency. In four of the tests carried out with values
|C| =20 and |T| equal to 2.5, 5 and 7.5 respective-
ly, it did not achieve the same amount of sequen-
tial patterns found with the algorithms Pre-
fixSpan-1 and PrefixSpan-2. These 4 tests repre-
sent 4% of the total.

Scalability tests: The scalability tests were

used datasets synthetically generated with the
same values of the parameters of the first subset
of tests of efficiency, and with minimal support
equal to 0.75%. The amount of sequences in the
dataset for these tests ranged from |DB|=1000K
to 10000K, i.e. of a million to 10 million se-
quences. In figure 8, you can watch the results of
these tests.

Figure 8, Results of scalability tests for min-
sup=0.75% and different sizes of datasets

7 Conclusion

We have proposed an algorithm for the dis-
covery of sequential patterns that allows, as part
of the mining process, to infer from the amounts
associated with each of the items of the transac-
tions that make up a sequence, the quantity fac-
tors linked to the frequent sequential patterns.

The technical proposal has been designed in
such a way that uses a compact set of indices in
which focuses the search for the sequential pat-
terns from frequent patterns that have already
been found earlier and that represent the prefixes
of the patterns to find. That is why the size of the
indexes is decreasing in accordance with the
mining process progresses.

In addition, there has been that the information
provided by the frequent patterns with factors of
quantity, is much more accurate, since not only
gives us information on how is the temporal rela-
tionship of the items in the various transactions,

0

200

400

600

800

1000

1200

1400

1600

0.25 0.5 0.75 1 1.5 2

Ex
xe

cu
tio

n
Tm

e
(s

eg
.)

Minimal Support (%)

PrefixSpan-1 PrefixSpan-2 MEMISP MSP-QF

0

2000

4000

6000

8000

10000

0.25 0.5 0.75 1 1.5 2

Ex
ec

ut
io

n
Ti

m
e

(s
eg

.)

Minimal Support (%)
PrefixSpan-1 PrefixSpan-2 MEMISP MSP-QF

0
2000
4000
6000
8000

10000
12000
14000
16000
18000
20000

0.5 0.75 1 1.5 2

Ex
ec

ut
io

n
Ti

m
e

(s
eg

.)

Minimal Support (%)
PrefixSpan-1 PerfixSpan-2 MEMISP MSP-QF

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8 9 10

Ex
ec

ut
io

n
Ti

m
e

(r
el

at
iv

e
|D

B|
 =

10

00
KB

)

Millions of sequences
PrefixSpan-1 PrefixSpan-2 MEMISP MSP-QF

40

but also, what is the relationship of the quantities
of some items to others, which enriches the se-
mantics provided by the set of sequential pat-
terns.

Finally, the results obtained in section 5, we
can conclude by saying that the technical pro-
posal meets the objectives of the mining process;
it is effective, is efficient and is scalable because
it has a linear behavior in accordance with the
sequence database grows, and that when applied
to large data bases his performance turned out to
be better than the techniques discussed in this
work.

Reference
Agrawal Rakesh and Srikant Ramakrishnan. 1994.

Fast algorithms for mining association rules. In
Proceeding 20th International Conference Very
Large Data Bases, VLDB.

Agrawal Rakesh and Srikant Ramakrishnan. 1995.
Minning Pattern Sequential. 11th International
Conference on Data Engineering (ICDE’95), Tai-
pei, Taiwan.

Agrawal Rakesh and Srikant Ramakrishnan. 1996.
Mining Quantitative Association Rules in Large
Relational Tables. In Proceeding of the 1996 ACM
SIGMOD Conference, Montreal, Québec, Canada.

Alatas Bilal, Akin Erhan and Karci Ali. 2008.
MODENAR: Multi-objective differential evolution algo-
rithm for mining numeric association rules. Applied Soft
Computing.

Chen Yen-Liang and Haung T. Cheng-Kui. 2006. A
new approach for discovering fuzzy quantitative
sequential patterns in sequence databases. Fuzzy
Sets and Systems 157(12):1641–1661.

Fiot Céline. 2008. Fuzzy Sequential Patterns for
Quantitative Data Mining. In Galindo, J. (Ed.),
Handbook of Research on Fuzzy Information Pro-
cessing in Databases.

Han Jiawei, Pei Jian, Mortazavi-Asl Behzad, Chen
Qiming, Dayal Umeshwar and Hsu Mei-Chun.
1996. Freespan: Frequent pattern-projected se-
quential pattern mining. Conference of the sixth
ACM SIGKDD international conference on
Knowledge discovery and data mining.

Karel Filip. 2006. Quantitative and Ordinal Associa-
tion Rules Mining (QAR Mining). 10th Internation-
al Conference on Knowledge-Based & Intelligent
Information & Engineering Systems (KES 2006).
South Coast, UK: Springer, Heidelberg.

Lin Ming-Yen and Lee Suh-Yin. 2005. Fast Discov-
ery of Sequential Patterns through Memory Index-
ing and Database Partitioning. Journal of Infor-
mation Science and Engineering.

Market-Basket Synthetic Data Generator,
http://synthdatagen.codeplex.com/.

Molina L. Carlos. 2001. Torturando los Datos hasta que
Confiesen. Departamento de Lenguajes y Sistemas In-
formáticos, Universidad Politécnica de Cataluña. Bar-
celona, España.

Papadimitriou Stergios and Mavroudi Seferina. 2005.
The fuzzy frequent pattern Tree. In 9th WSEAS Inter-
national Conference on Computers. Athens, Greece:
World Scientific and Engineering Academy and Soci-
ety.

Pei Jian, Han Jiawei, Mortazavi-Asl Behzad and Pinto
Helen. 2001. PrefixSpan: Mining sequential patterns
efficiently by prefix-projected pattern growth. In
ICDE '01 Proceedings of the 17th International Con-
ference on Data Engineering.

Srikant Ramakrishnan and Agrawal Rakesh. 1996.
Mining Sequential Patterns: Generalizations and
Performance Improvements. In Proc.5th Int. Conf.
Extending Database Technology (EDBT’96), pages
3–17, Avignon, France.

Takashi Washio, Yuki Mitsunaga and Hiroshi Moto-
da. 2005. Mining Quantitative Frequent Itemsets
Using Adaptive Density-Based Subspace Cluster-
ing. In Fifth IEEE International Conference on Da-
ta Mining (ICDM'05). Houston, Texas, USA:
IEEE Computer Society.

Wang Shyue, Kuo Chun-Yn and Hong Tzung-Pei.
1999. Mining fuzzy sequential patterns from quan-
titative data”, 1999 IEEE Internat. Conference Sys-
tems, Man, and Cybernetics, vol. 3, 1999, pp. 962–
966.

Zaki Mohammed J. 2001. SPADE: An efficient algo-
rithm for mining frequent sequences. Machine
Learning, 42(1-2):31–60.

41

