
Model-Driven Robot Software Engineering
(MORSE) 2014

Preface

January 21, 2015

Software engineering is the discipline of creating software with high quality
and good reusability. Since several years, more and more standard platforms for
service robots have appeared, and these platforms demand for high-quality, ver-
satile, and reusable software. Operating systems, such as Embedded Linux, and
distribution technologies, such as Web Services, have successfully been ported
to these standard robotic platforms enabling the transfer of a large amount of
the standard software engineering body of knowledge to robots. In particular,
there is a need for Model-Driven Software Development (MDSD) for robots,
because models can capture certain quality aspects of robotic software better
than code, enabling simpler testing, easier verification, and finally, certification
of safety-critical applications. Though code written in a classical programming
language can often not be verified for relevant features, models can, because
they abstract from unnecessary detail. And this highlights their potential for
robotic software engineering: If robot software is ever going to be certified on
the large scale, it must consist of models.

Therefore, the objective of the first international workshop on “Model-Driven
Robot Software Engineering (MORSE) 2014” has been to assemble researchers
from both fields, Model-Driven Software Development and Robotics, to discuss
the interaction of their areas, to investigate fruitful research directions, and to
identify challenges for further research. The call for papers mentioned, among
others, the following research topics arising in the overlap of Software Engineer-
ing and Robotics:

• Model-Driven Software Development for Robotic Systems

• Robotic Software Platforms: Models, Processes and Tools

• Software and App Reuse for Robotics, Robot Ecosystems

• Model-Driven Quality Assurance of Robotic Systems

The workshop ran at the STAF multi-conference in York (GB), on July 21, 2014.
STAF already hosts two conferences for Model-Driven Software Development,

1



International Conference on Model Transformation (ICMT) and International
Conference on Graph Transformation (ICGT). In consequence, the workshop
welcomed 20 participants, indicating a broad interest in the topic.

On its call for papers, MORSE received 9 submissions. Each paper was as-
signed to three reviewers who read and corrected them in two reviewing rounds,
one before and one after the workshop. The idea was to give hints to the authors
to achieve a high-quality publication for a post-proceedings, and not to filter
out papers, because the community is young and people need to learn of each
other. We thank the reviewers for their effort to investigate the papers several
times and hope that this volume is interesting enough to justify a repetition of
the workshop at STAF 2015 in L’Aquila/Italy.

Uwe Aßmann, Technische Universität Dresden, Germany
Gerd Wagner, Brandenburgische Technische Universität

Cottbus-Senftenberg, Germany
PC chairs of MORSE 2014

Reviewer List
Colin Atkinson, University of Mannheim, Germany
Frank Bahrmann, University of Applied Sciences Dresden, Germany
Hans Böhme, University of Applied Sciences Dresden, Germany
Birgit Demuth, Technische Universität Dresden, Germany
Ion-Mircea Diaconescu, Brandenburgische Technische Universität Cottbus-Senf-
tenberg, Germany
Marc Donner, University of Applied Sciences Dresden, Germany
Kerstin Eder, University of Bristol and Bristol Robotics Laboratory, UK
Frank Furrer, Information Systems Architect, Switzerland
Sebastian Götz, Technische Universität Dresden, Germany
Sven Hellbach, University of Applied Sciences Dresden, Germany
Bernhard Jung, Technische Universität Bergakademie Freiberg, Germany
Alexander Jungmann, University of Paderborn, Germany
Jens Knoop, Vienna University of Technology, Austria
Sebastian Richly, Technische Universität Dresden, Germany
Florian Niebling, Technische Universität Dresden, Germany
Christian Piechnick, Technische Universität Dresden, Germany
Ina Schaefer, Technische Universität Braunschweig, Germany
Richard Schmidt, University of Applied Sciences Dresden, Germany
Dietmar Schreiner, Criminal Intelligence Service. Austria
Piotr Trojanek, University of Bristol and Bristol Robotics Laboratory, UK

Copyright c© 2014 for the individual papers by the papers’ authors. Copying
permitted for private and academic purposes. This volume is published and
copyrighted by its editors.

2



Table of Contents for PDF-Volume

Towards a Deep, Domain Specific Modeling Framework for Robot
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Colin Atkinson, Ralph Gerbig, Katharina Markert, Mariia Zrianina,
Alexander Egurnov and Fabian Kajzar

A Family of Domain-Specific Languages for Specifying Civilian Missions
of Multi-Robot Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Davide Di Ruscio, Ivano Malavolta and Patrizio Pelliccione

Towards a General Framework for Modeling, Simulating and Building
Sensor/Actuator Systems and Robots for the Web of Things . . . . . . . . . . . 30

Ion-Mircea Diaconescu and Gerd Wagner

Towards Context Modeling in Space and Time . . . . . . . . . . . . . . . . . . . . . . . . 42
Christian Piechnick, Georg Püschel, Sebastian Götz, Thomas Kühn,
Ronny Kaiser and Uwe Aßmann

Experiences with an Approach to Abstract Handling of Content for
Human Machine Interaction Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Richard Schmidt, Johannes Fonfara, Sven Hellbach and Hans-Joachim
Böhme

Code Generator Composition for Model-Driven Engineering of Robotics
Component & Connector Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Jan Oliver Ringert, Alexander Roth, Bernhard Rumpe and Andreas
Wortmann

Empirical Study of Planning and Execution for Large Teams of Robots . . 78
Daniel Saur, Kurt Geihs and Tareq Razaul Haque

3DVFH+: Real-Time Three-Dimensional Obstacle Avoidance Using an
Octomap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Simon Vanneste, Ben Bellekens and Maarten Weyn

3



Towards a Deep, Domain-specific Modeling
Framework for Robot Applications

Colin Atkinson, Ralph Gerbig, Katharina Markert, Mariia Zrianina, Alexander
Egurnov, and Fabian Kajzar

University of Mannheim, Germany,
{atkinson, gerbig}@informatik.uni-mannheim.de;

{kmarkert, mzrianin, aegurnov, fkajzar}@mail.uni-mannheim.de

Abstract. In the future, robots will play an increasingly important role
in many areas of human society from domestic housekeeping and geriatric
care to manufacturing and running businesses. To best exploit these new
opportunities, and allow third party developers to create new robot appli-
cations in as simple and efficient a manner as possible, new user-friendly
approaches for describing desired robot behavior need to be supported.
This paper introduces a prototype domain-specific modeling framework
designed to support the quick, simple and reliable creation of control soft-
ware for standard robot platforms. To provide the best mix of general
purpose and domain-specific language features the framework leverages
the deep modeling paradigm and accommodates the execution phases as
well as design phases of a robot application’s lifecycle.

Keywords: Deep modeling, ontological classification, linguistic classifi-
cation, domain-specific languages

1 Introduction
As robots become more ubiquitous and embedded in our environment there is a
need to simplify the creation of software systems to control them. Today this is a
highly specialized and time-consuming task, involving the laborious handcrafting
of new applications using low-level programming techniques. However, as more
quasi-standard robot platforms emerge (such as the NAO [2], Turtlebot [19] and
Lego Mindstorm [21] platforms on the hardware side and the Robot Operating
System (ROS) [17] on the software side), the development of robot applications
should become easier and more accessible. This, in turn, should encourage the
emergence of communities of “robot app” developers offering robot-controlling
software on open marketplaces similar to those for smartphone apps today.

Several important developments in software engineering environments need
to take place before this vision can become a reality, however. First, a small
number of truly ubiquitous “standard” robot platforms need to emerge, sup-
ported by rich software frameworks. Such frameworks need to include a lean,
efficient execution platform, a rich library of predefined routines and a clean,
general-purpose programming/modeling language for applying them. Second,
these general-purpose language features need to be augmented with domain-
specific modeling capabilities that allow developers to describe their programs
using concepts and notations that fit their application domain. Ideally, these
languages should be synergistic. Finally, the information represented in these

4



languages should seamlessly accommodate all phases of an application’s life cy-
cle, from design and implementation to installation and operation. This in turn,
requires, information modeling techniques that can seamlessly represent multiple
levels of classification.

The modeling approach that offers the most intuitive, flexible and yet sta-
ble way of supporting such a software engineering environment is the deep (or
multi-level) modeling approach [7]. This has been designed from the ground up
to support the uniform and level-agnostic representation of domain concepts at
multiple abstraction levels, and makes it possible for them to be visualized in
both domain-specific and general purpose notations interchangeably. For the pur-
pose of developing robot applications, therefore, what is needed is a predefined
framework of robot-control model elements (i.e types and instances) carefully
arranged among the multiple classification levels within a deep modeling envi-
ronment, each represented by appropriate domain-specific symbols. Each level
in such a multi-level framework can be regarded as a language in its own right,
and where appropriate we will use this term. However, we prefer to use the term
“framework” to refer to the whole multi-level ensemble of models. In this paper,
we present an early version of a deep modeling framework for robot applications.
Developers wishing to create their own robot applications can take this frame-
work and extend/customize the types and objects within it to their own needs.
The term “framework” is therefore used in the sense of previous reusable envi-
ronments such as the San Francisco Framework [11] etc. However, our framework
supports more powerful and flexible extension mechanisms.

The remainder of this paper is structured as follows. In the next section,
Section 2, we provide a brief overview of deep modeling and the main concepts
that are needed to support it. In Section 3, we then provide an overview of the
proposed deep robot modeling framework, and the different levels of classification
that it embodies. In particular, we elaborate on the role and nature of each of the
four individual ontological classification levels within the framework and discuss
the kinds of model elements that they contain. In Section 4, we briefly discuss
the main related work and in Section 5 we conclude with some final remarks.

2 Deep Modeling

Deep modeling involves the creation of models spanning multiple classification
levels. One of the most well known modeling architectures supporting this ap-
proach is the orthogonal classification architecture (OCA) [7] which distinguishes
two fundamental types of classification — linguistic classification, defining which
construct in the underlying modeling language a model element is an instance
of and ontological classification defining which domain concept in the problem
domain a model element is an instance of. By arranging these different kinds
of classification into two separate, orthogonal dimensions, the OCA manages
to provide the flexibility of multiple (i.e. more than two) classification levels
whilst retaining the benefits of strict modeling. In contrast, state-of-the-art meta-
modeling approaches allow only one pair of class/instance levels to be modeled
at a time (e.g. an M2 meta-model which is then instantiated by an M1 model).

5



These are therefore commonly characterized as two-level modeling technologies
and generally mix linguistic and ontological classification in one dimension.

One important consequence of multi-level modeling is that elements in the
middle levels are usually classes and objects at the same time - that is, they
usually have both a type facet and an instance facet. To accommodate this,
deep models are usually constructed from so called “clabjects” that have an
inherent type/instance duality. To support deep instantiation — the instantia-
tion of model elements across multiple classification levels — each clabject has
a non-negative Integer attribute called potency that captures its “typeness”.
The potency specifies over how many consecutive levels a clabject can be in-
stantiated. Attributes and their values also have a potency. The potency of an
attribute (also known as its durability) specifies over how many instantiation
steps an attribute can endure (i.e. be passed to instances). On the other hand,
the potency of an attribute’s value (also known as its mutability) defines over
how many levels that value can be changed. The values for all three kinds of
potency can be either a non negative integer or “*” representing infinity. When
instantiating a clabject, the potency of the clabject and the durability and muta-
bility of its attributes are reduced by one. When instantiating a clabject with “*”
potency, the potency of the instance can be “*” again or a non-negative integer.
Clabjects with a potency of zero cannot be further instantiated, attributes with
a durability of zero are not passed on to instances of the containing clabjects and
a mutability of zero rules out any further changes to the value of an attribute.

Figure 1 gives a schematic illustration of how models are represented in the
OCA [7]. There are always three linguistic levels, L2 - L0, where the top most
level, L2, represents the Pan-level Model (PLM) which is the single, overarch-
ing linguistic (meta) model describing the abstract syntax of the deep modeling
methodology. The middle level, L1, contains the domain model content created
by users, and L0, represents the real world representation of the modeled con-
tent in the sense of the “Four-Layer Metamodel Hierarchy” in the UML [18].
The levels O0 - O2, rendered in the Level-agnostic Modeling Language (LML)
[8], are the ontological classification levels which exist within the L1 linguistic
level and are therefore orthogonal to it. This model shows only three ontological
levels for space reasons, the maximum number of ontological levels depends on
the modeled problem domain and is unlimited. In this figure, linguistic classifi-
cation is represented by vertically dashed arrows while ontological classification
is represented by horizontally dotted lines. However in a real-world model these
two representations of classification are usually not used for two reasons. Firstly,
the linguistic model is not displayed since the linguistic classification information
is already captured by the symbol used to represent model elements. Secondly,
representing classification by means of edges clutters diagrams and introduces
unnecessary visual complexity. Hence, ontological classification is usually shown
using the colon notation as in Figure 1. Deep instantiation is captured by means
of the potency value attached to clabjects which in the LML is represented as a
superscript to the right of a clabject’s name.

6



O0 O1 O2

L 1

L 2

L 0

Clabject

RobotType2 Nao :RobotType1 Naomi :Nao0

HeadYaw

ShoulderPitch

ElbowRoll

HipYawPitch

WristYaw

Hand

HipRoll

HipPitch

KneePitch

AnklePitch

AnkleRoll

HeadPitch

ShoulderRoll

ElbowYaw

Fig. 1. An example of a deep model.

The example in Figure 1 shows how the clabjects in a robot application would
be arranged in the deep robot modeling framework presented in the following
sections. On the highest (i.e. most abstract) ontological level 00, the concept of a
RobotType is introduced. Specific robot types, such as the NAO robot type from
Aldebaran Robotics [2] are modeled as instances of RobotType at the next level
of abstraction O1. The clabject NAO is thus an ontological instance of RobotType
and at the same time a type for robot instances in the following levels. The most
concrete ontological level in Figure 1, O2, contains specific robot individuals,
such as a robot called Naomi , which is an ontological instance of NAO. Notice
that each clabject’s potency, represented as superscript after the clabject’s name,
is always one less than that of its ontological type resulting in a specific robot at
O2 which cannot be further instantiated since it has a potency of 0 . All model
elements are also indicated as being an instance of Clabject which defines their
linguistic type. Other linguistic types such as generalization or attribute are also
available but are not shown in this small schematic illustration. The bottom
linguistic level, L0, contains the real world entities that are actually represented
by the clabjects in L0. Note that Naomi is a physical object, while NAO and
RobotType are conceptual entities (i.e. types) in the domain.

3 Deep Robot Modeling Framework

The overall structure of the proposed Deep Robot Modeling Framework (DRMF)
is presented in Figure 2 which essentially shows the L1 linguistic level of the
framework, but rotated anti-clockwise relative to Figure 1 and, thus, represented
vertically rather than horizontally. The framework is composed of four ontolog-
ical levels with the most abstract level O0, depicted at the top and the most
concrete, O3, depicted at the bottom. The different levels of the model define
languages which are used for different purposes. Their purposes are explained in
their own dedicated subsections in the following.

The prototype realization of the framework has been implemented using the
Melanee [4] deep modeling framework under development at the University of
Mannheim. It is therefore based on the linguistic L2 model of Melanee which is
an EMF implementation of the PLM. The PLM is the vertical linguistic level on
the left hand, spanning all ontological levels in the center. Similarly, the “real

7



Li
n

g
u

is
ti

cA
M

et
aX

m
o

d
el

pP
LM

V

R
ea

lAW
o

rl
d

L
3

OE

O+

O3 Naomi:*R{VSR?_SRSR{I

false

usesMove
x=,;y=VS?;theta=kSv_z DetectAObstacle

obstacleDetectedP}Pboolean

true
Agree ?

obstacleDetected
Disagree

SitRelax

RobotABehaviorAModel
pRBMV

ActionType,

SplitType,

RobotType,

post

usesPartType, VariableType,

type
name

nameP}Ptype

type:name
J

TypeName:=:
PlatformName:=:

R
R

JA

JBTypeName

R
R

FlowTypek
postR
R

TypeNameP*P::PI;PJ

g

executes

g

has

g
guses

J

RobotAModelingALanguageATypes
pRMLTV

Actionk

x}Integer

MoveA}ActionTypeO

y}Integer
theta}Integer

PostureA}ActionTypeO

TypeName:=:PpostureP
SplitAk

SplitA}SpiltTypek

RepetitionA}SplitTypek

XORA}SplitTypeO OrA}SplitTypeO

ANDA}SplitTypeO

NetworkRobot:}RobotTypek

ip}String

ConditionalSplit:}SplitTypek

ConditionA}SplitTypek

condition}String

ConditionalRepetitionA}SplitTypeO

condition}String

postR

post
R

type:=:PbooleanP

ObstacleDetected:}VariableTypeO

name:=:PdetectedP

ObstacleDetection:}ActionTypeO

uses

usesP=PdetectObstacle;

RestA}ActionTypeO

TypeName:=:PrestP

JAA=B

Px=PxP;y=PyP;theta=PthetaJAA=A
JAA=B

xPiPyPiPzJA=A
FJA=A

XJA=A XJA=A
R

FlowElementk

postureJAA=A
JAA=B ?

posture}Postures

time}Integer

TypeName:=:PmoveP

TypeName:=:Pobstacle_detectionP

splitg

Pwhile*PconditionPI{P
::split
P}P
post

executionTimeO

successful O

RobotAModelingALanguage
pRMLV

O3 Naomi:*R{VSR?_SRSR{I

usesMove
x=,;y=VS?;theta=kSv_z DetectAObstacle

obstacleDetectedP}Pboolean

true
Agree ?

obstacleDetected

SitRelax

RSVVpm;:success RSVOpm;:success

RSVOpm;:success

RSV,pm;:success

value=trueBehaviorAEnactmentAModel
pBEMV

L
E

L
+

Fig. 2. An overview of the deep robot modeling framework.

world”, L0, containing the objects and concepts in the real world (in this case
the robot application) is a vertical linguistic level on the right hand side.

Since the whole framework is based on Melanee, the framework is able to
offer some advanced modeling concepts which are only partially supported, if at
all, by other comparable modeling infrastructures and environments. The first is
the support for symbiotic general-purpose and domain-specific languages. This
feature is made possible because Melanee allows domain-specific symbols to be
associated with clabjects directly within the ontological levels. The option of
rendering clabjects in one or more domain-specific ways is therefore always ad-
ditional to the option of rendering clabjects in the general purpose LML notation
which is Melanee’s built in concrete syntax for clabjects. When choosing how a
clabject should be rendered, therefore, users are able to switch between all the
defined domain-specific symbols or the built-in LML symbol at the click of a but-
ton. The Melanee rendering mechanism is fully reflexive, which means that when
looking for a symbol to render a clabject, Melanee searches up the hierarchy of
supertypes and (ontological) types of the clabject to be rendered, looking for the
closest associated symbol. As a last resort, if no domain-specific symbol has been
found, the built in LML notation is used. The rendering algorithm also supports
concepts of aspect-orient modeling. Join points can be defined in visualizers for
which aspects can then be provided in other visualizers. The visualizer search
algorithm then merges aspects into join points when working out which symbol
to use for a clabjet. The domain-specific modeling language features are used to
provide a standard graphical and textual representation at the Robot Modeling

Language Types level (O0) which can then be further refined by aspects provided
at lower levels of abstraction e.g. the Robot Modeling Language (O1), the Robot

Behavior Model (O2) or the Behavior Enactment Model (O3).

The second advanced modeling feature is the uniform and balanced support
for textual as well as graphical visualization of clabjects. This is made possible
by Melanee’s support for full projective editing [5], which means that all visual-

8



izations, whether textual or graphical are derived by projecting the underlying
model content into a particular representational form by selecting a particular
set of visualizers. This is a very powerful feature because it means that the same
underlying model can be viewed and edited in a graphical way (using graphical
visualizers) and in a textual way (using textual visualizers) depending on the
skills and goals of the stakeholder concerned. Moreover, each visualization is
generated on the fly, when needed, so that changes to the model input through
one view are automatically updated in all other open views. The textual visual-
ization of the model content is particularly important since it allows the DRMF
to interact with existing text-driven technologies. In general, any textual output
can be generated, be it code in a high-level programming language like Java or
C++ (as in our implementation), XML, JSON or any general-purpose language
(e.g. python, perl, LUA, bash) or specialized scripting language (e.g. Urbi script
[9]). By having textual representations of the model, users can apply any kind
of algorithm to a model, run it on the robot or load it into other tools.

The third advanced modeling feature supported by Melanee is the ability to
model equally and uniformly at all ontological classification levels, with changes
at one level immediately impacting all other dependent levels. This makes it pos-
sible for modelers to dynamically customize (on-the-fly) the different languages
provided by the DRMF to their specific needs. Hence, new types and default
renderings can be introduced at the RMLT level or new features to model new
behaviors can be introduced into the RML. An emendation service [6] is provided
to help users handle the impact of model changes at any level. This service scans
the whole model for model elements which are impacted by a change and sug-
gests automatic amendments to ensure that all the classification relationships
valid before the change remain valid.

3.1 O0 — Robot Modeling Language Types (RMLT)

The Robot Modeling Language Types (RMLT) model defines the general concepts
needed to create a robot programing language based on a state transition system.
More specifically, it defines the types that can make up a robot and general
algorithm description concepts such as ActionType or VariableType.

O0

ActionType3

ControlFlowType3

RobotType3

post

usesPartType3 VariableType3

type
name

name':'type

type4name

TypeName44=4
PlatformName44=4

1
1

1 1FlowType0
post1
1

*

executes

*

has

*
*utilizes

cflow*
1executionTime4

successful 4

4
4

JA

JBTypeName

executionTime;successful

JC

JD

TypeName'('444');'JE

Fig. 3. Level O0 of the DRMF, the Robot Modeling Language Types.

An excerpt of the RMLT is shown in Figure 3. It provides four basic types:
PartType, RobotType, VariableType and FlowType which is specialized by the sub-

9



classes ActionType and ControlFlowType. The central model element is RobotType

which is a type for representing a specific kind of robot and its behavior. The
left hand side of the RobotType provides types for describing its structure (i.e.
PartType). This is needed as some Robots do not have a static structure but can
be changed depending on the task they are required to perform. The right hand
side of RobotType defines types for the set of actions that a robot can execute (i.e
the behavior). The underlying idea is that a program consists of a set of actions
and control flow statements. Similar to the parts of a robot, the blocks of the
program are attached to a robot. Each ActionType can be connected to another
ActionType facilitating the creation of sequences of action types. Furthermore, an
ActionType allows instances to use a variable for reading or storing information.
ActionTypes represent all types of actions that a robot can perform ranging from
sensing, waiting for events to actions like moving an arm. In addition to the
ActionType, a ControlFlowType is provided representing the the execution order
of actions (e.g. parallel execution and repetition). Default textual and graphical
renderings are provided by the RMLT which are represented schematically by
the clouds in the example. Points for extending these are offered by join points
(represented by the grey Js in Figure 3). The RMLT can also be extended with
new types by leveraging the full power of the deep modeling approach.

3.2 O1 — Robot Modeling Language (RML)

The Robot Modeling Language (RML), at level O1, defines the set of actions which
can be used to define applications for a robot. This level allows language engi-
neers to define types needed to build robotic applications and to solve particular
tasks. The RML can then be used by an end-user to build robotic applications
at level O2. To define a language that can be used by an end user the types of
the RMLT need to be instantiated. These instantiations include a robot with
such information as connection parameters (e.g. IP attributes) and if necessary
the parts that are available for modifying the robot. Additionally the action and
flow control elements available in the RML are instantiated from the FlowType

subclasses provided by the RMLT . An executable textual definition and graphical
renderings can be defined by a language engineer for the robot specific actions
and control elements. For this task the renderings provided by the RMLT can be
modified by providing aspects or by defining completely new renderings. Using
the RMLT , different languages can be defined to create applications for different
kinds of robots such as humanoid robots, industrial robots and vacuum cleaners
etc. The RML can be either created for a specific robot or for a family of robots.
When defining a language for a family of robots specific implementation types
are provided by subclassing more general model elements.

Figure 4 shows a RML defined specially for the NAO robot type. In general,
the RML contains a family of types for each kind of robot. However, in Figure
4 we have shown a NAO example model for space reasons. Because the NAO
robot’s body structure is fixed and cannot be modified the details of the robot
and its parts are left out. A NetworkRobot, representing the concept of a NAO
robot running over a network is instantiated from RobotType with an additional
String attribute for storing its IP. Actions for the NAO which are instantiated

10



ControlFlow{

O}

Action{

x:Integer

Move+:ActionType3

y:Integer
theta:Integer

Posture+:ActionType3

TypeNamew=w(posture(

Split+:ControlFlowType{

Repetition+:ControlFlowType{

XOR+:ControlFlowType3 Or+:ControlFlowType3

AND+:ControlFlowType3

NetworkRobotw:RobotType{

ip:String

ConditionalSplitw:ControlFlowType{

Condition+:ControlFlowType{

condition:String

ConditionalRepetition+:ControlFlowType3

condition:String

post}

post
}

typew=w(boolean(

ObstacleDetectedw:VariableType3

namew=w(detected(

uses

uses(=(TypeName);;

Rest+:ActionType3

TypeNamew=w(rest(

J++=B

(x=(x(;y=(y(;theta=(thetaJ++=A
J++=B

x(?(y(?(z

+ X

O
}

FlowElement{

postureJ++=A
J++=B ?

posture:Postures

time:Integer

TypeNamew=w(move(

split,

(while)(condition(;{(
wwsplit
(}(
post

executionTimef

successful f

DetectRedBallw:ActionType3

TypeNamew=w(detect_red_ball(

J++=D

J++=E

J++=D

J++=D

Fig. 4. Example for a O1 level of the DRMF, the Robot Modeling Language for NAO.

from ActionType include default operations provided by the API (e.g. Move),
custom implementations (e.g. Posture) and actions for sensing and reacting on
events (e.g. DetectRedBall). The commonly known concepts for control flow (e.g.
XOR, Repetition) are instantiated from ControlFlowType. The graphical and textual
renderings are adapted by providing aspects for join points which is indicated
through clouds containing the name of the join point followed by the information
provided by the aspect. The defined types can now be used to define applications
on the next level.

3.3 O2 — Robot Behavior Model (RBM)

To model behavior for a robot the RML located at O1 is instantiated at O2 as
shown in the example in Figure 5. The example shows a simple program for
a robot called Naomi , a NAO robot which is available under the IP address
192.168.1.19 . The program instructs Naomi to first move forward and detect a
red ball. If a ball it detected the robot will execute the Agree behavior and if not
the Disagree behavior. The application then instructs the robot to sit down and
terminates.

Naomin(192.168.1.19)

false

usesMove
x=4;y=2.6;theta=0.785

ballDetected:boolean

true
Agree ?

ballDetected
Disagree

SitRelax

Detect Red Ball

Fig. 5. Level O2 of the DRMF, the Robot Behavior Model.

To execute the application it is translated into an executable textual format
by interpreting the visualizers provided by the RMLT and RML. If needed these
can even be adapted at the RBM level. In the prototype realization the appli-
cation is translated into an internal C++ domain-specific language, compiled
and then executed. Other tool chains could also be invoked. The domain-specific
language code created for the application in Figure 5 is shown in Listing 1.

11



#include "naoAPI.h"
void NAOProgram::script(){
move_navigation(4.0, 2.6, 0.785);
boolean ballDetected = detect_red_ball();

5 if (ballDetected)
agree();

else
disagree();

posture("SitRelax");
10 }

Listing 1. The source code generated from the model displayed in Figure 5.

3.4 O3 — Behavior Enactment Model (BEM)

Robotic behaviors themselves serve as types for the execution of a robotic be-
havior. In other words, each behavior can be executed (i.e. instantiated) multiple
times, with each instance represented as a separate object. Such an instance of
a RBM is called an Behavior Enactment Model (BEM). The models are usually
retrieved from logging information that was created during the execution of a
RBM. A possible enactment model of the application presented in Figure 5 is
shown in Figure 6. The example shows the application that was executed by
Naomi available under 192.168.1.19 starting with a move at 1.22pm which was
finished with success. After the move, the Detect Red Ball was switched on at
1.23pm and finished with success resulting in the red ball detection. The robot
then made an Agree gesture at 1.23pm before sitting down at 1.24pm.

Naomi3(192.168.1.19)

uses

true
Agree ?

ballDetected

SitRelax

Move
x=4;y=2.6;theta=0.785

1.22pm;3success

1.23pm;3success

1.24pm;3success

ballDetected:boolean
value=true

1.23pm;3success
Detect Red Ball

Fig. 6. Level O3 of the DRMF, the Behavior Enactment Model.

It can be observed that the rendering in Figure 6 uses the whole palette of
visualization possibilities defined at the levels above. The RBM in contrast did
not use the visualization possibilities for the executionTime and the successful flag
as there were no values for these attributes at the time of application definition.

4 Related Work
In recent years several software frameworks have been developed to provide
simple and intuitive ways of writing software applications for quasi-standard
robot platforms. This includes academic research (e.g. [10] [12] [20]) as well as
industrial products. One of the most well known is Lego Mindstorms Evolution 3,
developed especially for the Lego robots which can be built out of the Lego model
kits. This is an extremely flexible and powerful system which allows anyone to
build a robot using a few standard parts like motors, color sensors, touch sensors,
infrared sensors and other Lego elements. These parts only have to be plugged to

12



the so called brink — “a small computer that controls the motors and sensors”
[21]. Afterwards, the user can graphically implement a program by choosing the
desired activities from the pallet of available blocks. The software is advertised
as having an “easy, intuitive and icon-based programming interface” [14] which
gives first-time programmers hands-on access to information technology. Because
of this target group, the software only has a limited set of functions and cannot be
extended in any way. Evolution 3 only supports the creation of software for Lego
robots, and thus cannot be regarded as a general robot modeling framework.

Choregraphe is an environment developed by Aldebaran Robotics, the man-
ufacturer of the NAO humanoid robot, to allow robots to be programmed by
graphical applications [3]. It also supports code reuse and debugging capabili-
ties and makes it possible to monitor and control NAO robots manually. The
program uses an intuitive drag-and-drop interface in which a program is cre-
ated using boxes that can be combined into a kind of flow diagram. Aldebaran
Robotics provides several tutorials as well as online documentation which simpli-
fies the use of the tool [1]. In summary, although it is easy to use, Choregraphe
allows the creation of complex programs. Like Lego Mindstorms Evolution 3,
Choregraphe can only be used in combination with the NAO robot and thus
cannot be regarded as a general robot modeling framework.

Robotino View 2 is a visual development environment provided by Festo Di-
dactic exclusively for Robotino robots. It supports a slightly different way of vi-
sualizing programs than other tools, allowing it to provide some unique features.
In particular, Robotino View 2 programs resemble electrical circuit diagrams
rather than classical data flow chart. This makes them easier to understand for
engineers, but creates a larger learning curve for programmers familiar with tra-
ditional langauges. Another unique feature allows users to draw complex lines
from several segments. This comes in handy when models grow large and helps
minimize intersections. Like Choregraphe, Robotino View 2 allows users to create
custom blocks by including C++ code. It also uses two levels of programming,
though they are very different to one another. The Block library includes all the
blocks needed to create both simple and sophisticated programs, and the simu-
lation environment is freely available from developer’s website. Robotino View
2 shares the same limitation as the two previously mentioned frameworks — it
is proprietary and can only be used with one kind of robot.

Microsoft Robotics Developer Studio 4 (MRDS4) [16] is another program-
ming environment for building robotics applications. It provides a Visual Pro-
gramming Language with an intuitive drag-and-drop interface for hobbyists and
support for Microsoft Visual Studio for professional developers. MRDS4 has
several significant advantages. First, numerous robots such as Lego Mindstorms
NXT, Roomba [13] and Reference Platform [15] are supported. Second, a high-
fidelity simulation environment is provided by Visual Simulation Environment
(VSE), powered by NVIDIA PhysX engine, and the functionality of MRDS4
can be extended by providing additional libraries and services. Third, extensive
documentation, samples and tutorials are available “out of the box”. The main
disadvantages of MRDS4 is the computational overhead resulting from the use of

13



the simulation environment to control real robots. Another problem is that sim-
ulations tend to be overly simplified and do not take into account environment
parameters such as surface type and weather.

Although these different languages and platforms are superficially very dif-
ferent, at a high enough level of abstraction they all contain the same basic con-
structs – predefined types representing the components and actions from which
the structure and behavior of individual robots are constructed. The same is
true of the Robot Operating System [17] which represents an attempt to define
a standard set of component and action types by the Open Source Robotics
Foundation. In principle, therefore, they could all be brought together under the
umbrella of a single, unified robot modeling framework, where common types
and specific types are arranged in inheritance hierarchies in the usual way. The
great advantage of using deep modeling technology for such a unified robot mod-
eling framework is that new types can be added, and existing types modified,
at any time, on the fly, by simply instantiating the predefined meta types. All
the information in the framework is therefore directly manipulable data, but
nevertheless can be created and verified using the advantages of a strong typing
system.

5 Conclusion
In order to open up the creation of robot applications to a wider range of devel-
opers, and encourage the emergence of a community of third party “robot app”
developers, it is necessary to offer a robot modeling framework that is efficient,
extensible, easy-to-use and able to support the description of applications in a
variety of languages. The environment should also support the modeling and
visualization of all information relevant to a robot, including dynamic informa-
tion that is used to control and monitor its operation at run-time. These goals
can best be achieved using a deep modeling environment, augmented with sup-
port for symbiotic languages, concurrent textual and graphical concrete syntaxes
and on-the-fly visualization customization via aspect-orientation. In this paper
we have presented a prototype framework, known as the Deep Robot Modeling
Framework (DRMF), which supports these capabilities using the Melanee deep
modeling environment under development at the University of Mannheim. The
current version of the prototype supports a rudimentary implementation of all of
these features in the context of the NAO robot platform developed by Alderbaran
Robots, although the basic framework is platform independent. Applications de-
veloped using the NAO-specific languages are automatically mapped into C++
code that can be loaded onto, and used to drive, individual NAO robots. In
the future, we plan to extend the environment to exploit other advanced fea-
tures of Melenee such as the integrated support for exploratory and constructive
modeling.

References

1. Aldebaran: Choregraphe user guide - nao software 1.14.5 documentation.
https://community.aldebaran-robotics.com/doc/1-14/software/
choregraphe/index.html (2014)

14



2. Aldebaran Robotics: Aldebaran robotics — humanoid robotics & programmable
robots. http://www.aldebaran.com (2014)

3. Aldebaran Robotics: Choreographe overview. https://community.
aldebaran-robotics.com/doc/1-14/software/choregraphe/
choregraphe\_overview.html\#choregraphe-overview (2014)

4. Atkinson, C., Gerbig, R.: Melanie: Multi-level modeling and ontology engineering
environment. In: Proceedings of the 2Nd International Master Class on Model-
Driven Engineering: Modeling Wizards. pp. 7:1–7:2. MW ’12, ACM, New York,
NY, USA (2012)

5. Atkinson, C., Gerbig, R.: Harmonizing textual and graphical visualizations of do-
main specific models. In: Proceedings of the Second Workshop on Graphical Mod-
eling Language Development. pp. 32–41. GMLD ’13, ACM, New York, NY, USA
(2013)

6. Atkinson, C., Gerbig, R., Kennel, B.: On-the-fly emendation of multi-level mod-
els. In: Vallecillo, A., Tolvanen, J.P., Kindler, E., Strrle, H., Kolovos, D. (eds.)
Modelling Foundations and Applications, Lecture Notes in Computer Science, vol.
7349, pp. 194–209. Springer Berlin Heidelberg (2012)

7. Atkinson, C., Gutheil, M., Kennel, B.: A flexible infrastructure for multilevel lan-
guage engineering. IEEE Trans. Softw. Eng. 35(6) (2009)

8. Atkinson, C., Kennel, B., Goß, B.: The level-agnostic modeling language. In: Mal-
loy, B., Staab, S., Brand, M. (eds.) Software Language Engineering, Lecture Notes
in Computer Science, vol. 6563. Springer Berlin Heidelberg (2011)

9. Baillie, J.C.: Urbi: Towards a universal robotic low-level programming language. In:
Intelligent Robots and Systems, 2005. (IROS 2005). 2005 IEEE/RSJ International
Conference on. pp. 820–825 (2005)

10. Banyasad, O., Cox, P.T.: Visual programming of subsumption-based reactive
behaviour. In: Technical Report CS-2008-03. pp. 365–380. Dalhousie University
(2008)

11. Bohrer, K., Johnson, V., Nilsson, A., Rubin, B.: The san francisco project: An
object-oriented framework approach to building business applications. In: Com-
puter Software and Applications Conference, 1997. COMPSAC ’97. Proceedings.,
The Twenty-First Annual International. pp. 416–424 (Aug 1997)

12. Cox, P., Smedley, T.: Visual programming for robot control. In: Visual Languages,
1998. Proceedings. 1998 IEEE Symposium on. pp. 217–224 (1998)

13. Kurt, T.E.: Hacking Roomba. Wiley (2006)
14. LEGO: Website, available online at http://shop.lego.com/en-US/

LEGO-MINDSTORMS-EV3-31313; visited on April 13th 2014.
15. Microsoft Robotics Group: Robotics Developer Studio: Reference Platform Design

V1.0. Microsoft Robotics Group (2012)
16. Morgen, S.: Programming Microsoft Robotics Studio. Microsoft Press, 1st edn.

(2008)
17. O’Kane, J.M.: A Gentle Introduction to ROS. Independently published (2013)
18. OMG: Uml infrastructure 2.4.1. http://www.omg.org/spec/UML/2.4.1

(2011)
19. Open Source Robotics Foundation: Turtlebot. http://www.turtlebot.com/

(2014)
20. Simpson, J., Jacobsen, C.L.: Visual process-oriented programming for robotics.

In: Communicating Process Architectures 2008, volume 66 of Concurrent Systems
Engineering. pp. 365–380. IOS Press (2008)

21. Valk, L.: The Lego Mindstroms NXT 2.0 Discovery Book A Beginners Guide to
Building and Programming Robots. William Pollock (2010)

15



A Family of Domain-Specific Languages for Specifying
Civilian Missions of Multi-Robot Systems

Davide Di Ruscio1, Ivano Malavolta2, and Patrizio Pelliccione3

1Department of Information Engineering Computer Science and Mathematics
University of L’Aquila (Italy)

2Gran Sasso Science Institute, L’Aquila (Italy)
3Department of Computer Science and Engineering

Chalmers University of Technology |University of Gothenburg (Sweden)
davide.diruscio@univaq.it,ivano.malavolta@gssi.infn.it,patrizio.pelliccione@gu.se

Abstract. The next future will be pervaded by robots performing a variety of
tasks (e.g., environmental monitoring, patrolling large public areas for security
assurance). So far, researchers and practitioners are mainly focusing on hard-
ware/software solutions for specialized and complex tasks; however, despite the
accuracy and the advanced capabilities of current solutions, this trend leads to
task-specific solutions, difficult to be reused and combined.
In this paper we propose a family of domain-specific languages for specifying
missions of multi-robot systems by means of models that are (i) independent
from the technologies, (ii) ready to be analysed, simulated, and executed, (iii)
extensible to new application areas, and (iv) closer to the problem domain, thus
democratizing the use of robots to non-technical operators. We show the appli-
cability of the proposed family of languages in a real project in the domain of
autonomous unmanned aerial vehicles.

1 Introduction
The next future will be pervaded by robots that, moving underwater, on terrain, or fly-
ing, will simplify everyday tasks or will open a myriad of new opportunities. Multi-
robot systems will behave as a team, in which each single robot accomplishes a well
defined task towards the accomplishment of a global mission. On one side a multi-robot
team can accomplish a mission more quickly than a single robot, and on the other side
a multi-robot team can accomplish missions requiring particular capabilities that might
be impossible or impractical to find on a single robot: a team can make effective use of
specialists designed for a single purpose, e.g., scouting an area or picking up objects.

The specification of a mission is difficult when considering a single robot since
many details should be taken into account, and it might require technical expertise
about the dynamics and the characteristics of the used robot. It becomes even more
complex when dealing with missions involving multi-robots. Then, it emerges the need
of software engineering approaches and methodologies especially tailored to develop
and maintain multi-robot systems.

Model-driven Engineering (MDE) [1] is a promising research field for simplifying
the design, implementation and execution of software systems for the robotics platforms
of the future. In MDE, we can notice a shift from third generation programming lan-
guage code to models expressed in domain-specific modeling languages (DSMLs). In

16



this context, MDE enables the development of multi-robot systems by means of models
defined with concepts that are much less bound to the underlying technology and are
closer to the problem domain. This makes the models easier to specify, understand, and
maintain, helping the understanding of complex problems and their potential solutions
through abstractions [2].

In this paper we present a family of domain-specific languages for specifying civil-
ian missions of multi-robot systems. The proposed languages are organized in differ-
ent layers going from languages conceived for the end user, namely those to describe
missions and the environmental context, intermediate language describing the detailed
behaviour of each robot (hidden to the user), and the robot language containing the
hardware and low-level specification of each type of robot within the team. In order
to show the applicability of the proposed languages in practice, we instantiate it to the
domain of civilian missions of autonomous quadrotors. The resulting platform is called
FLYAQ [3] and it provides to on.site operators a graphical interface enabling the speci-
fication of missions at a high-level of abstraction.
Roadmap of the paper. The remainder of the paper is structured as follows: a de-
scription of civilian missions is provided in Section 2. The architecture of the proposed
family of languages is presented in Section 3, while their instantiation and implemen-
tation to manage swarms of autonomous quadrotors is provided in Section 4. Section 5
discusses the related work, whereas Section 6 concludes the paper and outlines some
perspective work.

2 Civilian missions
Several civilian missions have been discussed in the literature. Skrzypietz [4] subdivides
civilian missions for Unmanned Aircraft Systems (UAS) in six categories:
B Scientific Research, such as atmospheric, geological research, forestry.
B Disaster Prevention and Management, like damage assessment after earthquakes,
searching for survivors after airplane accidents and disasters.
B Homeland Security, such as coastal surveillance, securing large public events.
B Protection of Critical Infrastructure, such as monitoring oil and gas pipelines, pro-
tecting maritime transportation from piracy, observing traffic flows.
B Communications, like broadband communication, telecommunication relays.
B Environmental Protection, such as pollution emission, protection of water resources.

According to Washington Post1, venture investors in the United States poured $40.9
million into drone-related start-ups in the first nine months of 2013, more than dou-
ble the amount for all of 2012. Moreover, according to the “Unmanned Aerial Vehicle
(UAV) Market (2013 - 2018)” market research, the total global UAV Market (2013-
2018) is expected to reach $8,351.1 million by 2018. 2. This is justified by the number
of advantages that the use of these devices brings: (i) costs: civilian missions typically
requires high costs for personnel which have to be carried on site, and to the communi-
cation overhead required for synchronization purposes of the teams; (ii) safety: on-site
personnel may be exposed to significant risks (e.g., in case of fire, earthquake, and

1 http://wapo.st/1bJueLH
2 http://www.marketsandmarkets.com/Market-Reports/

unmanned-aerial-vehicles-uav-market-662.html

17



flood); (iii) timing and endurance: monitoring activities are very time consuming. Also,
the activities are stopped during the night, slowing the execution of the mission.

3 The Family of Languages
The family of domain-specific modeling languages that we propose supports the spec-
ification of missions and their actual execution by means of swarms of robots. The
developed languages stack is shown in Fig. 1.

MML, namely the Monitoring Mission Language, is the language especially con-
ceived for domain experts. The MML language is composed of two distinct layers, that
are: the mission layer and the context layer. The former enables the specification of
civilian missions without referring to specific aspects like the technical characteristics
of the robots that will be used to execute the missions; missions are specified as se-
quences of tasks, suitably linked together via task dependencies, forks and joins. The
specification of a mission is complemented by the definition of the context in which
the mission will be realized. Elements of the context can be modeled by means of the
Mission Context Language.

Fig. 1. The family of domain-specific modeling languages

The type and configura-
tion of the robots that will
be in charge of realizing
the specified mission are de-
scribed through the Robot
Language (RL). The Be-
haviour Language (BL) is a
language that is hidden to

domain experts. It contains a specification of the atomic movements and actions of
the robots being considered in the mission. As shown in Fig. 1, both the monitoring
mission language and the mission behaviour language have a reference to the robot
language (currently those references are implicitly established by the name of the ref-
erenced robot). This is needed because: (i) the mission layer of the monitoring mission
language contains a list of all the robots of the swarm, and the type of each of them
must be specified, and (ii) the mission behaviour language contains all the low-level
movements and actions of the robots, whose type must be known in the model in order
to correctly instruct the robots at run-time.

It is important to note two important aspects of the family of languages. Firstly, the
two layers of the MML language are kept separated in order to allow mission operator
to reuse already existing context models across missions and different organizations.
Also, the context layer puts restrictions on the mission layer since they share the same
location, thus enabling for a straightforward (automatic) composition of the two. Sec-
ondly, the family of languages has been designed to support the automatic generation of
BL models from MML models; it enables to (i) obtain BL models which are inherently
consistent to their corresponding MML models, and (ii) to mask the complexity of low-
level details about the used robots (and their actions) to on-site operators. In light of
this, the control code for the robots depends only on the constructs of the BL language,
and thus can be either automatically generated or directly executed by interpreting BL
models at run-time.

Three are the stakeholders of the proposed family of languages, namely:

18



1. Operator: the in-the-field stakeholder specifying the mission as an MML model;
examples of operators include fire fighters, policemen, etc.;

2. Robot Engineer: models a specific kind of robot via an RL model, together with a
corresponding controller for instructing the robot according to the basic operations
supported by the BL language;

3. Platform Extender: domain and MDE expert who extends the MML mission layer
with new kinds of tasks supporting a specific application domain (e.g., agricultural
missions, security-oriented missions, smart grid monitoring missions, etc.); those
extensions are performed once for each application domain being considered, and
can be reused across missions and organizations.

Issues related to mission correctness, e.g., safety and security, are fundamental for
civilian missions for multi-robot systems. In this context, the proposed languages have
been designed to be generic enough for describing this kind of missions from an high-
level point of view, and thus mission correctness is not part of the languages themselves.
In any case, the proposed languages provide the right level of abstraction for allowing
analysis tools to be executed on the models for proving, for example, safety and security
properties. We believe that the Behaviour Language is the best candidate for this kind
of analyses, since it can be easily transformed into a corresponding state machine, a
process algebra, Petri net, etc., thus allowing engineers to reuse already existing analysis
tools.

The remainder of this section will describe each of these languages. Specifically,
for each of them we present the corresponding metamodel i.e., the abstract syntax of
the language. For what concerns their concrete syntax, the MML language can have a
graphical syntax like, e.g., an overlay on a geographical map representing the various
tasks, dependencies and contextual elements (see Section 4.2 for a concrete example).
Differently, the RL and BL languages are represented by using an XML-based repre-
sentation since they will be created and managed by domain experts or even by other
software components.

3.1 Monitoring Mission Language (MML)
Mission Layer - The mission layer of the MML language has been conceived by an-
alyzing the concepts that are involved when specifying monitoring missions. First of
all, each robot has its own home position represented by means of the corresponding
Coordinate element (see Fig. 2). Then, a monitoring mission consists of a number of
dependent Tasks to be executed by a Swarm of Robots.

The MML mission layer contains three abstract task metaclasses, each of them fo-
cusing on a specific kind of geometric entity being considered. More specifically, Point-
Task represents tasks that refer to a specific point of the environment. To this end the
point reference represents the coordinate of the considered point. LineTask represents
tasks that refer to a set of points forming a polyline in the environment. Consequently,
a line task consists of the initialPosition that the considered robot will have at the be-
ginning ot the task, and a set of points consisting of the points of the polyline. Also,
PolygonTask represents tasks that refer to specific areas. A polygon task consists of
the initialPosition reference, and the shell referecing the points representing the border
of the area that will be involved during the execution of the task.

19



The ControlTask is an abstract metaclass that represents the synchronization tasks
of the mission. In particular, each task of the considered mission can be executed by
one or more robots and can be performed in sequence (see the metaclass Join) or in
parallel (see the metaclass Fork) to other tasks of the modeled mission.

Fig. 2. The Monitoring Mission Language

The mission layer (and so its corresponding metamodel) is defined to be extensible.
This means that it specifies only general tasks that need to be specialized according to
specific needs, to the actual civilian mission (see Sect. 2 for a description of these mis-
sions), and to the robots that will be used. The extensibility of MML allows operators
to achieve versatility and strong adherence to the environmental monitoring missions
domain. More specifically, MML can be extended with additional constructs that are
specifically tailored to the considered domain. For example, if operators are interested
to monitoring solar panel installations in a rural environment, MML might be extended
with the concept of solar panel groups, thermal image acquisition tasks, and solar panel
damage discovery and notification tasks.

Fig. 3. The Mission Context Language

Context Layer - As said in the
previous section, the specifica-
tion of monitoring missions in-
cludes also the description of the
context where they will be ex-
ecuted. By referring to [5], this
modeling layer concerns spa-
tial context and situational con-
text. Indeed it represents those
portions of geographical areas
that have some relevant prop-
erty, and those elements which
can influence the execution of the mission, but that are not part of the mission itself.

20



Fig. 3 shows the metamodel of the context layer of MML. In particular a given moni-
toring mission will be executed in a Context consisting of a number of obstacles and
forbiddedAreas. Such information will play a key role in order to properly deduce the
movements that the robots have to perform in order to execute the missions specified
in MML and to satisfy the environmental constraints specified by means of context
models.

3.2 Robot Language (RL)

RL has been conceived to enable the specification of the technical characteristics of
each type of robot involved in the missions (see Fig. 4). Clearly, Robot is the central
concept of the language. The characteristics that the language permits to specify are the
following:

– onBoardObstacleAvoidance: it permits to specify if the considered robot is en-
dowed with mechanisms able to autonomously avoid obstacles;

– minVoltage/maxVoltage: they are used to specify the minimal/maximum voltage
required/supported by the robot to properly work;

– maxPowerConsumption: it is used to specify the maximum power consumption
expressed in Watt of the robot being modeled;

– gps, accelerometer, magnetometer and barometer: they are boolean attributes used
to specify the available on-board sensors of the robot being modeled;

– communicationRange: it is used to specify the maximum range expressed in meters
of the supported radio control;

– dataRate: it permits to specify the data transmission rate expressed in Kbps between
the robot and the control station;

Fig. 4. The Robot Language

21



– radioFrequency: it permits to specify the radio frequency expressed in MHz used
by the robot to communicate with the control station.

Furthermore, the Size metaclass is used to specify the size of the robot by means
of the attributes such as its width, length, height, and weight. The Processor metaclass
permits to specify the hardware architecture and frequency of the processors owned by
the robot being modeled. The concept of Memory describes the memory of the consid-
ered robot in terms of its type (i.e., if the memory is volatile or permanent), sub-type
(e.g., DDR2, DDR3, SSD), and size in kilobytes. Additional devices owned by the robot
to gather data (e.g., camera, thermal sensors) and to perform actions (e.g, lights, leds,
mechanical actuators, sound emitters) are specified via the Device metaclass. Move-
mentPerformance permits to specify the movement characteristics of the robot (i.e.,
minimum and maximum speed, acceleration, turn angle). Additionally, it permits to
specify the maximum weight of the payload that the robot can bring and consequently
also the maximum life time of the robot while bringing a pay load. The minimum and
maximum working temperature of the robot can be also specified. Finally, the Driver
metaclass refers to the software driver, which is required to interact with the robot.

It is important to note that not every robot is specified in RL, but every type of robot.
This makes RL models reusable and shared across missions, projects, and organizations.

3.3 Behaviour Language (BL)
BL permits to specify atomic movements of each robot in order to perform the missions
specified by means of MML specifications. As shown in Fig. 5 a BL model specifies
the behaviour of all the robots which will perform the mission and for each of them all
the movements to be performed are singularly defined. According to Fig. 5 the atomic
movements that a robot can perform are the following:

– Start: it represents the first movement used to begin any sequence of movements;
– Stop: it represents the final movement used to end any sequence of movements;
– HeadTo: it represents a rotation in order to head towards the specified direction;
– Pause: it permits to specify pauses of robots during their movements;
– Circle: it permits to specify circular movements of robots around a specific point;
– GoTo: it represents the movement towards a given targetPosition.

Before executing one move after the end of another one it is possible to specify
a transition (see MoveTransition). In particular, if the fluid attribute is specified as
true than the robot will execute the movements seamlessly without any interruption.
Alternatively, it is possible to specify a pause (see the metaclass Slot) between two
subsequent moves. Additionally, before and after each movement, the robot can perform
a number of Actions that can be distinguished as follows:

– DeviceAction: it permits to specify control actions of the robot. To this end the
name of the action and the parameters to be used are specified by means of the
features actionName and parameters, respectively;

– CommunicationAction is used to specify the communication among the robots
involved in the execution of the considered mission. In this respect, the possible
actions that can be performed are the following: (i) CheckNotification: it is used

22



Fig. 5. The Behaviour Language

to manage the reception of notifications from other robots; (ii) Feedback repre-
sents a feedback message that the robots can send back to the control station; (iii)
Notify is a superclass representing all the possible notification actions that can be
distinguished as UnicastNotify, MulticastNotify, and BroadcastNotify.

4 Leveraging the DSL family for autonomous quadrotors
Currently, in collaboration with Telecom Italia we are working on an open-source plat-
form for the specification and the execution of environmental monitoring mission. The
platform is called FLYAQ [3] and it allows non-technical operators to straightforwardly
define monitoring missions of swarms of flying drones at a high level of abstraction,
thus masking the complexity of the low-level and flight dynamics-related information
of the drones. More specifically, we employ quadrotors, that are a special kind of un-
manned aerial vehicle that takes the form of a multirotor helicopter that is lifted and
propelled by four rotors [6]. In this section we present the instantiation of the languages
proposed in Section 3 to support the specification of swarms of autonomous quadrotors.

23



(a) Extension of the robot language (b) Extension of the behaviour language

Fig. 6. Extension of the languages of the DSL family for representing missions of quadrotors

4.1 Extension of the DSL family
In this section we describe how the languages of our DSL family have been extended to
support the domain of environmental monitoring missions for autonomous quadrotors.
In light of this we evaluated each language of the DSL family, we analysed it in terms
of its expressivity with respect to the specific domain in order to check if language
concepts fit well with the domain. Interestingly, we did not need to adapt the Mission
language of the DSL family since it is still a good fit for the new application domain
without any extension. Indeed, from an abstract point of view a swarm of autonomous
quadrotors can be considered as a swarm of robots performing some task for fulfilling
the goal of a global mission. Task may still refer to polygons, polylines, and points
within a given mission environment, and tasks may have dependencies and controlled
by fork and joins. Even the Context language has not been extended since its concepts
are still satisfactory in the current state of the FLYAQ project. Indeed, when reasoning
about the context of a mission performed by quadrotors the main issues are about: the
presence of obstacles (represented by the Obstacle metaclass in the context language
metamodel), emergency landing areas (represented by the emergencyAreas reference),
and no-fly zones where no quadrotor can fly over (represented by the forbiddenAreas
reference). For what concerns the Robot language, we needed to extend it with addi-
tional concepts, specific to the nature of the managed robots (i.e., flying quadrotors).
Fig. 6(a) shows a fragment of the robot language metamodel focussing on the meta-
classes that have been added, they are:

– DroneSize extends the Size metaclass of the robot modelling language with two
attributes for representing (i) the number of propellers of the drone, and (ii) the
size of the propellers of the drone in millimeters. This two additional attributes
are necessary since there is a great variability of flying drones with respect to the

24



number and size of their propellers [6], and flying drones behave very differently
depending on those two properties. For example, the popular AscTec Firefly3 drone
has six propellers and, by citing its official data sheet, the redundant propulsion
system enables a controlled flight even with only 5 functioning motors and actively
compensates for failure; it is difficult to imagine a drone with only four propellers
providing this peculiar safety function.

– FlightPerformance extends the MovementPerformance metaclass of the mission
behaviour language with a set of additional attributes:
• launchType represents the information about how the flying drone can be

launched. The value of this attribute can be one among Vertical Take-Off
and Landing (VTOL), Horizontal Take-Off and Landing (HTOL), or any other
(OTHER);

• maxAltitude represents the maximum altitude that the drone can reach when
performing a mission;

• maxClimbRate represents the maximum rate of change in altitude of the drone
(in metre per second);

• maxDescendRate represents the maximum rate of change that the drone sup-
ports when it is descending (in metre per second);

• positionHold represents the maximum wind speed (in metre per second) sup-
ported by the drone to maintain a given geographical location.

The attributes added to the MovementPerformance metaclass are specific to the aerial
vehicles domain, and have been necessary for representing specific concepts related to
this domain (e.g., maxAltitude and launchType).

When considering the Behaviour language of our DSL family we needed to slightly
extend it with some additional concepts, they are shown in Fig. 6(b). Basically, we
needed to extend the Circle metaclass for specifying the altitude at which the quadrotor
must perform the circle movement. Moreover, we extended the GoTo metaclass for
specifying the kind of trajectory that the quadrotor must following when it needs to
reach a certain point. The available trajectory kinds represent how the quadrotor can
reach a given point in the 3D space, they are three: (i) DIRECT, the quadrotor follows a
straight line between its current position and the target point; (ii) HORIZONTAL FIRST,
firstly the quadrotor moves horizontally until it goes below the target point, and then it
adjusts its altitude so that it reaches the target point; (iii) VERTICAL FIRST, firstly the
quadrotor moves vertically until it reaches the same altitude of the target point, and
then it moves horizontally until it reaches the target. We added the above mentioned
concepts to the Behaviour language in order to provide better flexibility when reasoning
about the movements of the quadrotors in the environment. For example, the GoTo
movement could not be extended at all (e.g., all the quadrotors always move directly to
the target point), however we argue that this solution could have been too restrictive for
performing real missions in practice.

As a matter of fact, we have been actually quite surprised when noticing that we did
not have to extend the Mission and Context modeling languages. This result is positive
since those two modeling languages have proven to be expressive enough for the needs

3 http://www.asctec.de/uav-applications/research/products/asctec-firefly/

25



of a concrete project. However, when reasoning at a lower level of abstraction some kind
of adaptation is needed (e.g., for specifying the propeller size of a quadrotor); still, the
extensions performed in the Robot and Behaviour languages are not massive and, most
interestingly, they did not disrupted the semantics of the languages being extended.

4.2 Implementation of the extension of the DSL family
In this section we provide a description on how we developed the FLYAQ platform
by taking advantage of the languages presented in the previous section. Figure 7 gives
an overview of the FLYAQ platform. On-site operators design the mission, store, and
monitor the status of ongoing missions via a standard web browser connected with the
platform through a secure HTTP connection. This design decision enables operators
to (re-)use any kind of device, such as tablets, laptops, etc., which are capable to run
standard web browsers. Quadrotors are instructed and controlled by the platform via
MAVLink communication so that radio modems can retain control up to eight miles.

More in details, the FLYAQ platform offers a web-based graphical interface to
specify missions in the ground station at a high-level of abstraction and integrated with
Open Street Map. As a matter of fact the web interface of FLYAQ is a domain-specific
editor for both the mission (see Section 3.1 and context (see Section 3.1) layers of the
the MML language. The graphical interface of FLYAQ is implemented using HTML5,
JavaScript, CSS3, and web sockets for real-time communication with the quadrotors
(i.e., for getting the telemetry feedback from each quadrotor in the field).

…
 

MAVLink	  
HTTPS	  and	  web	  

sockets	  

Web	  interface	  

Fig. 7. Overview of the FLYAQ platform

The FLYAQ platform has an
internal engine that leverages
model transformations and for-
mal reasoning to automatically
transform a mission specified
using the Mission modeling lan-
guage into low-level steps con-
forming to the Behaviour mod-
eling language (see Section 3.3);
the transformation step takes
also into consideration a model
of the context and the models of
the drones that will concretely
execute the mission in the field.

The FLYAQ internal engine
is implemented using Eclipse Virgo4, the Eclipse Modeling Framework (EMF5), Java,
and exposes a Rest API to the FLYAQ web interface. So far, the extension of the DSL
family languages for adding new concepts related to the UAV domain has been realized
manually, i.e., by manually extending the base metamodels of the DSL family in order
to obtain the extended metamodels presented in Section 4.1. As a future work we are
planning to leverage a more systematic language extension process, with properties
such as language independence, possibility to compose and decompose the involved

4 http://www.eclipse.org/virgo
5 http://www.eclipse.org/modeling/emf

26



languages, some level of automation, and so on. The authors have already worked on
the topic [7], and the integration of a systematic mechanism for languages extension is
currently being evaluated.

Finally, a layer of controllers abstracts the types of the specific quadrotors to all the
other components of the platform; this is fundamental because it makes the platform to-
tally agnostic of the quadrotors used for executing the mission (abstraction is one of the
strongest points of using MDE techniques). The layer managing the controllers is im-
plemented using Java and ROS [8] and its extension rosbridge6, a middleware commu-
nication framework specifically tailored for real-time communication with robots. Each
controller can be implemented by using any kind of programming language (thanks to
the ROS middleware communication middleware).

5 Related work
Over the last years many research groups have been working on the adoption of model-
driven engineering for developing complex robotic systems [9–11]. The advantages of
using models for developing this kind of systems are manifold, e.g., higher level ab-
stractions for behaviour descriptions, possibility to apply tools for verifying properties,
such as safety, and for generating implementation code.

Typically, the adoption of model-based approaches for developing robot software
systems has focused on control or mechanical design aspects. In [9] the authors go
further by proposing the adoption of models to manage the complete development of
robotic software systems. Similarly, in [10] the authors propose an approach that uses
models both at design- and run-time to support robots during their decision making
process. In [11] the author proposes an Eclipse based environment for the development
of robot control systems, including generation of application code skeleton. In [12] the
authors propose a rule-based language for specifying collaborative robot applications.
The proposed techniques permit to manage the complexity of specifying collaborative
behavior and of managing the communication among robot teams. Concerning the ex-
isting work related to the control of quadrotors a very detailed and complete survey on
the advances in guidance, navigation, and control of unmanned rotorcrafts systems in
general is provided in [13]. Many algorithms have been proposed for automatic trajec-
tory generation and control, with a strong focus on either trajectory optimization [14],
feasibility [15], or safe obstacle and trajectories intersection avoidance [16].

Differently from the approaches outlined above, our focus is on i) the definition of
the various tasks of a civilian mission at a high-level of abstraction and ii) on the auto-
matic deduction of the behaviour of the robots that will execute the modeled missions.
Therefore, the aim of the work that underpins the family of languages presented in this
paper is to develop the support for dealing with the specific problem of supporting the
specification and execution of civilian missions. In other words, we want to provide
non-technical users with the instruments to easily define missions and execute them
by means of multitudes of robots. Currently, available technologies somehow permit to
develop missions and control the involved robots, even though only software or con-
trol engineers and domain experts have the required knowledge and are able to use the

6 http://robotwebtools.org

27



complex tools to do so. The proposed languages allow operators to straightforwardly
define monitoring missions of swarms of robots by masking all the complexity of the
low-level and movement dynamics-related information of the robots.

6 Conclusions and Future work
In this paper we presented a family of domain-specific languages for specifying civilian
missions of multi-robot systems. The family of languages is organized in a two-layer
architecture, in which the uppermost layer contains languages for the end user, while
the other layer, hidden to the user, contains a working language describing the detailed
behaviour of each robot of the mission. The family of domain-specific languages has
been instantiated to the domain of autonomous unmanned aerial vehicles.

So far, the various tasks in the mission layer are based on their location of interest
(i.e., points, lines, and polygons), as future work we are reasoning on how to extend the
MML mission layer with timing constraints and other environmental factors, such as
path crowdness, convenience (e.g., in terms of used resources), safety, etc. Also, we are
planning to experiment the family of domain-specific languages to other kind of robots.
This will give us the possibility to further refine the family, and to start experimenting
with strategies and mechanisms for combining together different kinds of robots (e.g.,
ground vehicles with aerial vehicles) that collaboratively perform the same mission.
Also, we are analysing the current architecture of the FLYAQ platform in order to better
understand how it can be refactored into a fully generic software architecture. In this
context, the resulting architecture will enable future third-party software developers and
researchers to reuse the generic components of the architecture supporting the core of
the DSL family.

References

1. Schmidt, D.: Guest editor’s introduction: Model-driven engineering. Computer 39(2) (Feb
2006) 25–31

2. Selic, B.: The pragmatics of model-driven development. IEEE Softw. 20(5) (September
2003) 19–25

3. Di Ruscio, D., Malavolta, I., Pelliccione, P.: Engineering a platform for mission planning
of autonomous and resilient quadrotors. In: Fifth International Workshop on Software Engi-
neering for Resilient Systems, Springer Berlin Heidelberg (2013) 33–47

4. Skrzypietz, T.: Unmanned Aircraft Systems for Civilian Missions. BIGS policy paper:
Brandenburgisches Institut für Gesellschaft und Sicherheit. BIGS (2012)

5. Bettini, C., Brdiczka, O., Henricksen, K., Indulska, J., Nicklas, D., Ranganathan, A., Ri-
boni, D.: A survey of context modelling and reasoning techniques. Pervasive and Mobile
Computing 6(2) (2010) 161 – 180

6. Lim, H., Park, J., Lee, D., Kim, H.J.: Build your own quadrotor: Open-source projects on
unmanned aerial vehicles. Robotics Automation Magazine, IEEE 19(3) (Sept 2012) 33–45

7. Di Ruscio, D., Malavolta, I., Muccini, H., Pelliccione, P., Pierantonio, A.: Developing Next
Generation ADLs Through MDE Techniques. In: Procs. ICSE’10, ACM (2010) 85–94

8. Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R., Ng, A.Y.:
Ros: an open-source robot operating system. ICRA workshop on open source software 3(3.2)
(2009) 5

28



9. Schlegel, C., Hassler, T., Lotz, A., Steck, A.: Robotic software systems: From code-driven to
model-driven designs. In: Advanced Robotics, 2009. ICAR 2009. International Conference
on. (June 2009) 1–8

10. Steck, A., Lotz, A., Schlegel, C.: Model-driven engineering and run-time model-usage in
service robotics. In: Proceedings of the 10th ACM International Conference on Generative
Programming and Component Engineering. GPCE ’11 (2011) 73–82

11. Trojanek, P.: Model-driven engineering approach to design and implementation of robot
control system. CoRR abs/1302.5085 (2013)

12. Gtz, S., Leuthuser, M., Reimann, J., Schroeter, J., Wende, C., Wilke, C., Amann, U.: A role-
based language for collaborative robot applications. In Hhnle, R., Knoop, J., Margaria, T.,
Schreiner, D., Steffen, B., eds.: Leveraging Applications of Formal Methods, Verification,
and Validation. Communications in Computer and Information Science. Springer Berlin
Heidelberg (2012) 1–15

13. Kendoul, F.: Survey of advances in guidance, navigation, and control of unmanned rotorcraft
systems. J. Field Robot. 29(2) (March 2012) 315–378

14. Hehn, M., D’Andrea, R.: Quadrocopter trajectory generation and control. In: IFAC world
congress. (2011) 1485–1491

15. Augugliaro, F., Schoellig, A., D’Andrea, R.: Generation of collision-free trajectories for a
quadrocopter fleet: A sequential convex programming approach. In: Intelligent Robots and
Systems (IROS), 2012 IEEE/RSJ International Conference on. (Oct 2012) 1917–1922

16. Leonard, J., Savvaris, A., Tsourdos, A.: Towards a fully autonomous swarm of unmanned
aerial vehicles. In: Control (CONTROL), 2012 UKACC International Conference on. (Sept
2012) 286–291

29



Towards a General Framework for Modeling,
Simulating and Building Sensor/Actuator
Systems and Robots for the Web of Things

Ion Mircea Diaconescu1 and Gerd Wagner1

1Chair of Internet Technology
Institute of Informatics

Brandenburg University of Technology, Germany
{M.Diaconescu, G.Wagner}@b-tu.de

Abstract. The Web of Things (WoT) refers to those parts of the web
consisting of special web application systems connected to the real world
via sensors or actuators. These WoT systems include robots connected
to the web as a special case. We propose a general framework for model-
ing, simulating, designing and building WoT systems. We propose a core
ontology for WoT systems, which is the basis for our modeling and sim-
ulation approach. The modeling and simulation part of our framework is
independent of the WoT and could also be employed in the engineering
of other forms of embedded systems and robots. As a test case and a
proof of concept we present an example of a green house WoT system.

Keywords: Web of Things · sensors · actuators · robots · ontology · modeling
· simulation.

1 Introduction

The Web of Things (WoT ) is a subset of the Internet of Things (IoT ). While in
the IoT, all kinds of Internet technologies can be used for building sensor-based
information systems and device control applications, the WoT is based on web
technologies only: foremost DNS, HTTP and HTTP-compatible protocols like
Web Sockets and the Constrained Application Protocol (CoAP), and the user
interface and frontend computing technologies HTML, CSS and JavaScript. The
WoT consists of special web application systems connected to the real world via
sensors or actuators, including robots connected to the web as a special case.

There are three recent trends promoting the WoT. First, the web’s infrastruc-
ture has progressed dramatically 1) by extending the internet’s address space
with IPV6, 2) by continuously increasing the speed and bandwidth of inter-
net connections, and 3) by improving the speed of HTTP with HTTP 2.0 as
well as introducing near-real-time web protocols like Web Sockets. Second, the
widespread use of smartphones and tablets, containing various sensors, has cre-
ated a large pool of sensing and computing resources for the WoT. Third, the

30



name[0..1] : String

Entity

PhysicalAgent

EventPhysicalObject MessageObject

participants

* *

CommunicationEvent

*

1

Agent

InMessageEvent

1

OutMessageEvent

1

receiver

1

*

sender1

*

ReactiveBehavior

*

1

Fig. 1. Top-level concepts of WoTCO

increasing availability of many kinds of cheap sensors, actuators and other elec-
tronics components has led to the development of a large Do It Yourself (DIY)
robotics and WoT community, creating lots of open source software and hard-
ware, and publishing a great variety of DIY projects1. The availability of all these
resources, and, in particular, of low-cost hardware, creates new opportunities for
WoT and robotics-related research and education.

For instance, a simple WoT project can be the temperature monitoring of a
room by using a cheap temperature sensor, like the Texas Instruments LM352

(available for about 1 Euro), attached to a Raspberry Pi microcomputer (avail-
able for about 30 Euro) running a NodeJS-based web application on top of Linux
and connected to the Internet via WiFi. More complex WoT systems, like a home
security and monitoring system or a home robot that is able to move around
and talk to people, can be built with hardware costs of a few hundreds Euro,
only, possibly using a no-longer-needed smartphone as the control computer and
exploiting its (GSM/3G and WiFi) communication and its (GPS, microphone,
camera) sensing capabilities.

A critical issue for any kind of web application, and even more for device
control applications in the WoT, is security. However, in this paper we do not
treat security issues.

In the robotics and WoT research literature, as well as in the DIY robotics
and WoT literature, there is still a lack of methodologies, including general ap-
proaches to modeling and simulation. Our aim is to develop a general framework
for modeling, simulating, designing and building WoT systems (WoTS). The ba-
sis of this framework is a WoTS core ontology defining such concepts as event,
object, agent, sensor, actuator, etc.

1 See, e.g., http://www.instructables.com/tag/type-id/category-technology/.
2 Centigrade Temperature Sensor: http://www.ti.com/lit/ds/symlink/lm35.pdf

31



The last section presents a proof of concept implementation of a WoT sys-
tem controlling a green house using our open source Java/Android-based WoTS
implementation framework.

occurrenceTime[1] : Integer
duration[0..1] : Integer
startTime[0..1] : Integer

Event

EnvironmentEvent
AgentEvent

InstantaneousEvent

ExogenousEvent

CausedEvent

*

cause

0..1

ExternalActionEvent

ExternalPerceptionEvent

InMessageEvent

OutMessageEvent

Message

0..1
1

0..1 1 PeriodicTimeEvent

TimeEvent

ReminderEventAgent

*

perceiver

1

*

actor1

*

1

InternalPerceptionEvent

Activity

*

1

«invariant»
{startTime 
= occurrenceTime -
    duration}

«invariant»
{duration = 0}

InternalActionEvent

Fig. 2. Top-level event categories in WoTCO

2 A Core Ontology for WoT Systems and Robotics

An ontology is a system of inter-related categories for classifying the things that
inhabit (some part of) our real world. A foundational (or upper-level) ontology
identifies the most fundamental categories such as objects and events, while a
core ontology defines the core concepts of a domain, based on a foundational
ontology. We use the Unified Foundational Ontology (UFO) proposed by Guiz-
zardi and Wagner in [6,7,8], and we call our core ontology for WoT Systems and
Robotics WoTCO.

As can be seen in Figure 1, The most important top-level category in WoTCO
is the category of PhysicalAgent, which is derived from both PhysicalObject
and Agent. As a physical object, a physical agent is in time and space (and
has physical attributes such as mass, spatial coordinates, velocity, etc.), and
participates in events. As an agent, a physical agent has reactive behavior and

32



may participate in out-message events as sender, and in in-message events as
receiver.

As defined in Figure 3, a WoT system is a physical agent. A WoTS component
may be a sensor, an actuator or a human-interface device (HID).

Actuator

Hid

WoTSystem

Sensor

WotsComponent

1*

1 *

WebRobot
«invariant»
{Components contain at least one sensor 
coupled to at least one actuator.}

PhysicalAgent

Fig. 3. WoTS components as physical agents

As defined in Figure 2 and 4, we distinguish between environment events,
which occur in (and are used for simulating) the environment, and agent events,
which occur internally in agents. Our high-level view of the perception-action
cycle of a WoTS can be described in WoTCO terms as follows. An external per-
ception event, as an environment event, corresponds to a potential perception
event enabled by physical causality. A sensor of a WoTS maps such an external
perception event to an internal perception event (or sensor event). Then a reac-
tive behavior rule maps this sensor event to an internal action event (or actuator
command), which is mapped to an external action event via the used actuator.
The newly created external action event can then cause another external per-
ception event, which starts the cycle over again.

3 Related Work

The IoT-A project has collected a report on the existing frameworks and archi-
tectures [1] providing an overview of the current state of the art, and has defined
an architectural reference model[2], which is very generic.

The issues of searchability, shareability and composability of WoT systems
are discussed in [3].

An attempt to define a core ontology for robotics based on the foundational
ontology SUMO is made by the IEEE working group Ontologies for Robotics
and Automation (ORA) in [9]. Remarkably, this ontology does not include any
specific concepts for sensors and actuators, which are subsumed under ”Robot
Part”. Many top-level concepts of the ORA ontology are similar to our WoTCO
categories, but WoTCO is much more complete.

33



Sensor

1

outputs

*

Actuator

1

inputs

*

*

inputs

*

InternalPerceptionEvent

ExternalPerceptionEvent

*

cause

0..1

ExternalActionEvent

EnvironmentEvent

*
resultingEvent*

InternalActionEvent

1

outputs

*

Fig. 4. Sensor/actuator events

4 An Architecture for WoTS and WoTS Simulations

Our goal is to develop a general architecture for modeling, simulating, designing
and implementing WoT systems. This means that a WoTS model specifes both
both the WoT system to be realized and its simulations, which may be partial in
the sense that any number of its components may be present in its configuration
while all others are simulated.

4.1 Simulating WoTS Components

Our prototype WoT system presented in the next section is based on the archi-
tecture metamodel shown in Figure 5, which is derived from the Agent-Object-
Relationship Simulation Metamodel[4,5]. The central concept of this metamodel
is WoTSComponent, which represents entities that have physical properties (e.g.,
position, size, speed, etc) and whose reactive behaviors can be described by
reaction rules triggered by events. For instance, a motor controller starts its
activity when an internal action event ”GO” occurs. As shown in Figure 5, a
WoTSComponent can be simultaneously an event source and an event listener.

A component can be atomic (a Sensor, an Actuator or a Hid) or composite,
like, for example, a robot arm composed of a set of interconnected sensors and
actuators. Even sensors can be composite devices, as for example a humidity
and temperature sensor in a single unit with a single communication interface.

A WoTComponent (sensor, actuator, HID) or WoTSystem can contain a set of
custom defined rules. The rule definition specifies the type of the event which
activate it. The project author is free to build simple or complex rules by using
the capabilities of the used system implementation programming language.

34



WoTSComponent

Event

occurrenceTime[1] : Date
priority[1] : EventPriority
duration[0..1] : Integer

«enumeration»
EventPriority

VERY_HIGH
HIGH
MEDIUM
LOW
VERY_LOWReactionRule

1 *

addListener(in linstener : WoTSComponent)
trigger(in listener : Event)

«interface»
EventSource

on(in event : Event)

«interface»
EventListener

*

source0..1

Fig. 5. General architecture model

Also the behavior of a WoT system is defined by reaction rules (e.g., trigger
the alarm when an intruder is detected or start watering the flowers when the
soil moisture is under a threshold value).

4.2 Sensors

Sensors are mostly used to collect data. In general a sensor can be an atomic com-
ponent, having just one specific function (e.g., a LM35 centigrade temperature
sensor) or a composite one, where multiple sensors are packed in one unit and
all of them use the same communication interface (e.g., 1-wire DHT22 temper-
ature and humidity sensor). Sensors can be divided in categories based on their
types. Our category divisions (see Figure 6) were obtained by selecting the most
relevant types of sensors, according to [11]. In some cases, one category may be
further divided, as for example in the case of WeatherSensor category, we have:
TemperatureSensor, HumiditySensor, MoistureSensor, BarometerSensor and
so on. For each sensor category (or sub-category) a related builtin event type,
or set of event types are defined. The events are forwarded to the registered
listeners, responsible to evaluate and use the sensor data by using their rules.

4.3 Actuators

Actuators are in general simple electro-mechanical devices that require a signal
(voltage, current or a specific protocols) to activate or deactivate them. The
most relevant categories, according to [10], are captured in our model, as shown
in Figure 7.

4.4 Human Interface Devices

According to [12], Human Interface Devices (HIDs), represent a special type of
WoT Components, and their main purpose is to provide an interface between the

35



ProximitySensor

WeatherSensor

ChemicalSensor

AcousticSensor

ElectricSensor

NavigationSensor

FluidFlow

OpticalSensor

RadiationSensor

MagneticSensor

RadioSensor

PositionSensor

ForceSensorSensor
temperature : Double

TemperatureSensor

LM35

moisture : Double

SoilMoistureSensor

resistance : Double

ResistiveSoilMoistureSensor

getLuxValue() : Double

resistance : Double

PhotoResistorSensor

VT93N1

Fig. 6. Sensors architecture model

Actuator

HydraulicActuatorPneumaticActuatorElectricActuator

Motor Electrovalve Relay

ActuatorStateChangeEvent

* 1

state : Boolean

PullDownRelayActuator

frequency : Double
dutyCycle : Double

PWMController

Fig. 7. Actuators architecture model

36



system and a human user who needs to interact with the system. Such devices can
either be input or output devices, but can also be composite devices (providing
multiple inputs, multiple outputs or multiple inputs and outputs). Examples of
HIDs are displays (with or without touch screen), LEDs, keyboards, etc.

5 Test Case: The Green House Project

This section presents a project as a proof of concept for the proposed archi-
tecture. The project is about the implementation of a Green House, which is
monitored and controlled by a WoT System. Specific needs in terms of temper-
ature, water and light have to be considered for the Green House. The system
provides the following functionality:

– soil moisture sensors measure from dry up to flooded soil.
– the temperature is monitored and an automatic cooling system is activated

to control the temperature (air flux may come from outdoors).
– a specific light intensity is required for an optimal production.
– the water system can be started or stopped by using an electrovalve.

Figure 8 shows the model instance of the Green House project, according with
the architecture model discussed in this paper.

GreenHouse : component::WoTSystem

tempSensor : temperature::LM35

moistureSensor : moisture::ResistiveSoilMoistureSensor

photoResistorSensor : optical::VT93N1

waterValveRelay : electric::PullDownRelayActuator

coolerRelay : electric::PullDownRelayActuator lightPWMController : electric::PWMController

Fig. 8. Green House test case model instance

5.1 Interfacing with Sensors and Actuators

A WoT project consists of a set of sensors that perceive the environment, a set
of actuators with the purpose of performing physical actions, and a computer
device connected to them and to the web via a web application. In general,
a normal computer or smart device cannot be directly connected to sensors or
actuators, but rather an interface board is needed for this purpose. Such a board
is a device which allows to communicate via specific protocols (e.g., USB, Serial,
Parallel, etc) with the computer and in the same time provides I/O channels (via

37



GPIO pins) to interface with sensors and actuators. Examples of such boards are:
IOIO-OTG3 and Arduino4. One can also use development boards which provide
a combination of mini-computers and interface boards in just one device, such
as Beaglebone5 and Raspberry PI 6. There are some disadvantages in this case
since usually the number of available GPIO pins is limited (e.g., Raspberry PI
provides only 8, neither having analog capabilities) and others requires advanced
programming skills to control the GPIO pins (e.g., Beaglebone requires advanced
C/C++ and Assembler knowledges for more than blinking a led projects).

For our project we use the IOIO-OTG interface board, which allows to con-
nect a smart device running Android v2.3 or higher with external components
(e.g., sensors and actuators) by using the 46 GPIO pins. It provides multiple in-
terfacing capabilities, such as communication via I2C, SPI and UART protocols,
analog data reading (reads voltage within 0-3.3V range) and PWM (pulse width
modulation) control with possibility of changing the frequency and duty cycle.
The board is connected with the Android device via USB cable or bluetooth. For
an optimal usage of the IOIO-OTG interface board, the Android device must
have 512MB or more RAM memory and a CPU with a frequency over 1GHz.

The board itself does not require custom software to interface with exter-
nal components. Instead it interfaces with the Android device via a Java API,
which is rather generic and does not provide specific implementation to interface
with sensors or actuators, this being part of the custom project software imple-
mentation. Our Java prototype of the proposed WoT architecture includes the
IOIO-OTG API and extends it with specific sensors and actuators implementa-
tion, as the ones (but not only) used for the Green House project.

5.2 Hardware Configuration

The system consists of the following hardware parts:

– A Samsung Galaxy S (GT-I9000) smartphone running Android version 4.3.1.
– A IOIO-OTG board is used as an interface between the smartphone and the

system. It connects with the smartphone via bluetooth or USB cable.
– The LM35 centigrade analog sensor is used to monitor the temperature.

It represents a specific TemperatureSensor implementation, part of the
WeatherSensor category (see Figure 6 and Figure 8).

– The VT93N1 photo-resistor sensor, is used to detect the light intensity.
It represents a specific PhotoResistorSensor implementation, part of the
OpticalSensor category (see Figure 6 and Figure 8).

– DIY custom soil moisture sensors are created with the help of nickeled nails,
wires and resistors. Those sensors represents a specific implementation of
ResistiveSoilMoistureSensor, a specific subclass of SoilMoistureSensor,
part of the WeatherSensor category (see Figure 6 and Figure 8).

3 IOIO/IOIO-OTG - https://github.com/ytai/ioio/wiki
4 Arduino - http://www.arduino.cc/
5 Beaglebone - http://beagleboard.org/Products/BeagleBone
6 Raspberry PI - http://www.raspberrypi.org/

38



– The electrovalve used to start/stop watter supply is activated and deacti-
vated by using a PullDownRelayActuator (see Figure 7 and Figure 8). Such
a relay type is closed by default, and is activated by connecting it to the
ground of the power supply, from here its ”pull down” name.

– A set of mains powered coolers are used to keep the temperature in a specified
range. PullDownRelayActuator relays are used to control their on/off states.
The airflow used to adjust the temperature level comes from outdoors.

– A recycled ATX PC power supply (provides 12V and 5V at high current
levels) is used to power all components except the ones being connected to
mains power supply (cooling system).

The total cost of the system is about 200e , from which the sensors and the IOIO
interface board cost about 50e . The rest of the price is for the electrovalve,
relays, coolers and dimmable lights. The smartphone price is not included, but
is currently evaluated to about 50-60e on the market.

5.3 Software Configuration

Our WoT Java/Android implementation is used to implement the system soft-
ware. It contains the code required to read the sensors and control the actuators.
As already discussed in this paper, our architecture uses an event based com-
munication between components and the system behavior is defined by using
reactive rules. For this project a set of rules are used to control the actuator
components based on various sensor readings. For readability reasons, a pseudo-
code version of the rule is shown in this paper, but its Java version (as used by
our architecture implementation) is also simple to write.

Temperature and Soil moisture Control: The LM35 sensor is used in AUTO
mode, thus creating TemperatureSensorEvents (builtin event type which car-
ries the temperature value) only when temperature value changed compared
with latest known value. Controlling the cooling system is performed by using a
rule shown below:

WHEN TemperatureSensorEvent event

if ( event.getTemperature() < lowRange)

then CREATE DisableRelayEvent( CoolerRelay)

elseif (event.getTemperature() > highRange)

then CREATE EnableRelayEvent( CoolerRelay)

The coolers are started if a high temperature is detected. When the tem-
perature goes back in the normal range, the coolers are stopped. The temper-
ature is maintained in the specified range with the condition that outdoors
temperature (from where the airflux come) is below the highest temperature
value specified by our system. The same considerations are used to control the
soil moisture, the differences being the type of event which triggers the rule
(SoilMoistureSensorEvent) and the moisture threshold values.

39



Lights Control: Using PWM (pulse width modulation) one can control a light
system to have not only light on and light off light states, but also various
intermediate light intensity levels. Using the IOIO board we generate the PWM
signals to control a set of PWM controlled dimmable lights. The following rule
allows to control the light by changing the PWM duty cycle:

WHEN LightSensorEvent event

if ( event.getLuxValue() > highRange)

then CREATE DisablePWMEvent( PWMLight)

else DEFINE VAR dutyCycle = (targetLuxValue - event.getLuXValue()) / 100

CREATE ChangePWMDutyCycleEvent( PWMLight, dutyCycle)

The sensor returns values between 0 Ohm (direct sun light) and 300K Ohm
(complete dark) which are internally converted to LUX values. Increasing the
PWM duty cycle results in higher light levels. The targetLuxValue represents
the target light intensity value (in LUX) for our Green House.

Safety Considerations: A WoT system presents safety risks in some cases.
For example the malfunction of the soil moisture sensor in the case of the Green
House project may result in flooding the plants. We are working on a solution
to categorize the WoT components and events so that posible safety risks are
limited as much as possible. Additionally, implementing some WoT systems may
require to work with possible dangerous voltage levels for the human body, e.g.,
using mains power. Such safety risks must be considered by the hardware project
author.

Project Enhancements: The project was prototyped in a room by replacing
the mains powered coolers with PC coolers and the electrovalves with LEDs.
The project will be improved by allowing a human user to interfere with the
automated actions if required (e.g manually start or stop the water or coolers).
Additionally, a data collector component will be added to have statistics about
the expenses by monitoring the consumed water and electricity. This is possi-
ble by using sensors to read and monitor consumed electrical power and water
volume.

6 Conclusions

We have presented an ontology and metamodels for modeling, designing and
simulating WoT systems. A simple, but illustrative, test case implementation
was shown as a proof of concept. We still have to make our framework more
complete, e.g., by developing a general approach how to create simulation models
for specific sensors and actuators based on their technical specification provided
by the vendor.

40



References

1. Consorzio Ferrara Ricerche. Project Deliverable D1.1 - SOTA report on existing
integration frameworks/architectures for WSN, RFID and other emerging IoT re-
lated Technologies, Alessandro Bassi (Eds.), 2011, http://www.iot-a.eu/public/
public-documents/documents-1/1/1/d1.1/at_download/file

2. FhG IML. Deliverable D1.3 Updated reference model for IoT v1.5, An-
dreas Nettstrter (Eds.), 2012, http://www.iot-a.eu/public/public-documents/
documents-1/1/1/D1.3/at_download/file

3. Dominique Guinard. A Web of Things Application Architecture - Integrating the
Real-World into the Web, 2011, https://www.webofthings.org/dom/thesis.pdf

4. Gerd Wagner. AOR Modelling and Simulation Towards a General Architecture
for Agent-Based Discrete Event Simulation. In P. Giorgini et al. (Eds.): Agent-
Oriented Information Systems, Springer-Verlag LNAI 3030, pp. 174188, 2004.

5. Gerd Wagner. A Short Introduction to the ER/AOR Simulation Framework. http:
//hydrogen.informatik.tu-cottbus.de/talks/AORS-Tutorial/

6. Giancarlo Guizzardi and Gerd Wagner. A Unified Foundational Ontology and some
Applications of it in Business Modeling. In Proceedings of the CAiSE’04 Work-
shops, edited by J. Grundspenkis and M. Kirikova, 3:129-143. Faculty of Computer
Science and Information Technology, Riga Technical University, Riga, Latvia. June
7-11, 2004.

7. Giancarlo Guizzardi. Ontological Foundations for Structural Conceptual Models.
PhD Thesis, University of Twente, The Netherlands. 2005.

8. Giancarlo Guizzardi and Gerd Wagner. Using the Unified Foundational Ontol-
ogy (UFO) as a Foundation for General Conceptual Modeling Languages. In
Roberto Poli (Ed.), Theory and Application of Ontologies, 175-196. Springer-
Verlag Berlin/Heidelberg, 2010.

9. Edson Prestes and Joel Luis Carbonera and Sandro Rama Fiorini and Vitor A. M.
Jorge and Mara Abel and Raj Madhavanb, Angela Locoro and Paulo Goncalves
and Marcos E. Barreto and Maki Habibg and Abdelghani Chibani and Sbastien
Grard and Yacine Amirat and Craig Schlenoff. Towards a core ontology for robotics
and automation. Robotics and Autonomous Systems 61 (2013), 1193-1204.

10. Wikipedia: Actuator, http://en.wikipedia.org/wiki/Actuator.
11. Wikipedia: List of sensors, http://en.wikipedia.org/wiki/List_of_sensors.
12. Wikipedia: Human interface device, http://en.wikipedia.org/wiki/Human_

interface_device.

41



Towards Context Modeling in Space and Time

Christian Piechnick, Georg Püschel, Sebastian Götz,
Thomas Kühn, Ronny Kaiser, and Uwe Aßmann

Software Technology Group, Technische Universität Dresden,
Nöthnitzer Str. 46, 01187 Dresden, Germany

{christian.piechnick,georg.pueschel,sebastian.goetz1,thomas.kuehn3,ronny.

kaiser,uwe.assmann}@tu-dresden.de

http://st.inf.tu-dresden.de

Abstract. One of the main problems in software development for ser-
vice robots is to create systems that reliably behave as intended, even
though the real field of application and the concrete user requirements
are unknown during design time. Consequently, the software controlling
service robots has to be aware of its environment and has to adapt its
behavior accordingly. A model representing environmental data is called
a context model. Appropriate context models currently lack means for
modeling temporal and spatial information simultaneously. While it is
important to reason about historical context data for most of the Self-
Adaptive Systems, there is an increasing need for treating the temporal
dimension of context models as first-class-citizen. In this paper, we pro-
pose a graph- and role-based context model (GRoCoMo), which includes
expressive means for describing time and location. A query language en-
ables for reasoning on current and historical data, as well as future trends.
A manipulation language enables the specification of rewrite rules for up-
dating context models based on situations detected within the context.

Keywords: Context Modeling; Context Management; Context-Awareness;
Temporal Context; Context History;

1 Introduction

A service robot is a reprogrammable, sensor-based, mechatronic device which
performs useful services to support human activities [8]. In contrast to produc-
tion robots, where the operating environment as well as all other influencing
factors are known before deployment, the application sites of service robots are
unknown. This information can only be gathered during runtime. Therefore, the
software system controlling the service robot has to adapt its behavior dynam-
ically. Such a system is called a Self-Adaptive System (SAS). One example of
adaptive behavior within robotic software is the path planning of mobile robot
platforms [4]. When a robot has to move to a target position, the robot’s motion
model (e.g., differential steering), as well as the environment (e.g., crowded ar-
eas), influence the planning strategy. Figure 1 shows an example path planning
problem with two different strategies. The first strategy, Shortest Path (solid

42



2 Towards Context Modeling in Space and Time

T

S

Shortest Path

Near Wall
Crowded Area S Start T Target

Route 1

Route 2

Fig. 1. Example for alternatives in global path planning

lines), calculates the shortest route from the starting location (S) to the target
location (T) and provides two different alternatives. The other strategy, Near
Wall (dashed lines), calculates routes that lead along walls. The grey dashed
area is usually used by many persons and therefore, marked as “crowded”. When
the navigation algorithm decides to use the upper floor, the Near Wall strat-
egy is the better option, since the probability to get in the way of humans is
decreased. On the other hand, it might be disadvantageous on the lower floor,
where the robot potentially has to drive around many open doors. Hence, the
decision should be made at runtime. An inherent property of all SAS is that they
are implementing a variant of the MAPE-K loop, first introduced by IBM [7].
The MAPE-K loop consists of four phases: in the (M) Monitor phase environ-
mental data is gathered and processed and, then, interpreted in the (A) Analyze
phase. The (P) Plan phase investigates the need for reconfiguration and creates
reconfiguration plans accordingly, which are applied in the (E) Execute phase.
All phases share a (K) Knowledge Base, which manages relevant information
guiding the adaptation process. An essential part of this knowledge base is in-
formation about the execution environment (e.g., crowded areas in the upper
example), i.e., the Context Model. Because different domains have varying
requirements w.r.t. context modeling and management, various different model-
ing approaches for context information were developed during the last decades.
Nevertheless, recent context modeling approaches are not sufficient to handle
crucial aspects for the domain of service robots. Namely, reasoning on dynamic
collaborations like in robotic applications, requires more expressive means to
cover time and location in a processable manner. To address this problem, we
present an extended graph-based context model with time and location as first
class citizens and, thus, extended means for modeling and managing temporal
and spatial context data for robotic applications.

This paper is structured as follows. In Section 2, we give an overview on con-
text modeling and outline important properties of context models. In Section 3,
we discuss relevant context modeling approaches and their suitability w.r.t. the

43



Towards Context Modeling in Space and Time 3

identified properties. We present our approach in Section 4 and discuss our pro-
totypical implementation in Section 5. Finally, Section 6 presents our conclusion
and future work.

2 Context Modeling and Management

To enable an application to adapt itself to changing environmental conditions,
information about the environment must be gathered and analyzed. For this
purpose, a variety of approaches have been developed, to tackle the specific
requirements in different application domains of SAS [2]. Zimmermann et al.
identified six different modeling elements of context models [17]:

Z1 - Entities: An entity can be any real or virtual thing that is of interest for
the adaptation process (e.g., user, device, application, location, etc.).

Z2 - Individuality: The individuality encompasses any information that can
be observed about an entity (e.g., dynamic and static properties, etc.).

Z3 - Relationships: A relationship expresses a semantic dependency between
two entities. Zimmermann et al. distinguish between social-, functional-, and
compositional relationships.

Z4 - Activities: The activities dimension encompasses any information about
an entity’s past, present and future needs, goals, tasks and plans.

Z5 - Time: Statements in a context model often have a temporal dimension.
Time can be expressed using time zones (e.g., Central European Time) or
virtual times (e.g., milliseconds after system start). Furthermore, overlay
models can be used for abstraction (e.g., working hours, weekends, etc.).

Z6 - Location: Since most of a context model’s elements represent objects from
the physical world, which are arranged spatially, location is a major aspect
of context information. The location dimension can include real or virtual
locations (e.g., IP address in a network). Those locations can use absolute,
relative, or symbolic location models.

Strang et al. [13] identified six different types of context modeling approaches:
(1) Key-Value Models, (2) Markup Scheme Models, (3) Graphical Models, (4)
Object Oriented Models, (5) Logic Based Models, and (6) Ontology Based Mod-
els. Depending on the specific requirements of the application domain, different
advantages and disadvantages can be observed. They evaluated those types of
context models regarding their ability to (a) be composed in a distributed com-
putation environment, (b) the richness and quality of information, (c) the ability
to handle incompleteness and ambiguity, (d) the level of formality, and (e) their
applicability to existing environments. Considering those properties, Strang et
al. conclude that ontologies are the best-rated modeling type, while Key-Value
Models are the worst-rated. On the other hand, the construction and manage-
ment of Key-Value Models is much simpler and the performance of analysis
scales much better for simple requests. For the domain of service robots the
properties (b), (c) and (e) are crucial because of the robots complex and un-
known execution environment. The properties (a) and (d) become important

44



4 Towards Context Modeling in Space and Time

when the sensors (e.g., temperature sensor) and actuators (e.g., door opening)
are distributed across the environment, and, thus, multiple computational units
have to share knowledge based on a shared interpretation. Hence, according to
the provided evaluation, ontologies should be used for the modeling of contex-
tual information in the domain of service robots. Furthermore, a context model
for service robots should include the modeling elements Z1 - Z6, according to
Zimmermann et al. [17].

3 Related Work

The research area of SAS is still very popular, resulting in thousands of publica-
tions each year. This is also true for research on context modeling and manage-
ment. For our related work research, we searched for papers published between
2000 and 2013 and containing the words “context model” in their title, using
Google Scholar1. The result of the indicated query was a set of 3469 papers. We
filtered the result-set manually to exclude publications that were not intended for
the application in SAS. The result was a reduced set of 1228 manually filtered pa-
pers. Among them, we investigated five context model survey papers [1–3,6,13].
We have chosen six representative context model publications, which consider
the dimensions time (Z3) and/or location (Z4). Four of those papers [5,12,14,15]
were chosen based on the description in the context model surveys. Because the
latest survey was published in 2010 by Bettini et al. [2], we have selected two
additional publications [9,16], published between 2010 and 2014. We have inves-
tigated their modeling capabilities w.r.t. the properties stated in Section 2. The
results are summarized in Table 3.

In 2003 Strang et al. proposed the ontology-based context model CoOL
(Context Ontology Language) [14]. CoOL provides the concept of an “Entity”,
while type information (e.g., Person, Place) must be expressed using the indi-
viduality dimension. Individuality (Z2) can be modeled using “Aspects” with
different “Scales”. Relationships (Z3) can be expressed using facts. Even though
they show that the time, place and activity dimensions (Z4 - Z6) can be treated
as an aspect as well, they do not provide a special interpretation semantic for
time-bound, historical, location-, or activity-specific data.

Gu et al. presented an ontology-based context model for their service-oriented
context-aware middleware SOCAM in 2004 [5]. They support several types of
entities (e.g., Device, Network) as well as predefined and user-defined properties
and relationships (Z1 - Z3 ). Activities are also treated as first-class-citizens (Z4).
Time (Z5 ) is partially considered, but only as start and end. The model provides
special nodes for locations (i.e., in- and outdoor locations) but does not show
how locations can be related.

Wang et al. proposed the CONtext ONtology (CONON) [15] in 2004, by
extending the SOCAM context ontology. In contrast to the previous model they
provide means for describing location (Z6 ) in a more fine-grained manner and

1 Google Scholar: http://scholar.google.de/, visited 20.05.2014

45



Towards Context Modeling in Space and Time 5

CoOL SOCAM CONON MUSIC ERMHAN CACOnt

(Z1) Entities (+) + + (+) + +

(Z2) Individuality + + + + + +

(Z3) Relationships + + + + + +

(Z4) Activities (–) + + (–) + +

(Z5) Time (–) (–) (–) (–) – –

(Z6) Location (–) (+) + (–) + +

Table 1. Evaluation of the related models w.r.t. to their modeling capabilities.
(- not considered, (-) partially considered, (+) implicitly provided, + fully provided)

explain how those locations can be related to each other, to create hierarchical
location models.

Reichle et al. described an ontology-based context model for the MUSIC
project in 2008 [12]. Like the CoOL ontology, they provide an abstract type
Entity which can be categorized using special type attributes (Z1 ). The model
provides means for describing attributes and relationships (Z2 and Z3 ), but does
not treat activities as special entities (Z4 ). Hence, activities can only be modeled
by creating used-defined activity type attributes. The model contains basic types,
such as DateTime or GPS-Coordinate, but does not provide a first-class-citizen
interpretation semantics for time and location (Z5 and Z6 ).

In 2011, Paganelli and Giuli presented a context model for the ERMHAN
service platform for Ambient Assisted Living (AAL) scenarios [9]. The model
provides means for describing several entity types, attributes, relationships and
activities (Z1 - Z4 ). Furthermore, they consider several types of interrelated
locations (Z6 ), but do not consider time (Z5 ) within the model. They only
consider time externally by tracking the change of context values. Based on the
type of the changed value, they interpret a time-bound sequence of values.

In 2013, Xu et al. presented the Context-Aware Computing Ontology CA-
COnt. It predefines several types of entities, properties, relationships and activ-
ities (Z1 - Z4 ). The authors extensively investigate the location dimension (Z6 ),
by providing different levels of abstraction for the specification of an entities lo-
cation (e.g., GPS, location hierarchies). They do not consider the time dimension
(Z5 ). Thus, a CACOnt model only provides information on the current context
state. However, like in every model with extensible attributes, it is possible to
express time information using attributes with a custom interpretation logic.

As shown in Table 3, the presented context models provide means for mod-
eling the dimensions of entities, individuality, and relationships (Z1-Z3). The
activity dimension (Z4) is either provided, directly or can be modeled sepa-
rately, using an extensible entity-model. The most recent works consider the
location (Z6) as an essential part of a context model, and, thus, provide means

46



6 Towards Context Modeling in Space and Time

Node

Person

Device

Physical
Object

Virtual
Object

User

Service

Actity

 name
 uri
-sensorId
+isValid()
+wasValidAt(DateTime)
+wasValidDuring(Timespan)

Modeling Element

location

Location

Physical
Location

Virtual
Location

Is Located
At Relation

Part of
Relation

Existential
Part of

Relation

sensors

Source
Relation

Sensor
Unit

 value
SensorValue

Unit RelationObservation
Target ...

time

Relation

 dateTime
DateTime

Timespan

Owns
Relation

Performs
Relation

example Robot
: Device Room 1 :

Location

Floor 1 :
Location

Office
Building :
Location

ts 1:
Timespan

 dateTime = 25.05.2014 14:10
dt1 : DateTime

Is Located
At Relation2

 dateTime = 25.05.2014 14:15
dt3 : DateTimets2 :

Timespan

 dateTime = 25.05.2014 14:15
dt2 : DateTime

Attribute

start

source

Located At

target

end

target

source

target

target

Predecessor
end

Located At

start

Located At

Located At

target

start

Visual Paradigm Community Edition [not for commercial use] 

Fig. 2. The GroCoMo-Core metamodel.

for handling spatial information as a first-class-element of context models. The
time dimension (Z5), however, is considered important in state-of-the-art liter-
ature, but current context models do not provide explicit modeling elements to
handle time appropriately.

4 Context Modeling in Space and Time

In this section, we present our Graph- and Role-based Context-Model (GRoCoMo),
a context model supporting all modeling dimensions stated in Section 2.

4.1 Structure

As depicted in Figure 2, the context model consists of Nodes and Relations.
Both, Node and Relation inherit from the abstract type Modeling Element.
Each element has a name, a sensorId to identify values created by the same
sensor and a unique resource identifier (URI), to identify the individual ele-
ment. A Relation connects exactly one Source Element to exactly one Target

Element. Both, source and target, are of the type Modeling Element. Hence, it

47



Towards Context Modeling in Space and Time 7

Node

Person

Device

Physical
Object

Virtual
Object

User

Service

Actity

 name
 uri
-sensorId
+isValid()
+wasValidAt(DateTime)
+wasValidDuring(Timespan)

Modeling Element

location

Location

Physical
Location

Virtual
Location

Is Located
At Relation

Part of
Relation

Existential
Part of ...

sensors

Source
Relation

Sensor
Unit

 value
SensorValue

Unit RelationObservation
Target ...

time

Relation

 dateTime
DateTime

Timespan

Owns
Relation

Performs
Relation

example Robot
: Device Room 1 :

Location

Floor 1 :
Location

Office
Building :
Location

ts 1:
Timespan

 dateTime = 25.05.2014 14:10
dt1 : DateTime

Is Located
At Relation2

 dateTime = 25.05.2014 14:15
dt3 : DateTimets2 :

Timespan

 dateTime = 25.05.2014 14:15
dt2 : DateTime

Attribute

start

source

Located At

target

end

target

source

target

target

Predecessor
end

Located At

start

Located At

Located At

target

start

Visual Paradigm Community Edition [not for commercial use] 

Fig. 3. Example model for time and location information representation.

is possible to define relations on relations. A node represents an entity of the con-
text model. The model provides predefined node types (e.g., Person). However,
the metamodel can be extended with domain-specific node types by subclass-
ing. A Relation represents a typed, complex relationship between two entities.
Furthermore, each relationship can contain several directly assigned attributes.

4.2 Handling Time

To cover temporal aspects, Timespans can be assigned to each modeling ele-
ment (i.e., nodes and relations), to state when the validity of a modeling element
started and stopped. Each modeling element with a validity timespan that has
no associated end-time, is considered valid at the current time. By default the
validity of a modeling element starts when it is created and can be invalidated by
assigning an invalidation time. Because each element can have multiple validity
times, a previously invalidated node or relation can be re-validated again. Each
modeling element may have a Predecessor Relation to another modeling el-
ement of the same type that was replaced by the respective element w.r.t. its
validity. In the scenario described in Section 1, the robot moves from a starting
location S to a target location T. While the robot moves, a node, representing the
robot, contains an outgoing LocatedAt relation. As shown in Figure 3, when the
robot moves from room1 to floor1 the first LocatedAt relation is invalidated
and replaced by a new relation. Because the invalidated relation is not deleted
from the model, it is still accessible and can later be analyzed (e.g., by cre-
ating motion profiles). Furthermore, different representations of “time” can be
modeled. As shown in Figure 3, date and time combinations can be represented
as absolute timestamps in a given calendar. Hence, it is important to have an
associated location to every timestamp representation, which is inferred in the
provided example, because the timespan is assigned to a LocatedAt relation.
Furthermore, other representations of time (e.g., weekdays or holidays) can be
modeled and assigned to nodes and relations.

4.3 Handling Location

Locations are represented by special Location nodes (see Figure 2). The model
separates physical (e.g., the main station) or logical locations (e.g., a folder

48



8 Towards Context Modeling in Space and Time

in a file system). Physical locations can further be divided into sub-symbolic
(e.g., GPS coordinates) or symbolic (e.g., Dresden Main Station) locations. To
relate an entity to a location node, the GRoCoMo metamodel provides a generic
LocatedAt relation. The target of such a relation must always be a location node.
When the source node is a location node as well, the relation represents a part-
of relation for a specified point in time (e.g., Dresden Main Station Is Located
At Dresden). The LocatedAt relation is transitive. Lets consider for example
a person is located in a car and this car is located in the city of Dresden. In
this case, the person is located in Dresden as well. While the car changes its
location when it is moving, the driver will not change its position relative to the
car, but its location relative to the geographical location. The part-of relation
on locations forms a graph that has no cycles.

4.4 Context Model Query

In order to query the context model, we have created a first prototype for a
query language (GRoCoMo-QL) based on pattern matching in graphs. List-
ing 1.1 shows an example. Each query starts with a definition of roles. Each role
has an id (e.g., node1) and represents a node with an optional type constraint
(e.g., Location). Then, relations can be defined. Each relation has an id, an
optional type constraint, a source and a target role, as well as a temporal con-
straint. The last part of the query is a restriction clause, where any restrictions
on the structure of the previously defined roles and relations can be specified.
The query from Listing 1.1 will return all tuples (node1, node2, rel1), where
node1 is a location node, node2 is a device node and the name attribute of node2
has the value ‘‘Example Robot’’. Furthermore, both nodes must be connected
by a LocatedAt relation from node1 to node2. As a temporal constraint, within
all results it is guaranteed, that all nodes and relations were/are valid at the
same time and only nodes and relations are considered, that were valid within
the last 5 minutes.

1 nodes {

2 node1 : Location [valid within last 5min];

3 node2 : Device [valid within last 5min];

4 }

5 relations{

6 rel1 : LocatedAt(node2 ,node1) [valid within last 5min];

7 }

8 where node2.name = "Example_Robot";

Listing 1.1. A GRoCoMo-QL example.

4.5 Context Model Manipulation

The context model can be changed using a sequence of the following basic graph
rewrite operations:

49



Towards Context Modeling in Space and Time 9

Add Node/Relation: This operation adds a node/relation to the graph. The
concrete type is specified on the client side.

Remove Node/Relation: This operation takes the id of a node/relation as an
input and will remove the corresponding node. In contrast to the invalidation
operation, a deletion will irreversibly remove the node.

Invalidate Element: The invalidation operation of a modeling element (i.e.,
nodes and relations) sets the end time of the corresponding element to the
current time. Hence, it will be considered invalid.

Validate Element: Analogously to the invalidation, the validation operation
will create a new valid timespan and sets the start time to either the current
or the provided time.

Set Property: Some of the GroCoMo meta-classes (cf. Figure 2) define built-in
properties (e.g., name). Those properties can be changed using this opera-
tion. The changes of built-in properties are not tracked (w.r.t. historical
data).

From those basic operations, complex operations can be composed (e.g., re-
place node, set attribute, set location). The context model can be manipulated
by (a) sensors, (b) inference-, and (c) cleanup units. Sensors observe the environ-
ment (physical or virtual) and update the context model accordingly. Inference
units enrich the context model with new nodes and/or relations based on analysis
of the available data in the context model. Cleanup units remove nodes and rela-
tions based on application- and hardware-specific rules in order to avoid memory
overloads. To express the manipulation of those different manipulation units, we
have created a prototypical manipulation language (GRoCoMo-ML), based on
the Query Language sketched in Section 4.4. Listing 1.2 shows an example. A
manipulation script consists of a set of labeled situations, where each situation
contains exactly one query. Then, conditions on the results of the corresponding
queries can be stated. The match/mismatch of situations can be combined using
logical operators (e.g., and, or, etc.), as well as aggregation operations stated on
the number of matches. In the provided example, the corresponding sequence of
manipulation operations is executed, when the pattern, described in the situa-
tion "PersonInRoom1", is matched more than 5 times.

The presented context model GRoCoMo provides a predefined set of node-
types (e.g., Person, Activity, Location, Time), representing contextual entities
(supporting modeling dimension Z1 ). The core model introduces specific nodes
(i.e., Attribute Node) and specific relations (i.e., HasAttribute relation) to
model the individuality of entities (dimension Z2 ). Through this approach dy-
namic complex types can be modeled by creating nested attributes. Relations
represent relationships either between entities or between other relations (dimen-
sion Z3 ). Activities can be modeled using special Activity nodes (dimension
Z4 ). In order to express temporal and historic data (dimension Z5 ), valid times
by means of Timespans can be assigned to each node and relation, to express
when the validity of a modeling element started and ended. Beside the rep-
resented timestamps, it is also possible to assign symbolic representations of

50



10 Towards Context Modeling in Space and Time

1 Situation "PersonInRoom1"{

2 nodes {

3 room1 : Location;

4 person : Person;

5 }

6 relations{

7 rel1 : LocatedAt(person ,room1 );

8 }

9 where room1.name == "kitchen";

10 }

11 ON Count(PersonInRoom1) > 5 {

12 an = new AttributeNode(name = "is crowded", value=true);

13 rel = new AttributeRelation(source = room1 , target = an);

14 }

Listing 1.2. A GRoCoMo-ML Example

time (e.g., Monday, Holiday etc.). Finally, spatial information is captured by
Location nodes (dimension Z6 ).

5 Implementation

To investigate the feasibility of the presented approach, we have created a proto-
typical implementation using the role-based self-adaptive system Smart Applica-
tion Grids (SMAGs) [10]. SMAGs is a component-based modeling and execution
approach for runtime reconfiguration. SMAGs defines a predefined implementa-
tion for a MAPE-K loop, which can be adapted at runtime [11] as well. We
implemented the GRoCoMo as a special Context Model component and inte-
grated the Query Language and the Manipulation Language in the Sensor, Infer-
ence and Adaptation Component. For the context model representation, we used
the JUNG2 graph framework. For the pattern matching, we used the GUERY3

framework. GUERY defines a textual syntax for Motifs, representing patterns,
which are either provided by simple text files or can be created using an object-
oriented API. On top of GUERY, we defined two Domain-Specific Languages
(DSLs) for the GRoCoMo-QL and -ML using the Eclipse-based DSL-framework
Xtext4. Instances of GRoCoMo-QL, as well as the query parts from GRoCoMo-
ML, are transformed to valid GUERY-queries. Based on the result propositions
in the manipulation language, the results of the queries are investigated and
based on the evaluation of the situation guards, the provided reconfiguration
scripts are executed accordingly.

2 JUNG: http://jung.sourceforge.net/ (visited 20.05.2014)
3 GUERY: https://code.google.com/p/gueryframework/ (visited 20.05.2014)
4 Xtext: http://www.eclipse.org/Xtext/ (visited 20.05.2014)

51



Towards Context Modeling in Space and Time 11

6 Conclusion and Future Work

The domain of service-robots highly requires software systems that adapt their
behavior based on past, present and potential future situations of the involved
system. The MAPE-K loop represents the adaptation process from data acqui-
sition, to system reconfiguration, based on data stored in a shared knowledge
base. An important part of this knowledge base is the context model, capturing
environmental data. It was observed, that structured knowledge representations
(e.g., ontologies) are best suited for modeling open and unknown environments.
Current approaches, however, fail to support context data analysis over time
and location simultaneously. In this paper, we have proposed the context model
GRoCoMo (Graph- and Role-Based Context Model), using a typed, attributed
and directed graph as a foundation. The model supports different predefined en-
tities and relations, which can be extended for specific domains. The model
treats activities, time and location as first-class-citizens. For temporal informa-
tion, validity-timespans are attached to each modeling element, representing the
timespan when an element is/was valid (w.r.t. a specific location). To model
locations, the model provides specialized location nodes and relations, as well
as a transitive semantics for those relations. We have outlined a first version
of a pattern-based Query Language, as well as a Manipulation Language using
pattern-based situation detection and a set of predefined manipulation opera-
tions, to change the context model. For future work, the provided prototypical
implementations of the API and the corresponding languages have to be finished,
stabalized and published. In addition, the presented approach has to be evalu-
ated in real-world examples. Bettini et al. [2] described additional properties of
context models that mainly focus on data quality. Those properties were already
considered, but were not described in this paper. Those properties have to be
investigated, covered and evaluated as well. Finally, it has to be investigated
how pattern recognition techniques can be used to automatically detect situa-
tions in terms of context graph patterns, enabling machine-learning adaptation
strategies, as well as situation specification guidance.

Acknowledgment

This work is supported by the German Research Foundation (DFG) within the
Cluster of Excellence “Center for Advancing Electronics Dresden” and the Col-
laborative Research Center 912 “Highly Adaptive Energy-Efficient Computing”.

References

1. Baldauf, M., Dustdar, S., Rosenberg, F.: A survey on context-aware systems. Int.
J. Ad Hoc Ubiquitous Comput. 2(4), 263–277 (Jun 2007)

2. Bettini, C., Brdiczka, O., Henricksen, K., Indulska, J., Nicklas, D., Ranganathan,
A., Riboni, D.: A survey of context modelling and reasoning techniques. Pervasive
Mob. Comput. 6(2), 161–180 (Apr 2010)

52



12 Towards Context Modeling in Space and Time

3. Bolchini, C., Curino, C.A., Quintarelli, E., Schreiber, F.A., Tanca, L.: A data-
oriented survey of context models. SIGMOD Rec. 36(4), 19–26 (Dec 2007)

4. Crowley, J.L.: Navigation for an intelligent mobile robot. Robotics and Automa-
tion, IEEE Journal of 1(1), 31–41 (1985)

5. Gu, T., Wang, X.H., Pung, H.K., Zhang, D.Q.: An ontology-based context model
in intelligent environments. In: In Proceedings of Communication Networks and
Distributed Systems Modeling and Simulation Conference. pp. 270–275 (2004)

6. yi Hong, J., ho Suh, E., Kim, S.J.: Context-aware systems: A literature review and
classification. Expert Systems with Applications 36(4), 8509 – 8522 (2009)

7. IBM Corp.: An architectural blueprint for autonomic computing. IBM Corp., USA
(Oct 2004)

8. Kawamura, K., Pack, R., Iskarous, M.: Design philosophy for service robots. In:
Systems, Man and Cybernetics, 1995. Intelligent Systems for the 21st Century.,
IEEE International Conference on. vol. 4, pp. 3736–3741 vol.4 (Oct 1995)

9. Paganelli, F., Giuli, D.: An ontology-based system for context-aware and config-
urable services to support home-based continuous care. Trans. Info. Tech. Biomed.
15(2), 324–333 (Mar 2011)

10. Piechnick, C., Richly, S., Götz, S., Wilke, C., Aßmann, U.: Using role-based com-
position to support unanticipated, dynamic adaptation-smart application grids.
In: ADAPTIVE 2012, The Fourth International Conference on Adaptive and Self-
Adaptive Systems and Applications. pp. 93–102. Nice, France (2012)

11. Piechnick, C., Richly, S., Kühn, T., Götz, S., Püschel, G., Amann, U.: Con-
textpoint: An architecture for extrinsic meta-adaptation in smart environments.
In: ADAPTIVE 2014, The Sixth International Conference on Adaptive and Self-
Adaptive Systems and Applications. Venice, Italy (2014)

12. Reichle, R., Wagner, M., Khan, M.U., Geihs, K., Lorenzo, J., Valla, M., Fra, C.,
Paspallis, N., Papadopoulos, G.A.: A comprehensive context modeling framework
for pervasive computing systems. In: Proceedings of the 8th IFIP WG 6.1 Inter-
national Conference on Distributed Applications and Interoperable Systems. pp.
281–295. DAIS’08, Springer-Verlag, Berlin, Heidelberg (2008)

13. Strang, T., Linnhoff-Popien, C.: A context modeling survey. In: In: Workshop on
Advanced Context Modelling, Reasoning and Management, UbiComp - Sixth In-
ternational Conference on Ubiquitous Computing, Nottingham/England (2004)

14. Strang, T., Linnhoff-Popien, C., Frank, K.: Cool: A context ontology language to
enable contextual interoperability. In: Distributed Applications and Interoperable
Systems, Lecture Notes in Computer Science, vol. 2893, pp. 236–247. Springer
Berlin Heidelberg (2003)

15. Wang, X., Zhang, D.Q., Gu, T., Pung, H.: Ontology based context modeling and
reasoning using owl. In: Pervasive Computing and Communications Workshops.
pp. 18–22 (March 2004)

16. Xu, N., Zhang, W.S., Yang, H.D., Zhang, X.G., Xing, X.: Cacont: A ontology-based
model for context modeling and reasoning. Applied Mechanics and Materials 347,
2304–2310 (2013)

17. Zimmermann, A., Lorenz, A., Oppermann, R.: An operational definition of context.
In: Modeling and Using Context, Lecture Notes in Computer Science, vol. 4635,
pp. 558–571. Springer Berlin Heidelberg (2007)

53



Experiences with an Approach to Abstract
Handling of Content for Human Machine

Interaction Applications

Richard Schmidt, Johannes Fonfara, Sven Hellbach and Hans-J. Böhme?

Artificial Intelligence Lab, University of Applied Sciences, Dresden, Germany
{schmidtr;fonfara;hellbach;boehme}@htw-dresden.de

Abstract. Current robotic software frameworks lack a mean to aid in
the generation, validation and presentation of high quality content for
user interaction. This paper introduces a new approach to extend a basic
robotic software framework with a layer for content management. This
layer has capabilities for controlling the content presentation subsystems
already integrated. We introduce abstract dialog acts as a centerpiece
for creating and handling robot behavior including user interactions. A
simple file format is used to edit the dialog act structure and it allows
the delegation of the dialog creation to domain experts within the de-
sired field. We demonstrate that the creation of different sets of dialog
acts allows the implementation of completely different use cases without
requiring any changes to existing software components.

Keywords: dialog content · content creation · corpus building · human
machine interaction

1 Introduction

Within recent years, the field of human machine interaction (HMI) has drawn
more and more attention within the robotics community. Interactions with hu-
man users play a key role in numerous disciplines such as robotic guidance,
entertainment, and ambient assisted living.

There are plenty of ways for robotic platforms to communicate with hu-
man users. The most common ones are to display text, images, and videos on
a mounted screen, and output speech – either prerecorded or generated by a
text-to-speech system. Touch screens and automated speech recognition systems
along with dialog management systems receive and process the input from the
user. A schematic overview can be seen in Fig. 1.

For researchers and developers working in this field, the following three prob-
lems usually arise:
? This work was supported by ESF grant number 100076162.

54



2 R. Schmidt, J. Fonfara, S. Hellbach and H.-J. Böhme

User Robot

Speech
Movement

Touchscreen Input

Speech
Images
Videos

Microphone

Cameras

Laser Range Finder

Touchscreen

Speakers

Projector

Fig. 1: Schematic overview with means of user communication for human ma-
chine interaction.

Missing Presentation Middleware In the robotics community several soft-
ware packages like ROS [10], Player/Stage [7] and MIRA [5] aid the implemen-
tation process of real-world robotic applications. These frameworks are very
helpful to abstract hardware access, interconnect software modules and develop
algorithms even up to a behavioral level. Yet they all lack focus regarding the
interaction with humans, as they were never designed specifically for this pur-
pose.

Content Creation In real world applications, the dialog content1 that the
robot can present has to be gathered, edited, and evaluated. Unfortunately, the
developers of a robotic application commonly do not have the expert knowledge
to generate high quality dialog content for the robot’s operational scenario. So
domain experts should be enabled to author such content instead. Furthermore,
the authored dialog content usually has to be tested and evaluated in real world
scenarios, as this may reveal additional ways to improve the content.

Corpus Building Log data from previous deployments might be needed to
create a data collection allowing further analysis, also known as a corpus. This
corpus can be used to develop and tune speech recognition or dialog management
systems and adapt them to the content. But as long as these systems are not
yet capable of performing a user-satisfactory dialog autonomously, reliable data
is hard to obtain.

In the following section, we formulate the requirements for a HMI-capable mu-
seum tour guide robot (see Fig. 2). In Sect. 3, we describe our proposed frame-
work extension to fulfill the requirements. We continue with a discussion of how
we applied our extension to multiple real world use cases in Sect. 4. Sect. 5 con-

1 The term dialog content herein comprises everything that is used for user interaction
such as speech, text, images, videos and even interactive applications like games.

55



Experiences with an Approach to Abstract Handling of Content for HMI 3

(a) (b)

Fig. 2: (a) Tour guide robot leading a group. (b) Attached digital image projector
is used to present content.

cludes this paper with an evaluation of our approach and gives an outlook for
possible subsequent work.

1.1 Robotic Platform

For our experiments we used a Scitos G5 robot by MetraLabs GmbH2, as shown
in Fig. 2. Its anthropomorphic qualities, such as its life-sized proportions and a
movable head, make this platform adequate for HMI applications. A sonar array,
two laser range finders (front and back), microphones, a 360° camera array and
a depth camera are the sensors on the platform. Speakers, a touchscreen and
a digital video projector are the devices that allow presentation of information
towards visitors.

1.2 Related Work

Several approaches for multimodal dialog management systems for robotic ap-
plication like MuDiS [8] and the dialog system of the BIRON project [12] exist.
Their goal is to enable a natural interaction with robot applications by inter-
preting input from different modalities, fusing the input and generating dialog
output accordingly. Commonly not addressed are the aspects of dialog content
authoring, evaluation and presentation that we focus on in this paper.

The Artificial Intelligence Markup Language (AIML) [13] is a markup lan-
guage that serves as the knowledge base for HMI applications. It shares similari-
ties with a markup language proposed in this paper, but lacks means of handling
multimodal dialog content while being more complex. In [3,2] the Multimodal
Interaction Markup Language (MIML) is introduced. The language abstracts
2 http://metralabs.com

56



4 R. Schmidt, J. Fonfara, S. Hellbach and H.-J. Böhme

global tasks, means of interaction and low level modalities. MIML itself, beeing
a language concept, does not solve the mentioned real world problems that we
are going to address in this paper.

2 Requirements

Our goal is to use the robot as a tour guide in a museum. In this real world
application, the robot has to inform and entertain visitors that were not trained
for interaction with the device. Therefore, we think that spoken natural language
is the best mean of interaction. The main reason why robots in public areas still
lack complex dialog capabilities is that speaker-independent speech recognition is
still a challenging task. Having this problem in conjunction with a dialog system
still being in its development phase, a satisfactory spoken user interaction is
not within short term reach. In order to still be able to gather dialog data for
research and evaluate our already created subsystem under real world conditions,
we decided to deploy a so called Wizard of Oz setup [11,9], in which a human
operator remotely controls the application. This creates the illusion of an already
completely operational system with spoken dialog interactions in a manner and
quality that we aim to achieve eventually with a completely autonomous system.

For this Wizard of Oz extension to our existing platform the following main
requirements were formulated:

Framework Integration The extension has to be implemented on top of an
already employed robotic framework without requiring extensive modifications
to the framework itself or existing subsystems. This enables the evaluation of
these subsystems, for example navigation and people tracking, in a real – possibly
crowded – environment.

Remote Operation A remote operator must be able to control certain high
level aspects of the interaction and the robot behavior, for example triggering
dialog reactions letting the robot navigate to waypoints. Therefore the operator
has to take a remote location, where video and audio data are streamed from
the robot’s sensors via wireless connection.

Multimodal Dialog Presentation We intend to present dialog contents mainly
by natural language outputs being generated by a text-to-speech system on the
robot, together with a touch screen and a digital video projector presenting im-
ages, videos and text contents. The touch-capability of the screen should be used
to allow browsing through a graphical user interface.

Content Creation In our scenario, the expert knowledge and media files about
museum exhibits are not directly available to the developers. Therefore, the wish
emerged to hand over certain aspects of the content authoring process to the do-
main experts of the exhibition. A template structure for all the content has to be
created, easy enough to be filled by the experts without requiring background in-
formation about the software framework. The development of additional content
authoring tools should be avoided for simplicity reasons.

57



Experiences with an Approach to Abstract Handling of Content for HMI 5

Beside letting domain experts author the content, real world deployment
sometimes requires the ability to adapt content without much effort, for example
to react to unforeseen changes in the environment.

Contextual Dialogs It should be possible to provide a dialog text statement
in different alternatives. This is necessary to adapt dialogs to the current oper-
ational context of the robot for an socially acceptable behavior. For example,
groups should be addressed differently than a single person and facts should be
explained more easily understandable for children.

Migration to Dialog System From the software developer point of view, the
extension to our framework has to work independently of whether the dialog
is directed by the remote operator or a dialog management system. A parallel
deployment of a human operator and a dialog management system needs to be
possible as well, which is desired for an iterative test-and-development cycle.
Then more and more tasks of the human operator can be gradually taken over
by an autonomous dialog management system.

Corpus Building A corpus of speech and interaction between robot and visi-
tors is needed as the foundation to develop and train a dialog system as noted
in [6]. The extension should aid in the process of building such a corpus.

3 Design and Implementation

We decided to base our dialog system on our General-Robot framework, whose
design is heavily influenced by the actor model [1] and thus allows the concurrent
processing of internal messages.

Depending on the design of the robot software framework in use, concurrent
processing might not be necessary or even desired at the message passing and
dispatching level. For an adaptation of our approach to different frameworks, a
simple observer pattern, whereby messages are passed to observers, should be
sufficient.

The General-Robot framework, maintains a set of states, state containers and
state processors. Data objects representing messages, for example sensor data,
are encapsulated into state objects. These encapsulated state objects are then
enqueued into state containers which retain a certain constant number of states
or alternatively all states within a certain time horizon. State processors can
observe these containers, in which case they are notified about new states. We
will discuss certain aspects of the design further in this section.

3.1 Dialog Acts

As mentioned in Sect. 1.1, our robot can present dialog content as uttered speech,
on a touchscreen and as projected images or videos, of which speech is the most
common and important mode. For natural language generation we use static
text blocks. In our speech module, we use a third party text-to-speech system

58



6 R. Schmidt, J. Fonfara, S. Hellbach and H.-J. Böhme

to transform text blocks on the robot directly into an audible signal. Whereas a
system with prepared audio files would also be possible, we use this approach as
it avoids the process of generating new audio files even after minor text changes.

Formally, a dialog is made up of a series of dialog acts. Every dialog act
consists of one or more atomic system commands and has a unique label that
also serves as a short description. When they are triggered by either the dialog
system or the remote operator, the dialog act dispatcher sends the associated
commands to the respective subsystems where they are processed accordingly
(see Fig. 3). In order to formalize dialogs, we use a clear text markup language
with a focus on human readability which is shown in Fig. 4. This allows to
externalize the creation of the dialog text as mentioned in Sect. 2 and also
circumvents the creation of additional tools for authoring.

The text blocks that the robot should utter are directly embedded into the
dialog acts file. Although a stricter separation between structure and content –
to which the text belongs – of a dialog act might appear desirable, we find that
the convenience of being able to editing both in one common place is worth the
structural breach and allows the required fast changes to text as mentioned in
Sect. 2.

As shown with dialog act OK in Fig. 4, it is possible to offer several alterna-
tive texts for one statement. The dialog act dispatcher chooses randomly from
the alternatives. This avoids a tedious listening experience to often repeated
dialog acts like YES and NO.

To allow different text alternatives for different dialog contexts as required
in Sect. 2, we added an extra layer of differentiation as shown on dialog act
WHERE_FROM which is available in the alternations named Text, TextGroup
and TextFormally. Text is the default and has to exist for all dialog acts where
text utterance is desired. Other alternatives can be created and named freely.
The dialog act dispatcher will choose the one preferred by the dialog management
system.

3.2 Command Dispatching

A command represents a single task to be executed by the robot. Every command
has a certain command type and may or may not carry arguments. There are
command types for every aspect of our existing robotic platform that need to be
controlled remotely in our museum scenario. An overview of the types is shown
in Tab. 1. Within the framework, commands and arguments get encapsulated
within a state.

Software components can instruct the dialog act dispatcher to trigger dialog
acts by their label. The dispatcher then looks up in its in-memory representation
of the dialog acts file and resolves the acts into commands. Submodules – which
are also state processors – can listen to the dispatcher’s commands state con-
tainer in order to receive notifications when new commands arrive (see Fig. 3).

59



Experiences with an Approach to Abstract Handling of Content for HMI 7

Remote
Operator

WiFi Link

Dialog Content

Dialog
Acts File Images

Pages

Videos

Network Socket
+

Deserialization

Dialog Model

C
o
m

m
a
n

d
 C

o
n
ta

in
e
r

Touchscreen Submodule

Projection Submodule

Speech Submodule

Drive Submodule

Map

DialogAct1

DialogAct2

CMD 1A
CMD 1B

CMD 2A
CMD 2B

Dialog Act Dispatcher

Generate Commands

Dialog Mgnt.
System

Trigger
Dlg. Act

Trigger Dlg. Act

Trigger
Dlg. Act

Load
File

Load
Content

Cmds.

Cmds.

Cmds.

Cmds.

Fig. 3: Schematic overview of the usage of dialog acts in our system.

3.3 Media Content

We use the touchscreen and the projector to present visual dialog content to
visitors. Similar to the speech submodule, the corresponding submodules are
controlled by commands from the dialog act dispatcher. But here, the commands
carry a file path to media files as argument. It is up to the submodules to render
the files on the output devices appropriately.

The projection submodule takes care of finding projection regions and per-
spective correction which is further described in [4]. For touchscreen content, we
decided to not only resort to plain images and videos, but also to use a HTML
renderer. This allows the creation of interactive pages, through which users can
browse by touch gestures. We extended the HTML render with the possibility

Table 1: Most commonly used commands for our robot applications.
Command Argument Submodule Description

SAY text Speech Let the robot speak the given text
PROJECT file path Projection Let projector display image/video

DISPLAY_PAGE file path Touchscreen Show HTML page on touchscreen
SET_WAYPOINT coordinates Drive Set target coords. in environment map
DRIVE_START none Drive Start/Continue drive to waypoint
DRIVE_STOP none Drive Stop drive to waypoint

60



8 R. Schmidt, J. Fonfara, S. Hellbach and H.-J. Böhme

- Label: WELCOME
Text:

- Hello!
Cmds:

- DISPLAY_PAGE Welcome/Welcome.html

- Label: OK
Text:

- OK!
- Great!
- Splendid!

- Label: WHERE_FROM
Text:

- Where do you come from?
TextGroup:

- Where are you from?
TextFormally:

- May I mask from where you are?

- Label: RUN_VIDEO_EXHIBIT
Text:

- Let me show you a video about this exhibit.
Cmds:

- PROJECT Exhibit/video.mpg

Fig. 4: Example listing of a dialog acts file consisting of four dialog acts.

to trigger dialog acts, which enables more complex reactions to touch gestures,
for example speech output.

It should be noted, that the capabilities of the projection and touchscreen
submodules are not limited to preexisting media files, as we can display every-
thing that could be rendered to a pixel buffer. Therefore, the modules allow the
presentation of runtime generated media content – for example interactive games
– which we plan to integrate in the future.

3.4 Client/Server Communication

We developed a remote control client that connects to a server component on
the robot over the network. The server itself is an extension to an existing robot
software stack, acquiring live camera images and audio from the sensors and
streaming them over the network to the client, which plays them back to the
remote operator.

On startup, the client loads and parses a dialog content file. The remote
operator can trigger each dialog act by clicking the corresponding button. A
screen shot can be seen in Fig. 5. Then the client forwards the triggered dialog
act over network to the dialog act dispatcher on the robot. There, the dialog
acts get resolved into commands which are sent to the listening subsystems. It
should be noted that is does not matter for the subsystems where the commands
come from, which allows a seamless migration between remote and autonomous
dialog operation as required in Sect. 2.

61



Experiences with an Approach to Abstract Handling of Content for HMI 9

Fig. 5: Screen shot of the remote operation software. On the upper side, the
camera image can bee seen. Below are the buttons to trigger dialog acts.

4 Discussion

In this section, we will discuss the usage of our dialog content extension in
real world applications, regarding the tour guide use case and the building of a
corpus for dialog management systems. Over time other use cases emerged, that
we wanted to realize with our existing robot hard- and software. Our extension
proved to be quite flexible and could also handle these new use cases with little
to no modification to the existing setup. We will also discuss two additional use
cases in the Sect. 4.3 and Sect. 4.4.

4.1 Tour Guide

We deploy our system in an exhibition of vintage computer hardware. As devel-
opers do not have access to all the resources and knowledge of the museum staff,
a major part of the content authoring for the tour guide was done by the staff.
To ease the process to them, we provided documentation and a template dialog
acts structure that could be used as a building block for different exhibits.

We used the remote operation capability to give personalized tours to sin-
gle visitors or smaller groups. In this setup, the remote workstation is located
hidden from the visitors and connected to the robot via Wireless LAN. Our ap-
proach proved very suited to provide entertaining tours to visitors and gather
real live data of dialog interactions. Also, we were able to evaluate already exist-
ing sub modules, like people tracking and path planning, in a candid real world
environment.

Remote operating the robot has shown to be a complex task, as the operator
has to choose an appropriate dialog option from a wide range of possibilities in
a short period of time [9].

62



10 R. Schmidt, J. Fonfara, S. Hellbach and H.-J. Böhme

4.2 Corpus Building

To build a corpus, we use the logging capabilities of the robotic framework to
record audio data and camera video streams. The dialog interactions triggered by
the remote operator get recorded by a simple extension to the framework’s log-
ging capabilities. Due to lacking reliability of current speech recognition systems
in our operational scenarios, it is unavoidable to resort to manual annotation of
the recorded sensor data to comprehensively record the dialog interaction from
the visitors towards the robot.

During several sessions we gathered a corpus of about six hours audio and
video material, showing genuine interactions between robot and visitors. The
corpus consists of 133 dialogs involving 378 test subjects. We annotated the cor-
pus distinguishing about 30 different dialog situations, in which we transcribed
all spoken utterances from the visitors. Additionally, major movement actions,
the location and attention of the user were labeled.

The corpus analysis was very helpful in many ways. Firstly, it gave us a
general feeling for the type of behavior to expect from visitors interacting with
our system. We were able to designate four main classes of interaction behavior:
interested, chatting, passively interested, and not interested. Surprisingly, most
people reveal a chatting behavior, which included a lot of small talk before the
interest shifts towards the museum exhibits.

Secondly, we computed various statistics of user behavior which were used
to train a user simulator. The simulator model used is described in [6]. Using
this simulator, we were able to reproduce versatile interactions of the tour guide
scenario and train a dialog management system.

Thirdly, having all the user utterances annotated, we tested several algo-
rithms for text classification. This allowed us to build a natural language pro-
cessing module that can make use of a large-vocabulary speech recognizer to
recognize broad range of speech inputs.

4.3 Info Terminal

We deployed a robot as an advanced info terminal at a variety of venues. There,
the robot ought to provide basic information, such as schedules and maps of the
location, to users using the touch screen. Remote dialog operation was not used.

This use case has been implemented without modifications to our software,
only by creating dialog content. We had to write a dialog acts file and appropriate
browsable pages for the touchscreen. The ability to trigger dialog acts from
page elements (see Sect. 3.3) like buttons, allowed not only to let users progress
between pages, but also to let the robot verbally utter descriptions of the pages.

We tested our info terminal application on various occasions and it behaved
as expected. But to further improve this use case, a simple dialog system could
be added, that employs data from our people tracker to allow the robot to react
to nearby persons and automatically advertise itself as a source of information.

63



Experiences with an Approach to Abstract Handling of Content for HMI 11

4.4 Poster Presenter

We also wanted to use our robot in an entertaining way as a presenter for posters
at exhibitions, workshops and conferences. To present a poster, the robot high-
lights a certain area on a poster pinned to a wall using its projector, while
uttering speech towards its audience. The touchscreen is used to show supple-
mentary information. After a poster area has been explained, the robot proceeds
to the next one.

For this setup, the projection submodule is used to simply project black
images containing white patches matching the areas of the poster. Every poster
section is represented by a dialog act. The dialog progress is controllable either
remotely by an remote operator or automatically. For the automatic progression,
we use JavaScript-Timers in the touchscreen HTML page to trigger the following
dialog act.

Both variations were tested successfully on various occasions. However, the
additional flexibility that currently only the operator can warrant, allows for
a sometimes desirable variation from an otherwise static flow of information
towards the user. Further information about the projection setup of this appli-
cation are presented in [4].

5 Conclusion

In this paper, we proposed a concept to deal with the problem of dialog con-
tent handling in robotic applications. The described software stack did not only
regard the organization of dialog content and its presentation, but also the au-
thoring phase. By involving domain experts with the required domain knowledge
in the authoring phase, the dialog content can become more useful and achieves a
higher quality. In the end, this will increase the usefulness of the resulting robotic
application to the user and might improve his impression of how interesting and
pleasant the interaction with the robot turns out to be.

The presented approach proved highly versatile and flexible, as it allowed
the realization of different applications by merely authoring additional content.
Uttered texts are the main focus, but also on-screen content, images, and videos
are considered.

By being able to remote control the dialog flow, the approach allows to build
a corpus of real world dialog data needed for the further improvement of dialog
systems. The migration to a completely autonomous dialog system can directly
be done utilizing the existing implementation.

Further Work The extension of the framework towards our application is fairly
complete. However, there is still room for improvement. As we are employing
predefined text blocks as the foundation for spoken utterances, an extension
towards less static representations of text might be desirable for further iterations
of our dialog system.

In regards to the requirements noted in Sect. 2, the content creation phase,
and especially the externalization aspect, could be optimized further. Even if we

64



12 R. Schmidt, J. Fonfara, S. Hellbach and H.-J. Böhme

employed a very simple markup language to hold dialog actions, a special written
editing software could still prove more user friendly. Such a software could easily
be integrated into the current workflow.

References

1. Agha, G.: ACTORS: A Model of Concurrent Computation in Distributed Systems.
MIT Press, Cambridge, MA, USA (1986)

2. Araki, M.: Proposal of a markup language for multimodal semantic interaction. In:
Proceedings of the 2007 Workshop on Multimodal Interfaces in Semantic Interac-
tion. pp. 58–62 (2007)

3. Araki, M., Tachibana, K.: Multimodal dialog description language for rapid sys-
tem development. In: Proceedings of the 7th SIGdial Workshop on Discourse and
Dialogue. pp. 109–116 (2006)

4. Donner, M., Himstedt, M., Hellbach, S., Böhme, H.J.: Awakening history: Prepar-
ing a museum tour guide robot for augmenting exhibits. In: Proceedings of the
European Conference on Mobile Robots (ECMR). pp. 337–342 (2013)

5. Einhorn, E., Langner, T., Stricker, R., Martin, C., Gross, H.M.: Mira - middleware
for robotic applications. In: Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems (IROS). pp. 2591–2598 (2012)

6. Fonfara, J., Hellbach, S., Böhme, H.J.: Learning Dialog Management for a Tour
Guide Robot using Museum Visitor Simulation. In: Proceedings of the Workshop
- New Challenges in Neural Computation 2012 (NC2). pp. 61–68 (2013)

7. Gerkey, B.P., Vaughan, R.T., Howard, A.: The player/stage project: Tools for
multi-robot and distributed sensor systems. In: Proceedings of the 11th Interna-
tional Conference on Advanced Robotics. pp. 317–323 (2003)

8. Giuliani, M., Kaßecker, M., Schwärzler, S., Bannat, E., Gast, J., Wallhoff, F.,
Mayer, C., Wimmer, M., Wendt, C., Schmidt, S.: Mudis - a multimodal dialogue
system for human-robot interaction. In: Proc. 1st Intern. Workshop on Cognition
for Technical Systems (2008)

9. Poschmann, P., Donner, M., Bahrmann, F., Rudolph, M., Fonfara, J., Hellbach,
S., Böhme, H.J.: Wizard of Oz revisited: Researching on a tour guide robot while
being faced with the public. In: 21th IEEE Int. Symposium on Robot and Human
Interactive Communication (RO-MAN). pp. 701–706 (2012)

10. Quigley, M., Conley, K., Gerkey, B.P., Faust, J., Foote, T., Leibs, J., Wheeler, R.,
Ng, A.Y.: Ros: an open-source robot operating system. In: ICRA Workshop on
Open Source Software (2009)

11. Shiomi, M., Kanda, T., Koizumi, S., Ishiguro, H., Hagita, N.: Group attention
control for communication robots with wizard of oz approach. In: Proceedings of
Conference on Human-Robot Interaction (HRI). pp. 121–128 (2007)

12. Shuyin, I.T., Toptsis, I., Li, S., Wrede, B., Fink, G.A.: A multi-modal dialog system
for a mobile robot. In: Proc. Int. Conf. on Spoken Language Processing. pp. 273–
276 (2004)

13. Wallace, R.S.: The anatomy of a.l.i.c.e. In: Epstein, R., Roberts, G., Beber, G.
(eds.) Parsing the Turing Test, pp. 181–210. Springer Netherlands (2009)

65



Code Generator Composition for Model-Driven
Engineering of Robotics Component &

Connector Systems

Jan Oliver Ringert1,2?, Alexander Roth1, Bernhard Rumpe1,
Andreas Wortmann1

1 Software Engineering
RWTH Aachen University

http://www.se-rwth.de/
2 School of Computer Science

Tel Aviv University
http://www.cs.tau.ac.il/

Abstract. Engineering software for robotics applications requires multi-
domain and application-specific solutions. Model-driven engineering and
modeling language integration provide means for developing specialized,
yet reusable models of robotics software architectures. Code generators
transform these platform independent models into executable code spe-
cific to robotic platforms. Generative software engineering for multi-
domain applications requires not only the integration of modeling lan-
guages but also the integration of validation mechanisms and code gen-
erators. In this paper we sketch a conceptual model for code generator
composition and show an instantiation of this model in the MontiArc-
Automaton framework. MontiArcAutomaton allows modeling software
architectures as component and connector models with different compo-
nent behavior modeling languages. Effective means for code generator
integration are a necessity for the post hoc integration of application-
specific languages in model-based robotics software engineering.

1 Introduction

Software engineering for robotic systems is inherently complex due to the het-
erogeneity of the systems and their challenges from various domains (e.g., nav-
igation, sensor fusion, manipulation). Thus, robotics software is usually devel-
oped by teams of domain experts with different views and understanding of
the systems functionality. This leads to hardly reusable software limited to spe-
cific platforms [8, 17]. To enable the reuse of functionality and subsystems, the
structuring and composition mechanisms of component-based software engineer-
ing have been applied to robotics software [4, 12]. These approaches are mainly
based on the exchange of source code components and thus tied to specific plat-
forms and general-purpose programming languages (GPL). The application of

? J. O. Ringert acknowledges support from a postdoctoral Minerva Fellowship, funded
by the German Federal Ministry for Education and Research.

66



2

GPLs often does not reflect the problems from heterogeneous domains faced in
the development of robotics systems.

Model-driven engineering (MDE) is an approach to reduce the conceptual
gap [5] between problem domains and software engineering. Models allow domain-
specific software descriptions reflecting the heterogeneity of the developed sys-
tem and its concerns. In combination with powerful code generators models may
serve as primary development artifacts which increases the software’s compre-
hensibility and reuse on different platforms.

We have combined MDE and software language engineering based approaches
with concepts from generative software development in a versatile framework for
robotics applications development. MontiArcAutomaton [14,15] is an extensible
framework that allows to model robotics applications as hierarchically compos-
able components with well-defined interfaces that embed problem specific model-
ing languages for component behavior. MontiArcAutomaton comprises powerful
code generation facilities for the transformation of models into executable code
for various robotics target platforms.

Language integration in MontiArcAutomaton is enabled by the MontiCore
domain-specific language workbench [10]. MontiCore provides comprehensive
language composition mechanisms supported by its symbol table and code gen-
eration frameworks [16,21]. We have presented the language composition mech-
anisms used by MontiArcAutomaton in [11].

The easy integration of modeling languages demands for integration mecha-
nisms of corresponding code generators. Challenges are the coordination of mul-
tiple code generators each responsible for specific models or parts of models. This
includes the selection of code generators supporting a common target platform,
to handle language restrictions a code generator might impose, and to propagate
necessary generation context information between generators. Integrating code
generators should require no modification of the participating generators.

In this paper we sketch a conceptual model for code generator composition
and show its instantiation in the MontiArcAutomaton framework. We introduce
MontiArcAutomaton in Sect. 2 and state and illustrate the problem of code
generator composition in Sect. 3. Section 4 describes our solution and Sect. 5
describes an implementation in MontiArcAutomaton. We discuss related work
in Sect. 6 and future work in Sect. 7. Section 8 concludes this contribution.

2 MontiArcAutomaton

MontiArcAutomaton [14,15] is an extensible modeling language and framework
for the generative model-driven engineering of robotics applications. The model-
ing language MontiArcAutomaton is a component and connector (C&C) archi-
tecture description language (ADL) [19] which extends the ADL MontiArc [7]
with component behavior modeling. The logical architecture of robotics applica-
tions is described as the hierarchical composition of components that encapsulate
the system’s functionality. Components are either atomic or composed: atomic
components define behavior via an embedded behavior modeling language or

67



3

a component implementation in a general-purpose programming language. The
behavior of composed components emerges from the subcomponents and their
interaction. Components interact by sending messages via directed connectors
that connect typed input and output ports of components. Types of ports are
either defined via class diagrams or Java classes. Communication in MontiArc-
Automaton is based on the Focus [3] framework for interactive distributed sys-
tems and supports different timing paradigms.

The concept of encapsulation from C&C ADLs allows not only a logically
distributed development and a physically distributed computation model but
also the composition of component behaviors independent of their behavior de-
scription. MontiArcAutomaton exploits the C&C encapsulation mechanism and
allows the embedding of arbitrary modeling languages into components for pro-
viding the most suitable behavior description language per component.

We have developed MontiArcAutomaton using the domain-specific language
workbench MontiCore [10] and its language integration mechanisms. The con-
crete and abstract syntax of a textual MontiCore modeling language is defined
in an extended context free grammar format. From these grammars, MontiCore
generates infrastructure to parse models of this language into their abstract syn-
tax trees (ASTs). Checks of the well-formedness of models of a language, called
context conditions, are implemented in Java [21]. MontiCore languages are tex-
tual modeling languages. An integration with the Eclipse Modeling Framework
allows also the development of graphical editors for editing MontiArcAutomaton
models.3

MontiCore supports language embedding, language extension, and language
aggregation [11,21] to compose new languages from existing ones. These modular
language composition mechanisms are supported by a sophisticated symbol table
framework that enables the definition and adaptation of language symbols for
integrating information and checking context conditions rules across embedded
and imported models. MontiCore allows the easy development of code generators
using the FreeMarker4 template engine to process abstract syntax trees and code
templates written in a target language [13,16].

In previous works we have developed the MontiArcAutomaton modeling lan-
guage with embedded I/Oω automata and I/O tables [15]. Various code gener-
ators allow the deployment of MontiArcAutomaton models to different robotics
platforms [14, 15]. With the integration of additional languages to model com-
ponent behavior the post hoc composition of code generators has become a
prevalent challenge.

3 Problem Statement and Example

MontiArcAutomaton allows to embed application-specific behavior modeling lan-
guages into components to facilitate the development of flexible, reusable, yet

3 Video of an editor for synchronous graphical and textual editing of MontiArc-
Automaton models: http://www.monticore.de/robotics/

4 Website of the FreeMarker Java template engine: http://freemarker.org/

68



4

specific robotics applications. While the ability to use specific behavior modeling
languages allows to develop specific applications, the encapsulation of models in
components with well-defined and stable interfaces allows to modify component
internals easily, e.g., to replace the specific behavior modeling language, while
retaining a stable architecture.

Engineering C&C applications with the flexibility of arbitrary embedded be-
havior modeling languages demands for approaches to generate code from het-
erogeneous models. As languages and code generators can be integrated into
MontiArcAutomaton post hoc, code generators have to be composable to allow
black-box integration. Each composable code generator produces only parts of
the overall generated software system. A framework to support code generator
composition has to provide a mechanism to configure C&C applications with dif-
ferent code generators. Realizing composition of code generators requires support
for code generator reuse, the ability to handle code generators that are agnostic
of any component structure specifics (e.g., how port or connectors work), and
dependency management between different code generators.

3.1 Example

A software engineer is responsible for the development of a controller for a robotic
arm. The robot assists a physically disabled person in a kitchen environment to
operate a toaster. The robot is supposed to place bread in a toaster, operate the
toaster, and deliver the toast to a nearby plate. The software engineer models
the architecture and controller behavior platform independently using Monti-
ArcAutomaton with embedded I/Oω automata and RobotArm (RA) programs.
The latter describe motion of the arm in terms of defined locations and gripper
commands.5 The engineer embeds the existing language RA into the MontiArc-
Automaton framework using the language integration mechanisms of MontiCore.
The software architecture of the robot is depicted in Fig. 1. The component
Controller receives distances and toast color from attached sensors. The I/Oω

automaton modeling the behavior of Controller translates these inputs into
commands for the ToasterController, which starts and stops the actual
toaster, and the component ArmController, which actuates the robotic arm
to pick up and deliver toast. The behavior of component ArmController is
modeled as a set of RA programs.

To generate executable code from the architecture, the software engineer has
to provide a code generator for the embedded RA language which translates
RA commands into code for the target platform. This code generator can be
selected from a library of existing code generators or newly developed. Finally,
the generator has to be integrated into the framework, such that it is executed
whenever a component with RA programs is processed.

5 A video of the robotic arm: http://www.monticore.de/robotics

69



5

UltraSonic

Sensor

Color

Sensor

Controller
color

Arm

program

ToastServiceRobot

ack

Toaster

Controller

event command

define home      0deg down;

define toaster 120deg 20cm;

program PickupFromToaster {

move up;

open;

move toaster;

close;

move up;

}

...

MAA

distance

Fig. 1: Architecture of the ToastServiceRobot with embedded RobotArm programs.

4 Code Generator Composition

In this section we propose an approach to code generator composition on a con-
ceptual level. First, we describe code generator interfaces that support generator
composition as motivated in Sect. 3. Second, we sketch the process of code gen-
erator composition and execution of the composed generators using information
from code generator interfaces.

To achieve generator composition, each code generator explicates all informa-
tion necessary within an interface. This interface is used during code generator
orchestration to configure and execute the code generator. Definition 1 lists the
elements of a code generator interface.

Definition 1 (Code Generator Interface). A code generator interface con-
tains the following elements:

1. Input language: The language or language fragments the generator processes.
2. Input language constraints: A generator may restrict the processable models

via generator-specific context conditions.
3. Output representation: The output representation states the language and

format of the output.
4. Execution information: Defines how a generator is executed.
5. Artifact dependencies: A generator may produce code that depends on ex-

ternal libraries, runtimes, or code produced by another code generator. Such
artifact dependencies have to be explicitly stated in order to satisfy depen-
dencies of generated artifacts.

6. Generation context information: Additional information provided or required
at generation time.

Multiple generators are composed to generate code for models of the soft-
ware of a robotic system. The composition of code generators is described in an
application configuration model which contains a selection of all code generators
involved. It may also contain a configuration of generation context information

70



6

Application 

Configuration

Model

configures calls

Generated

Output
Artifacts

Code Generator

requires

*
Generator Orchestrator

*

requires

*

Generator Interface
uses

produces

Fig. 2: Overview of code generator composition with generator interfaces.

for code generators. Composing generators according to a configuration model
requires the orchestration of all selected code generators. Such an orchestration
requires (a) to check that all required information is provided and (b) to compute
an execution order of the code generators.

If for each code generator all required generation context information is pro-
vided by the selected code generators and an execution order can be computed,
then the code generator composition can be performed. However, the execution
order of the code generators is influenced by the dependencies described by the
generation context information. There are two types of dependencies. First, a
code generator may require generation context information from another code
generator. Second, a code generator may use the output of another code genera-
tor. Both types of dependencies imply that the code generator providing required
information or output is executed first. However, in some cases it is possible that
an execution order cannot be computed. In this case the code generators cannot
be composed.

Our concept of code generator composition is presented in Fig. 2. An ap-
plication model configures a generator orchestrator. The generator orchestrator
uses the generator interface of each code generator to check for dependencies
and computes an execution order. Finally, the generator orchestrator calls each
code generator according to the computed execution order.

5 Realization in MontiArcAutomaton

The MontiArcAutomaton implementation of the conceptual model presented
above comprises an implementation of generator interfaces, which is facilitated
by a configuration language that generates interface implementations, an appli-
cation configuration to declare compositions of code generators, and an orches-
trator performing the composition.

5.1 Generator Interfaces in MontiArcAutomaton

Based on the concrete requirements for code generators in MontiArcAutomaton
we refine the code generator interfaces defined in Def. 1. The C&C nature of
MontiArcAutomaton, suggests separate interfaces for component generators and
component behavior generators. As MontiArcAutomaton relies on factories for

71



7

«interface»

IBehaviorGenerator

String getRuntime()

Class getResponsibleAST ()

void configure(List<IBehaviorGenerator> b,

IFactoryGenerator f)

String getMainTemplate()

Set<ContextCondition> getContextConditions()

void setAST(ASTNode ast)

«interface»

IFactoryGenerator

«interface»

IGenerator

void configure(String package, 

String filename, 

String product, 

String realProduct,

Set<String> generics

Set<String> imports);

String getRuntime()

Class getResponsibleAST ()

void configure(String packageName, 

String filename, 

IFactoryGenerator f,

Set<String> imports);

CD

* 1

«interface»

IComponentGenerator

Fig. 3: Generator interface hierarchy of MontiArcAutomaton.

component and component behavior instantiation, factory generators are mod-
eled as well. Component generators process the MontiArcAutomaton language
and behavior generators process the respective embedded behavior modeling
language (Def. 1, Item 1) possibly restricted by additional context conditions
(Def. 1, Item 2). The classification in three generator kinds determines the out-
put format of the generators (Def. 1, Item 3).

Generator execution information is provided by the generators in terms of
the main template which the MontiCore code generation framework processes
(Def. 1, Item 4). This template may call other templates and call Java code for
complex calculations. All generators generate code conforming to a runtime envi-
ronment they depend on (Def. 1, Item 5). The runtime environment determines,
e.g., the scheduling of components. Generators in MontiArcAutomaton do not
explicate further artifact dependencies as MontiArcAutomaton utilizes the del-
egator pattern [6] to integrate accordingly generated behavior implementations.
Generation context information (Def. 1, Item 6) is provided to the generators at
runtime and contains e.g., the AST of the processed model.

An overview of the concrete generator interfaces implemented for Monti-
ArcAutomaton is displayed in Fig. 3. Every generator usable with MontiArc-
Automaton implements an interface extending IGenerator. Thus, each gen-
erator can be parametrized with an AST node and provides at least its main
template and its context conditions to the infrastructure. Generators for compo-
nents and component behavior implement the interfaces IComponentGenera-
tor and IBehaviorGenerator respectively. These interfaces explicate which
AST types they can process.

Additionally, all generator interfaces define a method to configure() which
is interface specific and defines the generation context information required. Gen-
erators for component behavior, e.g., expect to receive the package name of the
containing component, the name of the artifact to be created, a factory gener-
ator, and the imported compilation units. The latter is required as embedding
behavior into components produces integrated artifacts without distinction be-
tween the imports of the component and the imports of the behavior.

72



8

GeneratorConfiguration

1 generator RobotArmPython {
2 interface generators.IBehaviorGenerator;
3 template robotarm.Main;
4 ast robotarm.ASTRobotArmProgram;
5 runtime runtimes.pythontimesync;
6 }

Listing 1: The generator configuration for the RobotArm generator describes
that it implements the interface IBehaviorGenerator and provides static
information.

5.2 Modeling Generator Interfaces

To facilitate the creation of code generator interfaces we have developed a mod-
eling language for generator interfaces. Each code generator used with Monti-
ArcAutomaton models how it is executed, which AST it processes, and which
interface it implements in a single generator configuration model per generator.
Listing 1 shows the model of the RA generator from the example in Sect. 3.1.
This model describes that the generator implements the interface IBehavior-
Generator and provides information accessable via this interface. The Monti-
ArcAutomaton toolchain transforms these models into actual implementations
implementing the interfaces.

The concrete implementation of the interface IBehaviorGenerator for
the RobotArm generator from the example given in Lst. 1 provides implementa-
tions for all methods of IGenerator and IBehaviorGenerator and returns
the static generator information from the model where applicable (e.g., getRe-
sponsibleAST() returns an instance of the type specified behind ast in l. 4
of Lst. 1). The MontiArcAutomaton orchestrator can refer to these implemen-
tations via the implemented interfaces and compose generators as necessary.

5.3 Application Configuration and Generator Execution

Given a set of generators for component structure, behavior, and factories, an
application has to specify which of these are to be used. This is modeled as the
application configuration model. Listing 2 shows the application configuration for
the toaster robot application. The model references a single component generator
(l. 2), a single factory generator (l. 3), and two behavior generators - one for
RA programs and one for I/Oω automata (l. 4). An application configuration
references at least a component structure generator and may reference additional
behavior and factory generators.

Code generation in MontiArcAutomaton starts with the orchestrator process-
ing the application configuration and loading the configuration of the referenced
generators. As the order of generator execution is implicitly given by the C&C
nature of MontiArcAutomaton, first the referenced behavior generators and the

73



9

ApplicationConfiguration

1 application ToasterRobotApplication {
2 componentgenerator ComponentsPython;
3 factorygenerator FactoryPython;
4 behaviorgenerators RobotArmPython, IOAutomatonPython;
5 }

Listing 2: Application configuration model for the toaster robot application
using the RA generator for component behavior.

IBehaviorGenerator

comply

Generator

Templates

Application MontiArcAutomaton

IComponentGenerator

IFactoryGenerator

Generator Configuration 

Language

Generator 

Configuration

Model

call

create

Application Configuration

Model

use

call

read

Orchestrator

Software Architecture

*

Generator Configuration

Generator

ToastServiceRobot

UltraSonic

Sensor

Color

Sensor

Controller

ArmToaster

Controller
define home      0deg down;

define toaster 120deg 20cm;

program PickupFromToaster {

move up;

open;

move toaster;

close;

move up;

}

...

GeneratorConfiguration

Fig. 4: Relations between applications using generators, the interfaces provided by
MontiArcAutomaton, and the orchestrator performing the generator composition.

referenced factory generator are instantiated. Parametrized with these, the ref-
erenced component generator is instantiated. Afterwards, the orchestrator calls
the main template of the component generator. The component generator tra-
verses the AST of the architecture and thus also visits component behavior AST
nodes. For each behavior AST node the responsible generator is configured with
current AST generation context information and its main template is called with
the AST node of the embedded behavior language.

Figure 4 shows the resulting relations: Applications consist of a software ar-
chitecture, and an application configuration model. The application configura-
tion model references the component, behavior, and factory generators required
to build the software architecture of the project. To be processable by the orches-
trator, referenced generators implement the appropriate generator interfaces.

6 Related Work

The presented approach for code generator composition is based on explicit gen-
erator interfaces, code generator orchestration, and application configuration.
This approach is a first step towards a comprehensive approach for code gener-
ator composition and is closely related to modular code generator design.

74



10

The GenVoca model is an approach to build software systems generators
based on composing object-oriented layers [1,2]. Different layers can use control
blocks to exchange information. In contrast to this approach, we do not focus
on a layered architecture of a code generator but an infrastructure for code
generators composition.

The application building center is a multi-purpose modular framework for
modeling software systems [18]. Genesys is an extension that allows to develop
service-oriented code generators [9]. Each code generator represents a service
that can be composed with other services. Information exchange is managed by
using shared memory communication. Our presented approach is similar if we
consider code generators to be services with interfaces. However, our approach
introduces a broader generator interface to regard input language, output repre-
sentation, input language constraints, execution information, artifact dependen-
cies, and generation context information. This information is used to manage
the execution and composition of the code generators.

Code generator composition using aspect-orientation at the artifact level has
been described in [22]. The authors assume that a code generator produces oper-
ationally complete code fragments that are merged by a code fragment weaver.
Additionally, in feature-oriented model-driven development (FO-MDD), multiple
code generators are used to produce a software product line [20]. Composition of
code is achieved after code generation by manually writing glue code. In contrast,
we do not consider manual artifact composition but focus on an infrastructure
to compose code generators. We nevertheless consider composing generated ar-
tifacts relevant for reusing code generators and will address this topic in future
work.

7 Discussion and Future Work

We have presented a conceptual approach for composition of code generators
based on the notion of generator interfaces. The ideas are implemented within
the MontiArcAutomaton toolchain to enable post hoc embedding and use of
new component behavior modeling languages. To broaden its applicability this
approach requires future work on syntax, methods, and technical solutions.

Composition of arbitrary code generators without assumptions on their ac-
tual integration is harder to realize than for C&C ADLs. In general, generator
composition demands a more expressive composition configuration than the ap-
plication configuration presented above. For instance, the orchestration of the
code generation process may require a code generator to be executed multiple
times for every input model or to fill extension points provided by another gener-
ator under certain conditions. Moreover, execution of a code generator may not
be triggered by a model type but by selecting a code generator for a particular
set of input models. A generic model to configure an application has to express
such process information and constraints. Thus, future research will look into
modeling these aspects.

75



11

The generator composition illustrated above assumes that the orchestration
of generators reflects the language embedding for component behavior. Other
language integration mechanisms, such as language aggregation or language in-
heritance [11] will require a more complex orchestration. The generator for an
inheriting language might, for example, require the generator for the inherited
language to be executed first, such that the latter only generates additional arti-
facts for the model elements introduced by the inheriting language. Future work
will therefore examine the notion of generator extension points as well.

Finally, modeling language composition mechanisms have lead to language
reuse and language libraries. We hope to gain similar libraries and advantages
from facilitating code generator composition.

8 Conclusion

We have motivated the need for generator composition in robotics and sketched
a concept for code generator composition. This concept is based on explicit
code generator interfaces and configuration models. The interfaces enable code
generators to define information required for composition. A code generator or-
chestrator composes and executes the code generators. We have illustrated our
implementation for the C&C modeling language family MontiArcAutomaton.
Although the implementation relies on various assumptions implied by the lan-
guage workbench MontiCore and the C&C nature of MontiArcAutomaton, we
belief that these translate well into other contexts. There are however open issues
in arbitrary generator composition and we have identified possible extensions of
generator interfaces and generator orchestrators to be applied in more complex
scenarios.

References

1. Batory, D., O’Malley, S.: The design and implementation of hierarchical software
systems with reusable components. ACM Trans. Softw. Eng. Methodol. 1(4), 355–
398 (Oct 1992)

2. Batory, D., Singhal, V., Thomas, J., Dasari, S., Geraci, B., Sirkin, M.: The genvoca
model of software-system generators. IEEE Softw. 11(5), 89–94 (Sep 1994)

3. Broy, M., Stølen, K.: Specification and Development of Interactive Systems. Focus
on Streams, Interfaces and Refinement. Springer Verlag Heidelberg (2001)

4. Brugali, D., Brooks, A., Cowley, A., Côté, C., Domı́nguez-Brito, A., Létourneau,
D., Michaud, F., Schlegel, C.: Trends in Component-Based Robotics. In: Brugali,
D. (ed.) Software Engineering for Experimental Robotics, Springer Tracts in Ad-
vanced Robotics, vol. 30, chap. 8, pp. 135–142. Springer Berlin Heidelberg, Berlin,
Heidelberg (2007)

5. France, R., Rumpe, B.: Model-driven Development of Complex Software: A Re-
search Roadmap. Future of Software Engineering (FOSE ’07) (2), 37–54 (May
2007)

6. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design patterns: elements of
reusable object-oriented software. Addison-Wesley Professional (1995)

76



12

7. Haber, A., Ringert, J.O., Rumpe, B.: MontiArc - Architectural Modeling of Inter-
active Distributed and Cyber-Physical Systems. Tech. Rep. AIB-2012-03, RWTH
Aachen (february 2012)

8. Hägele, M., Blümlein, N., Kleine, O.: Wirtschaftlichkeitsanalysen neuartiger
Servicerobotik- Anwendungen und ihre Bedeutung für die Robotik-Entwicklung.
Tech. rep., BMBF (2011), http://www.ipa.fraunhofer.de/

9. Jörges, S.: Construction and Evolution of Code Generators: A Model-Driven and
Service-Oriented Approach. LNCS sublibrary: Programming and software engi-
neering, Springer Berlin Heidelberg (2013)

10. Krahn, H., Rumpe, B., Völkel, S.: MontiCore: a framework for compositional de-
velopment of domain specific languages. STTT 12(5), 353–372 (2010)

11. Look, M., Perez, A.N., Ringert, J.O., Rumpe, B., Wortmann, A.: Black-box In-
tegration of Heterogeneous Modeling Languages for Cyber-Physical Systems. In:
Proceedings of the 1st Workshop on the Globalization of Modeling Languages
(GEMOC). Miami, Florida, USA (2013)

12. Niemueller, T., Ferrein, A., Beck, D., Lakemeyer, G.: Design Principles of the
Component-Based Robot Software Framework Fawkes, Lecture Notes in Computer
Science, vol. 6472, chap. NFB+10, pp. 300–311. Springer, Darmstadt, Germany
(2010)

13. Ringert, J.O., Rumpe, B., Wortmann, A.: A Case Study on Model-Based Devel-
opment of Robotic Systems using MontiArc with Embedded Automata. In: Giese,
H., Huhn, M., Philipps, J., Schätz, B. (eds.) Dagstuhl-Workshop MBEES: Modell-
basierte Entwicklung eingebetteter Systeme. pp. 30–43 (2013)

14. Ringert, J.O., Rumpe, B., Wortmann, A.: From Software Architecture Structure
and Behavior Modeling to Implementations of Cyber-Physical Systems. In: Soft-
ware Engineering 2013 Workshop Proceedings. p. to appear (2013)

15. Ringert, J.O., Rumpe, B., Wortmann, A.: MontiArcAutomaton : Modeling Archi-
tecture and Behavior of Robotic Systems. In: Workshops and Tutorials Proceedings
of the International Conference on Robotics and Automation (ICRA). Karlsruhe,
Germany (2013)

16. Schindler, M.: Eine Werkzeuginfrastruktur zur agilen Entwicklung mit der UM-
L/P. Aachener Informatik-Berichte, Software Engineering, Band 11, Shaker Verlag
(2012)

17. Schlegel, C., Steck, A., Lotz, A.: Model-Driven Software Development in Robotics
: Communication Patterns as Key for a Robotics Component Model. In: Chugo,
D., Yokota, S. (eds.) Introduction to Modern Robotics. iConcept Press (2011)

18. Steffen, B., Margaria, T., Nagel, R., Jörges, S., Kubczak, C.: Model-driven devel-
opment with the jabc. In: Bin, E., Ziv, A., Ur, S. (eds.) Hardware and Software,
Verification and Testing, Lecture Notes in Computer Science, vol. 4383, pp. 92–108.
Springer Berlin Heidelberg (2007)

19. Taylor, R.N., Medvidovic, N., Dashofy, E.M.: Software Architecture: Foundations,
Theory, and Practice. Wiley, 1st edn. (2009)

20. Trujillo, S., Batory, D., Diaz, O.: Feature oriented model driven development: A
case study for portlets. In: Proceedings of the 29th International Conference on
Software Engineering. pp. 44–53. ICSE ’07, IEEE Computer Society, Washington,
DC, USA (2007)

21. Völkel, S.: Kompositionale Entwicklung domänenspezifischer Sprachen. Aachener
Informatik-Berichte, Software Engineering Band 9. 2011, Shaker Verlag (2011)

22. Zschaler, S., Rashid, A.: Towards modular code generators using symmetric
language-aware aspects. In: Proceedings of the 1st International Workshop on Free
Composition. pp. 6:1–6:5. FREECO ’11, ACM, New York, NY, USA (2011)

77



Empirical Study of Planning and Execution for
Large Teams of Robots

Daniel Saur, Tareq Razaul Haque, and Kurt Geihs

Distributed Systems Group, University of Kassel 34121, Germany
{saur,haque,geihs}@vs.uni-kassel.de

Abstract. Large teams of robots can substantially increase the effec-
tiveness of planning by acting as coordinated team. Our focus is on the
planning of activities of a team of autonomous, mobile robots by dis-
tributed planning coordinated by one robot. With arising number of
agents the communication increases rapidly. Our goal is to minimize
communication much as possible. Modeling needs to be combined with
planning to describe complex activities in intuitive way. The main con-
tribution of the paper is the optimization of the planning process while
using every agent as a planning resource and aiming at low communica-
tion needs. We evaluated our distributed planning for teams of up to 75
agents in the transport domain of the International Planning Competi-
tion1 (IPC). We optimized the planning process compared to state-of-
the-art approaches (last winners of IPC in the transportation domain)
by up to 23%.

Keywords: Autonomous robots, Mobile robots, Distributed planning

1 Introduction

Recent advances in autonomous robot technology have opened up great oppor-
tunities in an exciting new application potential. Autonomous mobile robots can
act individually while using an intuitive goal description for the team. This cre-
ates an enormous potential for innovative applications that intelligently support
environmental monitoring, disaster management, logistics operations, and many
other practices.

However, several challenging research questions have to be solved before we
can harvest the benefits of such kinds of multi-agent systems. Increasing the num-
ber of agents also enourmously increases the overhead for maintenance, modeling,
and testing. In our work we concentrate on planning for large teams with a high
number of agents. The planning process calculates a plan, which describes the
activities of all agents from a global perspective. This plan is divided into tasks,
which denote the activity of a specific agent within the plan. The plan format is
defined with ALICA (A language for interactive cooperative Agents)[15], which
offers support for task allocation and coordination. Finally, we use every agent

1 http://ipc.icaps-conference.org/

78



as a planning resource. The goal is to optimize the search time in distributing
different seeds for the search tree, where we expect an acceleration of the search.
We report on the results of an ongoing research project where we are developing
a framework which supports distributed planning for a team of robots. We accel-
erated the search time by as much as 23% for autonomous mobile robot teams,
consisting of as many as 75 agents, using a linearly scalable communication of
agents.

The reminder of this paper is organized as follows. In the next section we
outline the requirements of multi-agent planning for teams of up to 75 agents.
In section 3, we start to discuss related works. In section 4, we introduce the
basics of ALICA, which is used to describe team activities/plans. Furthermore,
we sketch the basics of the planning framework pRoPhEt MAS [13]. Finally, in
section 5 we evaluate the planning framework on relevant scenarios from the
International Planning Competition.

2 Requirements

The requirements for multi-agent teams with a high number of agents in a team
are:

– Modeling the global and local activities
– Automatic plan creation
– Low communication overhead

The description of team activities for autonomous mobile robots requires a
suitable and intuitive description, instead of providing only single agent programs
[15]. Furthermore, we would like to support task allocation and coordination
instead of using predefined task-specific mapping to certain robots. With an
increasing number of agents, manual modeling and task mapping takes a lot of
time, and is hard to maintain. Hence, multi-agent systems require an intuitive
method to control robot activities, and one that offers easy integration.

The communication bandwidth is limited. Hence, the planning process must
also aim at keeping the number and size of messages low, particularly for large
agent teams.

Finally, describing activities of autonomous mobile robot teams with an in-
creasing number of agents requires a combination of modeling and planning.

3 Related Work

Heuristic search has become the predominant feature of problem solving for
several years. The Fast Downward Planner [7] is a classical planning system based
on heuristic search. Fast Downward is a best-first search planner that utilizes the
information from domain transition graph as the heuristic to guide the search.
Thus, it can deal with general deterministic planning problems encoded in the
propositional fragment of PDDL2.2. The basic idea for the development of PDDL

79



[6] was to define a common interface to describe this problem class. PDDL defines
a language to describe the existing world, actions to execute by agents and the
goal state. The International Planning Competition (IPC) takes place every year,
where newly developed planners evaluate difficult planning problems.

Helmert et al. [8] have proposed a concrete strategy for abstraction to derive
better heuristics, and have empirically demonstrated the power of the merge-
and-shrink abstraction heuristics. In particular, the empirical evaluation of the
merge-and-shrink abstractions by Helmert et al. [8] suggests that, for many tasks,
using a set of abstractions improves the overall heuristic guidance.

Brenner and Ivana [3] presented a new algorithmic framework in which sit-
uated dialogue is modeled as Continual Collaborative Planning (CCP). They
showed how mixed-initiative dialogue that interleaves physical actions, sensing,
and communication between agents occurs naturally during CCP. Thus, they
introduced the language MAPL [4]. Their article describes a continual planning
algorithm realized with MAPL. For the proof-of-concept, Brenner and Nebel
evaluated MAPL in the grid world domain, where a team of four robots must
find their position in the grid.

HPLAN-P [1] performs forward search using heuristics designed for proposi-
tional preferences. These are based on the relaxed planning graph (RPG) struc-
ture and use techniques such as summing the layers in which goals/preference
facts appear (rather than relaxed plans) to estimate goal distance and preference
satisfaction potential.

LAMA [11] is a classical planning system based on heuristic forward search.
The system uses two heuristic functions in a multi-heuristic state-space search:
a cost-sensitive version of the FF heuristic, and a landmark heuristic guiding the
search towards states where many subgoals have already been achieved. Action
costs are employed by the heuristic functions to guide the search to cheap goals
rather than close goals, and iterative search improves solution quality while there
is time remaining.

Burns et al. [5] developed parallel versions of best-first search to harness
modern multicore machines. They showed that a set of previously proposed
algorithms for parallel best-first search can be much slower than running A* se-
quentially. They presented a hashing function for parallel retractin A* (PRA*)
that takes advantage of the locality of a search space and gives superior perfor-
mance. They also presented another algorithm, PBNF, which approximates a
best-first search ordering while trying to keep all threads busy.

Nissim et al. [9] developed a distributed planning system which uses a heuris-
tic forward search. This system is evaluated for different IPC problems. The main
disadvantage to this system is that communication effort increases rapidly as the
number of agents increases.

The main contribution of most of state-of-the-art planning systems is to op-
timize the search heuristic. However, the quality of the search heuristic depends
on the test domain. Our focus is to optimize planning independent of the search
heuristic. Distributed planning often relies on high communication as in [9]. In

80



real world applications like RoboCup2 low communication approaches are re-
quired [14].

4 Planning Framework

In this section, we briefly introduce the planning framework. We will first intro-
duce the basics of ALICA [15], and then we will sketch the basics of pRoPhEt
MAS [13].

4.1 ALICA

ALICA is a language for describing team activities of interactive mobile agents
from a global perspective. Originally, it was developed for the RoboCup Middle
Size League. However, it has also been shown to be a viable and effective solution
for other application domains, such as exploration robots [12] and autonomous
vehicles in traffic [10].

The core elements of the language [14] are shown in Table 1.

(A,L) the domain signature The domain signature consists of the set of possi-
bly interacting agents and the logic with which the
world is represented.

R a set of roles This set contains all availables roles any agent can
be assigned to.

B a set of behaviours Behaviours are atomic action programs that form
the means to interact with the environment.

P a set of plans Each plan describes a specific cooperative activity.
P∨ a set of plantypes A plantype is a set of alternative plans.
O a set of planning problems Defines a goal condition and a set of P, to achieve

the goal condition.
T a set of tasks Each task intuitively describes a function or duty

within plans, meant to be fulfilled by one or more
agents.

Z a set of states A state occurs within a plan as a step during an
activity. It can contain plantypes and behaviours.

W a set of transitions Each transition (z1, z2, φ) relates a predecessor
state z1 with a successor state z2 and a condition
φ ∈ L(Pred, Func).

Table 1. Elements of a ALICA Program

The individual logic elements L defined by L(Pred, Func) are structured
using the functions listed in Table 2.

2 http://www.robocup.org

81



States : P 7→ 2Z States maps plans to the set of contained states.

Tasks : P 7→ 2T Tasks maps plans to the set of related tasks.

ξ : P × T 7→ N0 × (N0 ∪ {∞}) ξ defines the upper and lower bound of agents
assignable to a task τ in plan p.

Pre : P ∪ B 7→ LS Pre(p) denotes the precondition of plan or behaviour p.

Run: P ∪ B 7→ LS Run(p) denotes the runtime condition of plan or be-
haviour p.

PlanTypes : Z 7→ 2P∨ PlanTypes(z) denotes the set of plantypes to be exe-
cuted in state z.

Behaviours : Z 7→ 2B Behaviours(z) denotes the set of behaviours to be exe-
cuted in state z.

Post : Z 7→ LS Post(z) is a partial function, that maps terminal states
of a plan to postconditions.

U : P 7→ 2LS 7→ R U(p) is the utility function of p, evaluating p with re-
spect to a set of formula.

Table 2. Structure Definitions of a ALICA Program

DeliverPackages

z1 z2 z3 z4
at(city-7) in(t-x,p-3) at(city-9)

Drive(city-7) Pickup(p-3) Drive(city-9) Drop(p-3)

Task1

1..1

z5

Pickup(p-1)

z6

Drive(city-11)

z7

Drive(city-17)

z8

Drop(p-1)

in(t-x,p-1) at(city-11) at(city-17)

Task2

1..1

z9

Pickup(p-2)

z10

Drive(city-2)

z11

Drop(p-2)

in(t-x,p-2) at(city-2)

Task3

1..1

Fig. 1. Example ALICA plan for delivering packages by multiple agents

82



Figure 1 shows an example ALICA plan using the core elements of the lan-
guage. This figure shows an example from the transport domain3. We defined
roles R that are suitable for the task T dependent on the robot capabilities. Ev-
ery agent in the team can assign to one of the tasks with respect to the minimum
and maximum cardinalities (ξ) 1..1. The “DeliverPackages” plan P contains a
state machine for every agent in team with several states Z. Every state ma-
chine contains a plan, which in turn contains a state machine of basic behaviours
B. These plans represent the basic skills from the transportation domain. The
basic skills of the agents are “Pickup”, “Putdown” and “Drive”. The agents can
switch states with conditional transitions. The plan realizes the delivery of three
packages.

In order to model plans ALICA offers a “PlanDesigner” which is a graphical
tool based on the Eclipse Development Platform [2]. It supports modelling of all
parts of an ALICA program, i.e., roles, tasks, plans, plantypes, utility functions,
and conditions, as well as generating code from the models in a model-driven
development fashion. The Ecore model is shown in figure 2. Modelled plans are
stored in the XMI format and loaded afterwards by the runtime engine. However,
for efficiency reasons, the tool provides mechanisms for generating platform-
specific code for the evaluation of conditions and utilities. Since these evalua-
tions happen very frequently during runtime, the generation of platform-specific
code, which can be executed directly, results in enormous efficiency benefits. In
order to facilitate an intuitive understanding, language elements are represented
graphically.

4.2 pRoPhEt MAS

The planning framework pRoPhEt MAS (Reactive Planning Engine for Multi
Agent Systems) is divided into two major parts (see Figure 3). The first part
consists of “World” and “ALICA-Engine” and represents the basic ALICA com-
ponents. The “ALICA-Engine” is the implementation of the language elements
for section 4.1. In addition ALICA offers further algorithms for task alloca-
tion, role-task-mapping, supports coordinated execution in dynamic environ-
ments [14]. The “PlanBase” contains all modeled ALICA-plans that the team
can access. Dependent on the actual world situation, ALICA will then select a
suitable plan while reacting quickly to world changes. The second part consists
of “ISharing” and “IPlanner”. These components are used to expand the basics
ALICA by a planning engine. “ISharing” is used to communicate plans after
creation, and electing a leader, which starts the planning process. The election
criteria can be defined by implementing the ISharing interface. At this time the
robot with lowest id will be leader.

If the “PlanSelector” selects a plan containing a planning problem O (see
language elements of section 4.1), which is briefly defined by basic actions and a
goal description, the leader will start the planning process by the “PlannerBase”.
The resulting plan from the “PlannerRealization” will be communicated to all

3 http://ipc.icaps-conference.org (IPC 2011)

83



F
ig
.
2
.

E
co

re
m

o
d

el
o
f

A
L

IC
A

’s
b

a
si

c
el

em
en

ts

84



World

ALICA-Engine

ISharing

IPlanner

WorldModel
Contains sensor

data of team

PlanBase
Contains all defined

plan elements

PlanSelector
Select plan node

from master plan

Share
Distribute

plans/seeds to

team members

CheckLeader
Check/Elect leader

PlannerBase
Contains all

solved problems

PlannerRealization
Find solution for

problem in timeval

Validation
Check if plan

is executable

update

acting

uses

select

plan request

is planning problem

is leader

validate plan

replan

created
plan

share seeds

result

update
plan request

plan

Fig. 3. Planning framework consisting of ALICA for describing team activities ex-
panded by a planning engine

85



agents, if this plan is validated correctly by the “Validation” component. Hence,
ALICA can react quickly in dynamic environments as evaluated in real world
scenarios [13], though this is not the focus of this paper.

In order to decrease the search time and save memory for the planning pro-
cess, the leader is able to distribute seeds of the search space to teammates using
the “PlannerBase”, which is shown in Figure 4. If an agent receives a seed, it will
start the search, and send the solution back to the leader. If the leader receives
the first result, he will share this solution to all other members, which will stop
the search.

leader r1 r2 rn

send seed 1

send seed 2

send seed n

goal found

goal found

share plan

share plan

share plan

Fig. 4. Share seeds to accelerate search

5 Evaluation

In order to evaluate our framework, we use the defined problem of IPC 2011, as
described in Section 3, and compare our results to state-of-the-art approaches.
We used the planner “seq-sat-fdss-1”, based on a Fast Downward Planning Sys-
tem [7], which we modifed to allow seed sharing with the entire team. The planner
“seq-sat-fdss-1”participated in IPC 2011 and came in 2nd place in the trans-
portion domain. Experiments were run on an Intel i7-2630QM CPU 2.00GHz
processor, where we were allowed to use maximum one core. The results are
shown in Figure 5, which shows calculation time and costs for different prob-
lems. These problems differ in map size, number of agents and packages to de-
liver, and can found on the IPC website. The time shows the total search time.

86



In the transportation domain the costs are defined by the total traveled distance.
On average our approach decreases the costs by 1.3%. In addition, we were able
to reduce the calculation time on average by 28.3%. For Problem 14, we reduced
the calculation time by 65%.

0

100

200

300

400

500

600

2 4 6 8 10 12 14 16 18 20

0

2000

4000

6000

8000

10000

C
a
lc

u
la

ti
o
n

ti
m

e

C
o
st

s

Problem

Calculation time and costs of transport domain (seq-sat IPC2011)

Calculation time single agent
Calculation time four agents

Costs single agent
Costs four agents

Fig. 5. Calculation time and costs for transport (IPC2011)

We later extended the problem and created a random map with 100 loca-
tions as shown in Figure 6. A distributed team with n members has to deliver
n packages. Imagine a mail service group in a city that has around 100 different
locations. This mail service wants to exchange packages between these locations
via mobile, autonomous agents like copters or cars. The problem is how the
agents should be assigned to deliver all packages. The results are shown in Fig-
ure 7. In this Figure the x represents the number of agents and the y shows
calculation time and costs. The costs increased on average by 0.01%, but the
execution time decreases on average by 10.17%.

The distributed planning scales linearly as 3 ∗ (n − 1) with the number of
agents. In a first round, we distribute seeds to all team members, which takes
(n − 1) messages. Next, in the worst case we wait for (n − 1) results. Finally,
we distribute the result to all (n− 1) members. After receiving the result, every
robot will stop the search.

87



Fig. 6. Example map of transportation scenario

0

10000

20000

30000

40000

50000

60000

10 20 30 40 50 60 70 80

0

2000

4000

6000

8000

10000

C
a
lc

u
la

ti
o
n

ti
m

e

C
o
st

s

Agents

Calculation time and costs of transport domain (seq-sat IPC2011)

Calculation time single agent
Calulation time n Agents

Costs single agent
Costs n agents

Fig. 7. Calculation time and costs of the map in Figure 6

88



6 Conclusions

The task planning for teams with a large number of mobile autonomous robots
still offers improvements in research. The major problem is that cooperative dis-
tributed planning increases the communication rapidly as the number of agents
increases. On the other side, severe resource limitations apply to the strategy of
central planning, if complex planning problems shall be dealt with. Hence, it cre-
ates an opportunity to optimize planning for scenarios like disaster management,
logistics operations, and many more.

However, planning is an increasingly complex task in multi-agent systems
for an increasing number of robots. The state space grows tremendously with
the number of robots. Moreover, in such domains, automatic plan generation
reduces the overhead for maintenance, modeling, and testing enormously. Thus,
planning is an important part of describing the activities of multi-agent systems.

The strategy of our framework is to divide and conquer to cope planning prob-
lems regarding resources like memory and communication bandwidth. Therefore,
we use all robots as planning resources to reduce the planning time and divide
the memory usage. The found solution of the robots will be shared, interme-
diately. Moreover, the communication burden scales linearly with an increasing
number of agents.

In our evaluation, we took the transport scenario of the IPC2011 to compare
our planning system to the state-of-the-art planner. Furthermore, we created
more complex scenarios for the transport domain with up to 75 agents. We were
able to improve the search time by up to 65% and 19.3% on average in the IPC
problems. The costs in both scenarios were nearly the same (1.3% difference).

Our next steps are to evaluate the framework in the RoboCup domain using
additional computational units to realize a set play in this dynamic environment.

References

1. Jorge A. Baier, Fahiem Bacchus, and Sheila A. McIlraith. A heuristic search
approach to planning with temporally extended preferences. Artificial Intelligence,
173(5-6):593–618, 2009.

2. W. Beaton and J. d. Rivieres. Eclipse Platform Technical Overview. Technical
report, The Eclipse Foundation, 2006.

3. M. Brenner and I. Kruijff-Korbayov. A Continual Multiagent Planning Approach
to Situated Dialogue. In Proceedings of the LONDIAL (The 12th SEMDIAL Work-
shop on Semantics and Pragmatics of Dialogue). LONDIAL, 6 2008.

4. Michael Brenner and Bernhard Nebel. Continual planning and acting in dy-
namic multiagent environments. Autonomous Agents and Multi-Agent Systems,
19(3):297–331, June 2009.

5. Ethan Burns, Sofia Lemons, Wheeler Ruml, and Rong Zhou. Best-first heuris-
tic search for multicore machines. Journal of Artificial Intelligence Research,
39(1):689–743, 2010.

6. M. Ghallab, C. K. Isi, S. Penberthy, D. E. Smith, Y. Sun, and D. Weld. PDDL - The
Planning Domain Definition Language. Technical report, CVC TR-98-003/DCS
TR-1165, Yale Center for Computational Vision and Control, 1998.

89



7. M. Helmert. The Fast Downward Planning System. Journal of Artificial Intelligence
Research 26, 2006.

8. Malte Helmert, Patrik Haslum, and Jrg Hoffmann. Flexible abstraction heuristics
for optimal sequential planning. In ICAPS, pages 176–183, 2007.

9. R. Nissim and R. I. Brafman. Distributed Heuristic Forward Search for Multi-
Agent Systems. Computing Research Repository (CoRR), abs/1306.5858, 2013.

10. Stephan Opfer, Andreas Witsch, and Kurt Geihs. A Formal Multi-Agent Language
for Cooperative Autonomous Driving Scenarios. nov 2014.

11. Silvia Richter and Matthias Westphal. LAMA is a classical planning system based
on heuristic forward search. Journal of Artificial Intelligence Research, (39):127177,
2010.

12. D. Saur, T. R. Haque, R. Herzog, and K. Geihs. MAGiC : Multi-Agent Planning
using Grid Computing concepts. In 12th International Symposium on Artificial
Intelligence, Robotics and Automation in Space - i-SAIRAS 2014, Quebec Canada,
2014.

13. Daniel Saur and Kurt Geihs. pRoPhEt MAS: Reactive Planning Engine For Multi-
agent systems. In 13th International Conference on Intelligent Autonomous Sys-
tems, 2014.

14. H. Skubch. Modelling and Controlling of Behaviour for Autonomous Mobile Robots.
Westdeutscher Verlag GmbH, 2013.

15. H. Skubch, M. Wagner, R. Reichle, and K. Geihs. A modelling language for coop-
erative plans in highly dynamic domains. Mechatronics, 21:423–433, 2011.

90



3DVFH+: Real-Time Three-Dimensional
Obstacle Avoidance Using an Octomap

Simon Vanneste, Ben Bellekens, and Maarten Weyn

CoSys-Lab, Faculty of Applied Engineering
Paardenmarkt 92, B-2000 Antwerpen

{ben.bellekens,maarten.weyn}@uantwerpen.be

Abstract. Recently, researchers have tried to solve the computational
intensive three-dimensional obstacle avoidance by creating a 2D map
from a 3D map or by creating a 2D map with multiple altitude levels.
When a robot can move in a three-dimensional space, these techniques
are no longer sufficient. This paper proposes a new algorithm for real-
time three-dimensional obstacle avoidance. This algorithm is based on
the 2D VFH+ obstacle avoidance algorithm and uses the octomap frame-
work to represent the three-dimensional environment. The algorithm will
generate a 2D Polar Histogram from this octomap which will be used to
generate a robot motion. The results show that the robot is able to avoid
3D obstacles in real-time. The algorithm is able to calculate a new robot
motion with an average time of 300 µs.

Keywords: Three-Dimensional Obstacle Avoidance, Octomap, Naviga-
tion and Planning, ROS, Robotics.

1 Introduction

Robotic applications such as airborne or underwater robots need to avoid ob-
stacles in a 3D environment. These robots need to create a 3D map from the
environment to locate obstacles. This can, for example, be accomplished by using
a 3D laser scan Simultaneous Localization and Mapping (SLAM) algorithm [1]
or a RGB-D SLAM algorithm [2,3]. These algorithms will build a 3D map from
an unknown environment while at the same time locate the robot within this
map. The 3D maps can be represented more efficiently by the octomap frame-
work [4]. In this research we will use this octomap to determine the locations of
obstacles so the robot can avoid them.

Researchers [5–7] have tried to solve the 3D obstacle avoidance problem with
a 2D robot by creating a 2.5D height map from the original 3D map or by pro-
jecting the 3D map on a 2D map. This technique can only be used if the robot
can move in 2D. When the robot can move in 3D, researchers [8, 9] solved the
3D obstacle avoidance problem by planning and re-planning a 3D path by using
the A* [10] and D* lite [11] algorithm. These techniques have the disadvantage
that they are computational expensive. In this paper, we presents the Three

91



2 Simon Vanneste, Ben Bellekens, and Maarten Weyn

Dimensional Vector Field Histogram (3DVFH+) algorithm. This is an real-time
obstacle algorithm, that will generate a robot motion to avoid obstacles in 3D.

The 3DVFH+ algorithm is based on the 2D VFH+ algorithm [12]. It will
make a 2D polar histogram from an octomap of the environment. The algorithm
consists of five stages to calculate a new 3D robot motion.

This research paper is organised in the following order. To begin with, the
related researches will be described in Section 2. Then in Section 3, we will
discuss the octomap framework. Section 4 will describe the multiple stages of
the 3DVFH+ algorithm. Section 5 follows with an analysis of the results of this
research. Next, we will come to a conclusion in Section 6. Finally, Section 7
proposes future improvements to the 3DVFH+ algorithm.

2 Related Work

Ulrich et al. [12] presented the VFH+ algorithm on which the 3DVFH+ algo-
rithm is based. This obstacle avoidance system is able to plan local paths for a
robot that can move in 2D. The VFH+ algorithm generates a smooth trajectory
in real-time and takes the physical characteristics such as size and turning speed
of the robot into account.

Hrabar [13] described a probabilistic roadmap planner. The planner gener-
ates a probabilistic roadmap which will be used to plan or re-plan a path with
the D* lite algorithm [11]. When a path needed to be re-planned, it took on
average 0.15s.

Burgard et al. [9] described a method for an autonomously quad-copter for
indoor use. This research will plan a 3D path by using the D* lite algorithm [11]
but only consider 2D actions of the robot. For these 2D points the multi-level
map will be used to find the surface elevation under the robot to determine the
change in altitude cost.

Maier et al. [5] developed a system that allows a Nao humanoid robot [14] to
plan its path in a 3D environment and map new obstacles. The path planning
algorithm uses a part of the octomap (vertical size of the robot) and project
it to a 2D map. Next the path planning algorithm will calculate a path in two
dimensions with an A* algorithm [10].

Nieuwenhuisen et al. [8] presents a local multiresolution path planning sys-
tem. This system will use a multiresolution grid map that will be used for local
path planning. This planner will plan a new path to the intermediate goals gen-
erated by the global path planner. This path will be planned by using an A*
algorithm [10].

92



Real-Time Three-Dimensional Obstacle Avoidance Using an Octomap 3

Fig. 1. Octree structure: white octree leaf nodes have status free, gray octree leaf nodes
have status occupied

3 Octomap

The octomap [4] data structure is an efficient way to represent a 3D environ-
ment. The octomap can, for example, be accomplished by using a 3D laser scan
SLAM algorithm [1] or a RGB-D SLAM algorithm [2,3]. With the octomap the
3DVFH+ algorithm can calculate a robot motion. This section will describe the
basic principles of the octomap. The octomap framework is a 3D occupancy grid
mapping framework based on the octree structure. The octree data structure
is a hierarchical structure containing multiple nodes. These voxels (also called
nodes) are cubic volumes in space. Every voxel can contain 8 or 0 child voxels.
When the voxel contains 8 occupied child voxels the octomap will reduce these 8
child voxels to one parent voxel that is occupied. If no child voxels are occupied
the voxels will be reduced to one parent voxel that is free. All the combinations
in between will be stored by using the 8 child voxels. The number of layers in
this hierarchical structure (also called the resolution of the octree) determine the
precision and size of the octree (see Figure 1). This way the entire environment
is represented by voxels.

Robot applications often use a probabilistic representation of the environ-
ment because input sensors introduce noise and therefore uncertainty into the
system. The octomap leaf voxels contains a probabilistic number. This allows
the octomap to have a probabilistic representation of the environment. This like-
lihood will be used to determine if te voxel is occupied or if voxel is free.

The octomap framework does not directly include information on the voxel
location. The location can be calculated when descending the octomap tree. The
root voxel has a fixed location and the number of the child voxel that is explored
determines the location of the child voxel.

4 3DVFH+

3DVFH+ is an enhanced version of the two-dimensional VFH+ algorithm [12]
which is used to work in a 3D environment. The algorithm uses an octomap to

93



4 Simon Vanneste, Ben Bellekens, and Maarten Weyn

determine where the obstacles are located given the robot pose in a 3D environ-
ment. The 3DVFH+ algorithm uses five stages to calculate a new robot motion.
These stages are described in the following subsections.

4.1 First Stage: Octomap Exploring

The octomap data structure makes use of the Octree data structure (see Fig-
ure 1). When the robot moves around in a large environment it is not possible to
explore all the voxels due to computational limits. So the Octomap’s exploring
stage will only research voxels that lie within a bounding box around the robot.
This bounding box has a size of ws ∗ws ∗ws (width, height and depth) and con-
tains the Vehicle Center Point (VCP) as centroid. The VCP is the center point
of the robot and the whole robot will be represented by this point. When a voxel
lies within the bounding box, the voxel is an active cell Ci,j ,k with i, j, k coordi-
nates within the active region Ca. The exploring stage only needs to find voxels
that lie within the boundaries of the bounding box. The algorithm needs to use
the location of the voxels to determine which voxels need further exploration or
which voxels can be ignored. But the location of the voxels is not implemented
in the octomap data structure to reduce memory overhead [4]. These locations
will be calculated when exploring the octomap tree. Voxels that are too far from
the bounding box will not be explored. This principle also works on high level
voxels, which will result in entire branches that can be ignored and improve the
exploring speed without losing relevant information. When a voxel is found by
the first stage, the second stage will use the information from the located voxel
to make a 2D primary polar histogram

4.2 Second Stage: 2D Primary Polar Histogram

The second stage will add the information from the voxel (which has been found
by the first stage) into the 2D primary polar histogram. This histogram (as
shown in Figure 2) is a polar histogram where the location of an active voxel
is determined by two angles. These angles are determined by the position of
the voxel and the VCP. A weight that is calculated based on the voxel will be
inserted into the 2D primary polar histogram with the two angles as coordinates.

First, the list of active cells will further be reduced by making a bounding
sphere within the bounding box. This can be accomplished by calculating the
euclidean distance di,j,k between the VCP and each voxel. When the euclidean
distance is larger then the radius of the bounding sphere di,j,k > ws/2, the ac-
tive cell will be ignored. A boundary sphere is necessary to create a rotation
independent 2D polar histogram.

Next, the algorithm will calculate the two angles to determine the coordi-
nates within the 2D primary polar histogram Hp. These angles are the azimuth
angle βz (x-axis of the 2D primary polar histogram) and the elevation angle βe
(y-axis of the 2D primary polar histogram). These angles are shown in Figure 3

94



Real-Time Three-Dimensional Obstacle Avoidance Using an Octomap 5

Fig. 2. 2D Polar Histogram

Voxel

VCP
x ,y ,z0 0 0

x ,y ,zi i i

α
αe

z

p

x

y

z

Fig. 3. An image that clarifies the angle
calculations

rr+s+v

r

d
i,j,k

l i,j,k

VCP

λ i,j,k

r+s+v

Fig. 4. Enlargement of the voxels

as αe and αz.

The azimuth angle βz is calculated by using (1) which is also used in the
VFH+ algorithm [12]. The combination of the floor function and the partition
by the resolution of the 2D polar histogram α will create a natural number
(requirement for 2D primary polar histogram). The resolution is determined by
the difference between the largest angle and the lowest angle that will lead to
the same cell within the 2D polar histogram.

βz = floor

(
1

α
arctan

xi − x0
yi − y0

)
(1)

The elevation angle needs to be calculated in a different way (see (2) and (3))
because we need the elevation angle independent of the azimuth angle. This can
be implemented by calculating p based on the x and y coordinates of the VCP
and the voxel, see Figure 3.

βe = floor

(
1

α
arctan

zi − z0
p

)
p =

√
(xi − x0)2 + (yi − y0)2 (2)

95



6 Simon Vanneste, Ben Bellekens, and Maarten Weyn

this results in

βe = floor

(
1

α
arctan

zi − z0√
(xi − x0)2 + (yi − y0)2

)
(3)

The previous calculations used the VCP and the center of the voxel to calculate
the two angles. The size of the robot is implemented by enlarging all the active
voxels in the 2D primary polar histogram with rr+s+v to compensate for the
robots size, see Figure 4. This enlargement factor is calculated by adding the
radius of the robot rr, the safety radius rs and the voxel size rv. The voxels are
enlarged so the algorithm can calculate the maximum and minimum angle in
which the voxel lies, see (4).

λi,j,k = floor

(
1

α
arcsin

rr+s+v
di,j,k

)
(4)

The minimum distance between the voxel and the VCP can be calculated by
subtracting the enlargement from the euclidean distance, see (5).

li,j,k = di,j,k − rr+s+v (5)

Now the algorithm has calculated which cells in the 2D primary polar histogram
are influenced by the voxel, the algorithm needs to calculate the weight that the
voxel will add to the 2D primary histogram. The weight of a voxel is calculated
based on the euclidean distance li,j,k and their occupancy certainty oi,j,k, see
(6).

Hp
z,e =

∑

i,j,k∈Ca





(oi,j,k)2(a− bli,j,k) if e ∈ [βe −
λ

α
, βe +

λ

α
]

and z ∈ [βz −
λ

α
, βz +

λ

α
]

0 otherwise

(6)

Two constants a and b are calculated by using (7) to obtain a balanced a and b.
The value of these constants is unimportant, only the relative size or fraction is
important.

a− b
(
ws − 1

2

)2

= 1 (7)

The weight of a voxel will be used during stage 4 to obtain the 2D binary polar
histogram.

4.3 Third Stage: Physical Characteristics

After the second stage, the third stage will calculate and add new information
into the 2D primary polar histogram based on the physical characteristics of the
robot and location of the voxel. When the robot has a certain heading θ retrieved
by the RGBD-SLAM algorithm and speed, it cannot change direction instantly,

96



Real-Time Three-Dimensional Obstacle Avoidance Using an Octomap 7

VCP

Δy
Δy

Δx
Δx

l

l r

r

r

r

r

l

θ
Voxel

dr

dl

Fig. 5. Turning circles of the physical characteristics stage

so it will need to turn. When the robot is moving slowly, this stage will be ignored
because it can change its direction instantly. The robot’s turning trajectory
depends on the robot’s forward velocity, turning speed and the climbing speed.
The turning speed and robot velocity are implemented in the VFH+ algorithm
[12] so the same method can be used. The climbing acceleration has no influence
on this part of the calculation.

First, the two center points of the turning circle need to be calculated (see
Figure 5). This can be achieved in the same way as in the original VFH+ algo-
rithm [12] (see (8) and (9)).

∆xr = rr · sinθ ∆yr = rr · cosθ (8)

∆xl = −rl · sinθ ∆yl = −rl · cosθ (9)

Secondly, the algorithm needs to check every active cell Ci,j,k to see if it lies on
the turning circle. This will be achieved by calculating the distance dl,r between
the centre of the turning circle and the voxel, see (10). To detect if the voxel lies
on the turning circle, the algorithm will compare this distance with the safety
range rr+s+v and the diameter of the turning circle rl,r, see (11). The function
∆x(i) will calculate the x distance between the voxel and the VCP.

dr =
√

(∆xr −∆x(i))2 + (∆yr −∆y(j))2

dl =
√

(∆xl −∆x(i))2 + (∆yl −∆y(j))2
(10)

dr < (rr + rr+s+v) dl < (rl + rr+s+v) (11)

Thirdly, the algorithm also needs to take the climbing motion of the robot into
account. The algorithm will calculate which cells within the 2D masked polar
histogram are blocked by the voxel. This will be achieved by calculating for all
the following αe angles after the object which αz angle is blocked by the voxel.
First, the climbing motion constant f needs to be calculated. This is achieved by
calculating the turning distance t to the obstacle, see (12). Next, the climbing

97



8 Simon Vanneste, Ben Bellekens, and Maarten Weyn

motion constant is calculated with the altitude difference zi−z0 and the turning
distance, see (13).

t =
2.π.r(2.αz)

360
(12)

f =
zi − z0
t

(13)

Next, a new unreachable altitude zαz needs to be calculated for every αz an-
gle after voxel. The turning distance tαz, see (14) to the next αz needs to be
calculated to determine the unreachable altitude, see (15).

tαz =
2.π.r(2.βz.α)

360
(14)

zαz = ftαz (15)

Finally, the unreachable elevation angle βe will be calculated using the altitude
difference and the euclidean distance lβz, see (16) and by using (17).

lαz =
√
r4 − 2.r2. cos(270− 2.αz) (16)

βe =
1

α
arctan(

zαz
lαz

) (17)

These calculations can be extended so that the algorithm will calculate unreach-
able cells with a given forward speed and maximum climb speed.

4.4 Fourth Stage: 2D Binary Polar Histogram

The previous stages will generate a 2D primary polar histogram based on the
voxels of the octomap. The fourth stage will reduce the information further by
creating a 2D binary polar histogram based on the 2D primary polar histogram.
This will be accomplished by comparing every cell in the 2D primary polar his-
togram with two thresholds τlow and τhigh. When a value is higher than τhigh
the point will be 1 in the 2D binary polar histogram. When a value is lower
than τlow the point will be 0 in the 2D binary polar histogram. If a point lies
between the two thresholds the value next to the point will be used in the 2D
binary polar histogram. The two thresholds allow the algorithm to distinguish
real obstacles and measurement errors.

Because the 3DVFH+ algorithm uses a 2D polar histogram, the thresholds
τhigh and τlow need to change when using a different elevation angle βe. The cells
of the 2D polar histogram do not have the same size (as shown in Figure 2) so
to compensate for this, different thresholds are required for different elevation
angles, see (18). The size of these thresholds depends on the robot, the robot’s
speed, the window size of stage five, the octomap resolution and the bounding
sphere size.

Hb
βz,βe

=





1 if Hp
βz,βe

> τβehigh

0 if Hp
βz,βe

< τβelow

Hp
βz−1,βp

otherwise
(18)

98



Real-Time Three-Dimensional Obstacle Avoidance Using an Octomap 9

Fig. 6. Moving window of the fifth stage

4.5 Fifth stage: Path detection and selection

The fifth stage searches for available paths in the 2D binary polar histogram
and selects the path with the lowest path weight. To determine which paths are
available the algorithm will detect openings in the 2D binary polar Histogram by
moving a window around the 2D binary polar histogram. This window will mark
the path passable, if all the elements in the window are equal to 0. This way
only large openings will be threaded as available paths. When implementing this
window the algorithms needs to take the polar properties of the histogram into
account. When the window crosses the boundaries of the histogram, the window
will use elements that are connected by the rules of a 2D polar histogram.

When the window crosses the upper or lower boundary of the histogram (see
black markings in Figure 6) the cells that need to be checked are located in the
same elevation angle but 180 degrees rotated over the azimuth angle. When the
window crosses the left or right border the window will check the cells on the
other side of the histogram.

Next, three path weights will be calculated and combined into a single path
weight for the candidate direction, see (19). The first path weight will be cal-
culated based on the difference between the target angle kt and the candidate
direction v. The second path weight is the difference between the rotation of
the robot θ and the candidate direction v. The last path weight is the difference
between the previous selected direction ki−1 and the candidate direction v. The
variable µ is used to select which of the three path weight has a larger impact
on the final path weight. We used for our goal-oriented robot µ1 = 5, µ2 = 2
and µ3 = 2 as proposed by Ulrich et al. [12]. The path weight function can be
adapted to enable a different behavior. For example the path weight function
can give a preference to a turning motion instead of a climbing motion.

The function ∆(v1, v2) will calculate the difference between the two elevation
angles and the two azimuth angles. From these differences the function will
generate a weight based on the two calculated angle differences.

ki = µ1.∆(v, kt) + µ2.∆(v,
θ

α
) + µ3.∆(v, ki−1) (19)

99



10 Simon Vanneste, Ben Bellekens, and Maarten Weyn

Fig. 7. Left: The full traveled path from point A to C. Right: A part of the traveled
path from B to C. The robot avoided an obstacle by flying over the obstacle O and by
turning.

When the path weight of all the candidate directions is calculated the algorithm
can select the direction with the lowest weight. The chosen direction will be
converted into a robot motion. The conversion can easily be implemented by
making a decision tree that will generate a robot motion based on the coordinates
of the calculated direction.

5 Results

In this section we will evaluate the 3DVFH+ algorithm. The requirements for
the 3DVFH+ algorithm are that it needs to avoid obstacles in a 3D environment
and perform these calculations in real time. These results are generated by using
the Robot Operating System (ROS) [15] framework and the simulation software
gazebo [16].

5.1 3D Obstacle Avoidance Result

The 3DVFH+ algorithm is a 3D obstacle avoidance algorithm, so to test the
algorithm we simulated a quad-copter in gazebo. The quad-copter needed to fly
from point A to point B and from point B to point C without bumping into
obstacles (as shown in Figure 7). For this simulations, the dataset FR-079 corri-
dor [17] is used. This octomap has a resolution of 0.05 m and is publicly available.

The left image in Figure 7 shows how the robot will go from point A to point
B and from point B to point C. The right in Figure 7 image shows how the
robot meets an obstacle O and will avoid it by a combination of flying over the
obstacle and turning to avoid the wall.

5.2 Performance Result

This section will describe the performance of the 3DVFH+ histogram is mea-
sured by using the same dataset and the same intermediate points as in the

100



Real-Time Three-Dimensional Obstacle Avoidance Using an Octomap 11

previous section, see Figure 7. For these experiments we used a standard lap-
top with an Intel i7-3720QM processor with a NVIDIA GeForce GT 650M. The
simulations were executed on a different machines to ensure that the simulation
software did not influence the results. When performing the simulation the robot
was flying around at a low speed, so the third stage was ignored. The third stage
did not impact the performance measurements. The following parameters has
the most influences to the performance of the algorithm: the bounding box size,
the moving window size, the thresholds of stage four, the robot speed, and the
octomap resolution. Due to the increasing complexity and the amount of voxels,
the performance will raise or slow down.

We found that the average time that the algorithm needs to calculate a new
robot motion is 326 µs. As a result, that the algorithm is capable of calculating on
average a new robot motion 3061 times per second. The first three stages mainly
determine the speed of the algorithm because these stage speed depends on the
number of voxels within the bounding sphere. Based on multiple experiments
we found that it takes 300 ns for every voxel to calculate the 2D primary polar
histogram. The speed of the fourth and fifth stage are negligible with a speed of
0.2 µs for every robot motion. In practice the algorithm is limited to the other
algorithms that the robot uses to calculate its pose and the octomap.

6 Conclusion

The 3DVFH+ algorithm is a real-time three-dimensional obstacle avoidance al-
gorithm that uses an octomap to determine the obstacles locations. The algo-
rithm can determine the location of these obstacles in real-time because the
algorithm will only take obstacles into account that are located close to the
robot. From the location of the obstacles the algorithm will make a 2D primary
polar histogram based on the pose of the robot and location of the obstacles.
Next, the algorithm will take the physical capability of the robot into account.
In this 2D binary polar histogram the algorithm will find multiple paths, give
them a path weight and determine the path with the lowest path weight. This
path will be used to calculate a motion for the robot. By using these techniques
the algorithm is able to calculate the robot motion real time in 3 dimensions.

7 Future work

Before the 3DVFH+ algorithm can be used, the algorithm needs to be config-
ured based on the robot’s size, robot’s speed, octomap’s resolution and multiple
levels of thresholds to generate a 2D binary polar histogram. These parameters
are chosen empirically. In future work this process could be automated.

In this system the thresholds that generate a 2D binary polar histogram are
static. But when the robot is moving with a different speed, different thresholds
could and should be used.

101



12 Simon Vanneste, Ben Bellekens, and Maarten Weyn

References

1. D. M. Cole and P. M. Newman, ”Using laser range data for 3d slam in outdoor
environments,” in Robotics and Automation, 2006. ICRA 2006. Proceedings 2006
IEEE International Conference on. IEEE, 2006, pp. 1556-1563.

2. F. Endres, J. Hess, N. Engelhard, J. Sturm, D. Cremers, and W. Burgard,”An
evaluation of the rgb-d slam system,” in Robotics and Automation (ICRA), 2012
IEEE International Conference on. IEEE, 2012, pp. 1691-1696.

3. P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox, ”Rgb-d mapping: Using depth
cameras for dense 3d modeling of indoor environments,” in the 12th International
Symposium on Experimental Robotics (ISER), vol. 20, 2010, pp. 22-25.

4. A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Burgard, ”Octomap:
An efficient probabilistic 3d mapping framework based on octrees,” Autonomous
Robots, vol. 34, no. 3, pp. 189-206, 2013.

5. D. Maier, A. Hornung, and M. Bennewitz, ”Real-time navigation in 3d environments
based on depth camera data,” in Humanoid Robots (Humanoids), 2012 12th IEEE-
RAS International Conference on. IEEE, 2012, pp. 692-697.

6. J. Chestnutt, Y. Takaoka, K. Suga, K. Nishiwaki, J. Kuffner, and S. Kagami, ”Biped
navigation in rough environments using on-board sensing,” in Intelligent Robots and
Systems, 2009. IROS 2009. IEEE/RSJ International Conference on. IEEE, 2009, pp.
3543-3548.

7. J.-S. Gutmann, M. Fukuchi, and M. Fujita, ”3d perception and environment map
generation for humanoid robot navigation,” The International Journal of Robotics
Research, vol. 27, no. 10, pp. 1117-1134, 2008.

8. M. Nieuwenhuisen and S. Behnke, ”Hierarchical planning with 3d local multires-
olution obstacle avoidance for micro aerial vehicles,” in Proceedings of the Joint
Int. Symposium on Robotics (ISR) and the German Conference on Robotics
(ROBOTIK), 2014.

9. S. G. G. G. W. Burgard, ”A fully autonomous indoor quadrotor.”
10. P. E. Hart, N. J. Nilsson, and B. Raphael, ”A formal basis for the heuristic deter-

mination of minimum cost paths,” Systems Science and Cybernetics, IEEE Trans-
actions on, vol. 4, no. 2, pp. 100-107, 1968.

11. S. Koenig and M. Likhachev, ”Fast replanning for navigation in unknown terrain,”
Robotics, IEEE Transactions on, vol. 21, no. 3, pp. 354-363, 2005.

12. I. Ulrich and J. Borenstein, ”Vfh+: Reliable obstacle avoidance for fast mobile
robots,” in Robotics and Automation, 1998. Proceedings. 1998 IEEE International
Conference on, vol. 2. IEEE, 1998, pp. 1572-1577.

13. S. Hrabar, ”3d path planning and stereo-based obstacle avoidance for rotorcraft
uavs,” in Intelligent Robots and Systems, 2008. IROS 2008. IEEE/RSJ Interna-
tional Conference on. IEEE, 2008, pp. 807-814. Real-Time Three-Dimensional Ob-
stacle Avoidance Using an Octomap 13

14. D. Gouaillier, V. Hugel, P. Blazevic, C. Kilner, J. Monceaux, P. Lafourcade, B.
Marnier, J. Serre, and B. Maisonnier, ”Mechatronic design of nao humanoid,”
in Robotics and Automation, 2009. ICRA’09. IEEE International Conference on.
IEEE, 2009, pp. 769-774.

15. ”http://www.ros.org/”, 2014, Page retrieved on 21/05/2014.
16. ”http://gazebosim.org/”, 2014, Page retrieved on 21/05/2014.
17. ”http://ais.informatik.uni-freiburg.de/projects/datasets/octomap/”, 2013, Page

retrieved on 18/05/2014.

102


