
Towards Context Modeling in Space and Time

Christian Piechnick, Georg Püschel, Sebastian Götz,
Thomas Kühn, Ronny Kaiser, and Uwe Aßmann

Software Technology Group, Technische Universität Dresden,
Nöthnitzer Str. 46, 01187 Dresden, Germany

{christian.piechnick,georg.pueschel,sebastian.goetz1,thomas.kuehn3,ronny.

kaiser,uwe.assmann}@tu-dresden.de

http://st.inf.tu-dresden.de

Abstract. One of the main problems in software development for ser-
vice robots is to create systems that reliably behave as intended, even
though the real field of application and the concrete user requirements
are unknown during design time. Consequently, the software controlling
service robots has to be aware of its environment and has to adapt its
behavior accordingly. A model representing environmental data is called
a context model. Appropriate context models currently lack means for
modeling temporal and spatial information simultaneously. While it is
important to reason about historical context data for most of the Self-
Adaptive Systems, there is an increasing need for treating the temporal
dimension of context models as first-class-citizen. In this paper, we pro-
pose a graph- and role-based context model (GRoCoMo), which includes
expressive means for describing time and location. A query language en-
ables for reasoning on current and historical data, as well as future trends.
A manipulation language enables the specification of rewrite rules for up-
dating context models based on situations detected within the context.

Keywords: Context Modeling; Context Management; Context-Awareness;
Temporal Context; Context History;

1 Introduction

A service robot is a reprogrammable, sensor-based, mechatronic device which
performs useful services to support human activities [8]. In contrast to produc-
tion robots, where the operating environment as well as all other influencing
factors are known before deployment, the application sites of service robots are
unknown. This information can only be gathered during runtime. Therefore, the
software system controlling the service robot has to adapt its behavior dynam-
ically. Such a system is called a Self-Adaptive System (SAS). One example of
adaptive behavior within robotic software is the path planning of mobile robot
platforms [4]. When a robot has to move to a target position, the robot’s motion
model (e.g., differential steering), as well as the environment (e.g., crowded ar-
eas), influence the planning strategy. Figure 1 shows an example path planning
problem with two different strategies. The first strategy, Shortest Path (solid



2 Towards Context Modeling in Space and Time

T

S

Shortest Path

Near Wall
Crowded Area S Start T Target

Route 1

Route 2

Fig. 1. Example for alternatives in global path planning

lines), calculates the shortest route from the starting location (S) to the target
location (T) and provides two different alternatives. The other strategy, Near
Wall (dashed lines), calculates routes that lead along walls. The grey dashed
area is usually used by many persons and therefore, marked as “crowded”. When
the navigation algorithm decides to use the upper floor, the Near Wall strat-
egy is the better option, since the probability to get in the way of humans is
decreased. On the other hand, it might be disadvantageous on the lower floor,
where the robot potentially has to drive around many open doors. Hence, the
decision should be made at runtime. An inherent property of all SAS is that they
are implementing a variant of the MAPE-K loop, first introduced by IBM [7].
The MAPE-K loop consists of four phases: in the (M) Monitor phase environ-
mental data is gathered and processed and, then, interpreted in the (A) Analyze
phase. The (P) Plan phase investigates the need for reconfiguration and creates
reconfiguration plans accordingly, which are applied in the (E) Execute phase.
All phases share a (K) Knowledge Base, which manages relevant information
guiding the adaptation process. An essential part of this knowledge base is in-
formation about the execution environment (e.g., crowded areas in the upper
example), i.e., the Context Model. Because different domains have varying
requirements w.r.t. context modeling and management, various different model-
ing approaches for context information were developed during the last decades.
Nevertheless, recent context modeling approaches are not sufficient to handle
crucial aspects for the domain of service robots. Namely, reasoning on dynamic
collaborations like in robotic applications, requires more expressive means to
cover time and location in a processable manner. To address this problem, we
present an extended graph-based context model with time and location as first
class citizens and, thus, extended means for modeling and managing temporal
and spatial context data for robotic applications.

This paper is structured as follows. In Section 2, we give an overview on con-
text modeling and outline important properties of context models. In Section 3,
we discuss relevant context modeling approaches and their suitability w.r.t. the



Towards Context Modeling in Space and Time 3

identified properties. We present our approach in Section 4 and discuss our pro-
totypical implementation in Section 5. Finally, Section 6 presents our conclusion
and future work.

2 Context Modeling and Management

To enable an application to adapt itself to changing environmental conditions,
information about the environment must be gathered and analyzed. For this
purpose, a variety of approaches have been developed, to tackle the specific
requirements in different application domains of SAS [2]. Zimmermann et al.
identified six different modeling elements of context models [17]:

Z1 - Entities: An entity can be any real or virtual thing that is of interest for
the adaptation process (e.g., user, device, application, location, etc.).

Z2 - Individuality: The individuality encompasses any information that can
be observed about an entity (e.g., dynamic and static properties, etc.).

Z3 - Relationships: A relationship expresses a semantic dependency between
two entities. Zimmermann et al. distinguish between social-, functional-, and
compositional relationships.

Z4 - Activities: The activities dimension encompasses any information about
an entity’s past, present and future needs, goals, tasks and plans.

Z5 - Time: Statements in a context model often have a temporal dimension.
Time can be expressed using time zones (e.g., Central European Time) or
virtual times (e.g., milliseconds after system start). Furthermore, overlay
models can be used for abstraction (e.g., working hours, weekends, etc.).

Z6 - Location: Since most of a context model’s elements represent objects from
the physical world, which are arranged spatially, location is a major aspect
of context information. The location dimension can include real or virtual
locations (e.g., IP address in a network). Those locations can use absolute,
relative, or symbolic location models.

Strang et al. [13] identified six different types of context modeling approaches:
(1) Key-Value Models, (2) Markup Scheme Models, (3) Graphical Models, (4)
Object Oriented Models, (5) Logic Based Models, and (6) Ontology Based Mod-
els. Depending on the specific requirements of the application domain, different
advantages and disadvantages can be observed. They evaluated those types of
context models regarding their ability to (a) be composed in a distributed com-
putation environment, (b) the richness and quality of information, (c) the ability
to handle incompleteness and ambiguity, (d) the level of formality, and (e) their
applicability to existing environments. Considering those properties, Strang et
al. conclude that ontologies are the best-rated modeling type, while Key-Value
Models are the worst-rated. On the other hand, the construction and manage-
ment of Key-Value Models is much simpler and the performance of analysis
scales much better for simple requests. For the domain of service robots the
properties (b), (c) and (e) are crucial because of the robots complex and un-
known execution environment. The properties (a) and (d) become important



4 Towards Context Modeling in Space and Time

when the sensors (e.g., temperature sensor) and actuators (e.g., door opening)
are distributed across the environment, and, thus, multiple computational units
have to share knowledge based on a shared interpretation. Hence, according to
the provided evaluation, ontologies should be used for the modeling of contex-
tual information in the domain of service robots. Furthermore, a context model
for service robots should include the modeling elements Z1 - Z6, according to
Zimmermann et al. [17].

3 Related Work

The research area of SAS is still very popular, resulting in thousands of publica-
tions each year. This is also true for research on context modeling and manage-
ment. For our related work research, we searched for papers published between
2000 and 2013 and containing the words “context model” in their title, using
Google Scholar1. The result of the indicated query was a set of 3469 papers. We
filtered the result-set manually to exclude publications that were not intended for
the application in SAS. The result was a reduced set of 1228 manually filtered pa-
pers. Among them, we investigated five context model survey papers [1–3,6,13].
We have chosen six representative context model publications, which consider
the dimensions time (Z3) and/or location (Z4). Four of those papers [5,12,14,15]
were chosen based on the description in the context model surveys. Because the
latest survey was published in 2010 by Bettini et al. [2], we have selected two
additional publications [9,16], published between 2010 and 2014. We have inves-
tigated their modeling capabilities w.r.t. the properties stated in Section 2. The
results are summarized in Table 3.

In 2003 Strang et al. proposed the ontology-based context model CoOL
(Context Ontology Language) [14]. CoOL provides the concept of an “Entity”,
while type information (e.g., Person, Place) must be expressed using the indi-
viduality dimension. Individuality (Z2) can be modeled using “Aspects” with
different “Scales”. Relationships (Z3) can be expressed using facts. Even though
they show that the time, place and activity dimensions (Z4 - Z6) can be treated
as an aspect as well, they do not provide a special interpretation semantic for
time-bound, historical, location-, or activity-specific data.

Gu et al. presented an ontology-based context model for their service-oriented
context-aware middleware SOCAM in 2004 [5]. They support several types of
entities (e.g., Device, Network) as well as predefined and user-defined properties
and relationships (Z1 - Z3 ). Activities are also treated as first-class-citizens (Z4).
Time (Z5 ) is partially considered, but only as start and end. The model provides
special nodes for locations (i.e., in- and outdoor locations) but does not show
how locations can be related.

Wang et al. proposed the CONtext ONtology (CONON) [15] in 2004, by
extending the SOCAM context ontology. In contrast to the previous model they
provide means for describing location (Z6 ) in a more fine-grained manner and

1 Google Scholar: http://scholar.google.de/, visited 20.05.2014



Towards Context Modeling in Space and Time 5

CoOL SOCAM CONON MUSIC ERMHAN CACOnt

(Z1) Entities (+) + + (+) + +

(Z2) Individuality + + + + + +

(Z3) Relationships + + + + + +

(Z4) Activities (–) + + (–) + +

(Z5) Time (–) (–) (–) (–) – –

(Z6) Location (–) (+) + (–) + +

Table 1. Evaluation of the related models w.r.t. to their modeling capabilities.
(- not considered, (-) partially considered, (+) implicitly provided, + fully provided)

explain how those locations can be related to each other, to create hierarchical
location models.

Reichle et al. described an ontology-based context model for the MUSIC
project in 2008 [12]. Like the CoOL ontology, they provide an abstract type
Entity which can be categorized using special type attributes (Z1 ). The model
provides means for describing attributes and relationships (Z2 and Z3 ), but does
not treat activities as special entities (Z4 ). Hence, activities can only be modeled
by creating used-defined activity type attributes. The model contains basic types,
such as DateTime or GPS-Coordinate, but does not provide a first-class-citizen
interpretation semantics for time and location (Z5 and Z6 ).

In 2011, Paganelli and Giuli presented a context model for the ERMHAN
service platform for Ambient Assisted Living (AAL) scenarios [9]. The model
provides means for describing several entity types, attributes, relationships and
activities (Z1 - Z4 ). Furthermore, they consider several types of interrelated
locations (Z6 ), but do not consider time (Z5 ) within the model. They only
consider time externally by tracking the change of context values. Based on the
type of the changed value, they interpret a time-bound sequence of values.

In 2013, Xu et al. presented the Context-Aware Computing Ontology CA-
COnt. It predefines several types of entities, properties, relationships and activ-
ities (Z1 - Z4 ). The authors extensively investigate the location dimension (Z6 ),
by providing different levels of abstraction for the specification of an entities lo-
cation (e.g., GPS, location hierarchies). They do not consider the time dimension
(Z5 ). Thus, a CACOnt model only provides information on the current context
state. However, like in every model with extensible attributes, it is possible to
express time information using attributes with a custom interpretation logic.

As shown in Table 3, the presented context models provide means for mod-
eling the dimensions of entities, individuality, and relationships (Z1-Z3). The
activity dimension (Z4) is either provided, directly or can be modeled sepa-
rately, using an extensible entity-model. The most recent works consider the
location (Z6) as an essential part of a context model, and, thus, provide means



6 Towards Context Modeling in Space and Time

Node

Person

Device

Physical
Object

Virtual
Object

User

Service

Actity

 name
 uri
-sensorId
+isValid()
+wasValidAt(DateTime)
+wasValidDuring(Timespan)

Modeling Element

location

Location

Physical
Location

Virtual
Location

Is Located
At Relation

Part of
Relation

Existential
Part of

Relation

sensors

Source
Relation

Sensor
Unit

 value
SensorValue

Unit RelationObservation
Target ...

time

Relation

 dateTime
DateTime

Timespan

Owns
Relation

Performs
Relation

example Robot
: Device Room 1 :

Location

Floor 1 :
Location

Office
Building :
Location

ts 1:
Timespan

 dateTime = 25.05.2014 14:10
dt1 : DateTime

Is Located
At Relation2

 dateTime = 25.05.2014 14:15
dt3 : DateTimets2 :

Timespan

 dateTime = 25.05.2014 14:15
dt2 : DateTime

Attribute

start

source

Located At

target

end

target

source

target

target

Predecessor
end

Located At

start

Located At

Located At

target

start

Visual Paradigm Community Edition [not for commercial use] 

Fig. 2. The GroCoMo-Core metamodel.

for handling spatial information as a first-class-element of context models. The
time dimension (Z5), however, is considered important in state-of-the-art liter-
ature, but current context models do not provide explicit modeling elements to
handle time appropriately.

4 Context Modeling in Space and Time

In this section, we present our Graph- and Role-based Context-Model (GRoCoMo),
a context model supporting all modeling dimensions stated in Section 2.

4.1 Structure

As depicted in Figure 2, the context model consists of Nodes and Relations.
Both, Node and Relation inherit from the abstract type Modeling Element.
Each element has a name, a sensorId to identify values created by the same
sensor and a unique resource identifier (URI), to identify the individual ele-
ment. A Relation connects exactly one Source Element to exactly one Target

Element. Both, source and target, are of the type Modeling Element. Hence, it



Towards Context Modeling in Space and Time 7

Node

Person

Device

Physical
Object

Virtual
Object

User

Service

Actity

 name
 uri
-sensorId
+isValid()
+wasValidAt(DateTime)
+wasValidDuring(Timespan)

Modeling Element

location

Location

Physical
Location

Virtual
Location

Is Located
At Relation

Part of
Relation

Existential
Part of ...

sensors

Source
Relation

Sensor
Unit

 value
SensorValue

Unit RelationObservation
Target ...

time

Relation

 dateTime
DateTime

Timespan

Owns
Relation

Performs
Relation

example Robot
: Device Room 1 :

Location

Floor 1 :
Location

Office
Building :
Location

ts 1:
Timespan

 dateTime = 25.05.2014 14:10
dt1 : DateTime

Is Located
At Relation2

 dateTime = 25.05.2014 14:15
dt3 : DateTimets2 :

Timespan

 dateTime = 25.05.2014 14:15
dt2 : DateTime

Attribute

start

source

Located At

target

end

target

source

target

target

Predecessor
end

Located At

start

Located At

Located At

target

start

Visual Paradigm Community Edition [not for commercial use] 

Fig. 3. Example model for time and location information representation.

is possible to define relations on relations. A node represents an entity of the con-
text model. The model provides predefined node types (e.g., Person). However,
the metamodel can be extended with domain-specific node types by subclass-
ing. A Relation represents a typed, complex relationship between two entities.
Furthermore, each relationship can contain several directly assigned attributes.

4.2 Handling Time

To cover temporal aspects, Timespans can be assigned to each modeling ele-
ment (i.e., nodes and relations), to state when the validity of a modeling element
started and stopped. Each modeling element with a validity timespan that has
no associated end-time, is considered valid at the current time. By default the
validity of a modeling element starts when it is created and can be invalidated by
assigning an invalidation time. Because each element can have multiple validity
times, a previously invalidated node or relation can be re-validated again. Each
modeling element may have a Predecessor Relation to another modeling el-
ement of the same type that was replaced by the respective element w.r.t. its
validity. In the scenario described in Section 1, the robot moves from a starting
location S to a target location T. While the robot moves, a node, representing the
robot, contains an outgoing LocatedAt relation. As shown in Figure 3, when the
robot moves from room1 to floor1 the first LocatedAt relation is invalidated
and replaced by a new relation. Because the invalidated relation is not deleted
from the model, it is still accessible and can later be analyzed (e.g., by cre-
ating motion profiles). Furthermore, different representations of “time” can be
modeled. As shown in Figure 3, date and time combinations can be represented
as absolute timestamps in a given calendar. Hence, it is important to have an
associated location to every timestamp representation, which is inferred in the
provided example, because the timespan is assigned to a LocatedAt relation.
Furthermore, other representations of time (e.g., weekdays or holidays) can be
modeled and assigned to nodes and relations.

4.3 Handling Location

Locations are represented by special Location nodes (see Figure 2). The model
separates physical (e.g., the main station) or logical locations (e.g., a folder



8 Towards Context Modeling in Space and Time

in a file system). Physical locations can further be divided into sub-symbolic
(e.g., GPS coordinates) or symbolic (e.g., Dresden Main Station) locations. To
relate an entity to a location node, the GRoCoMo metamodel provides a generic
LocatedAt relation. The target of such a relation must always be a location node.
When the source node is a location node as well, the relation represents a part-
of relation for a specified point in time (e.g., Dresden Main Station Is Located
At Dresden). The LocatedAt relation is transitive. Lets consider for example
a person is located in a car and this car is located in the city of Dresden. In
this case, the person is located in Dresden as well. While the car changes its
location when it is moving, the driver will not change its position relative to the
car, but its location relative to the geographical location. The part-of relation
on locations forms a graph that has no cycles.

4.4 Context Model Query

In order to query the context model, we have created a first prototype for a
query language (GRoCoMo-QL) based on pattern matching in graphs. List-
ing 1.1 shows an example. Each query starts with a definition of roles. Each role
has an id (e.g., node1) and represents a node with an optional type constraint
(e.g., Location). Then, relations can be defined. Each relation has an id, an
optional type constraint, a source and a target role, as well as a temporal con-
straint. The last part of the query is a restriction clause, where any restrictions
on the structure of the previously defined roles and relations can be specified.
The query from Listing 1.1 will return all tuples (node1, node2, rel1), where
node1 is a location node, node2 is a device node and the name attribute of node2
has the value ‘‘Example Robot’’. Furthermore, both nodes must be connected
by a LocatedAt relation from node1 to node2. As a temporal constraint, within
all results it is guaranteed, that all nodes and relations were/are valid at the
same time and only nodes and relations are considered, that were valid within
the last 5 minutes.

1 nodes {

2 node1 : Location [valid within last 5min];

3 node2 : Device [valid within last 5min];

4 }

5 relations{

6 rel1 : LocatedAt(node2 ,node1) [valid within last 5min];

7 }

8 where node2.name = "Example_Robot";

Listing 1.1. A GRoCoMo-QL example.

4.5 Context Model Manipulation

The context model can be changed using a sequence of the following basic graph
rewrite operations:



Towards Context Modeling in Space and Time 9

Add Node/Relation: This operation adds a node/relation to the graph. The
concrete type is specified on the client side.

Remove Node/Relation: This operation takes the id of a node/relation as an
input and will remove the corresponding node. In contrast to the invalidation
operation, a deletion will irreversibly remove the node.

Invalidate Element: The invalidation operation of a modeling element (i.e.,
nodes and relations) sets the end time of the corresponding element to the
current time. Hence, it will be considered invalid.

Validate Element: Analogously to the invalidation, the validation operation
will create a new valid timespan and sets the start time to either the current
or the provided time.

Set Property: Some of the GroCoMo meta-classes (cf. Figure 2) define built-in
properties (e.g., name). Those properties can be changed using this opera-
tion. The changes of built-in properties are not tracked (w.r.t. historical
data).

From those basic operations, complex operations can be composed (e.g., re-
place node, set attribute, set location). The context model can be manipulated
by (a) sensors, (b) inference-, and (c) cleanup units. Sensors observe the environ-
ment (physical or virtual) and update the context model accordingly. Inference
units enrich the context model with new nodes and/or relations based on analysis
of the available data in the context model. Cleanup units remove nodes and rela-
tions based on application- and hardware-specific rules in order to avoid memory
overloads. To express the manipulation of those different manipulation units, we
have created a prototypical manipulation language (GRoCoMo-ML), based on
the Query Language sketched in Section 4.4. Listing 1.2 shows an example. A
manipulation script consists of a set of labeled situations, where each situation
contains exactly one query. Then, conditions on the results of the corresponding
queries can be stated. The match/mismatch of situations can be combined using
logical operators (e.g., and, or, etc.), as well as aggregation operations stated on
the number of matches. In the provided example, the corresponding sequence of
manipulation operations is executed, when the pattern, described in the situa-
tion "PersonInRoom1", is matched more than 5 times.

The presented context model GRoCoMo provides a predefined set of node-
types (e.g., Person, Activity, Location, Time), representing contextual entities
(supporting modeling dimension Z1 ). The core model introduces specific nodes
(i.e., Attribute Node) and specific relations (i.e., HasAttribute relation) to
model the individuality of entities (dimension Z2 ). Through this approach dy-
namic complex types can be modeled by creating nested attributes. Relations
represent relationships either between entities or between other relations (dimen-
sion Z3 ). Activities can be modeled using special Activity nodes (dimension
Z4 ). In order to express temporal and historic data (dimension Z5 ), valid times
by means of Timespans can be assigned to each node and relation, to express
when the validity of a modeling element started and ended. Beside the rep-
resented timestamps, it is also possible to assign symbolic representations of



10 Towards Context Modeling in Space and Time

1 Situation "PersonInRoom1"{

2 nodes {

3 room1 : Location;

4 person : Person;

5 }

6 relations{

7 rel1 : LocatedAt(person ,room1 );

8 }

9 where room1.name == "kitchen";

10 }

11 ON Count(PersonInRoom1) > 5 {

12 an = new AttributeNode(name = "is crowded", value=true);

13 rel = new AttributeRelation(source = room1 , target = an);

14 }

Listing 1.2. A GRoCoMo-ML Example

time (e.g., Monday, Holiday etc.). Finally, spatial information is captured by
Location nodes (dimension Z6 ).

5 Implementation

To investigate the feasibility of the presented approach, we have created a proto-
typical implementation using the role-based self-adaptive system Smart Applica-
tion Grids (SMAGs) [10]. SMAGs is a component-based modeling and execution
approach for runtime reconfiguration. SMAGs defines a predefined implementa-
tion for a MAPE-K loop, which can be adapted at runtime [11] as well. We
implemented the GRoCoMo as a special Context Model component and inte-
grated the Query Language and the Manipulation Language in the Sensor, Infer-
ence and Adaptation Component. For the context model representation, we used
the JUNG2 graph framework. For the pattern matching, we used the GUERY3

framework. GUERY defines a textual syntax for Motifs, representing patterns,
which are either provided by simple text files or can be created using an object-
oriented API. On top of GUERY, we defined two Domain-Specific Languages
(DSLs) for the GRoCoMo-QL and -ML using the Eclipse-based DSL-framework
Xtext4. Instances of GRoCoMo-QL, as well as the query parts from GRoCoMo-
ML, are transformed to valid GUERY-queries. Based on the result propositions
in the manipulation language, the results of the queries are investigated and
based on the evaluation of the situation guards, the provided reconfiguration
scripts are executed accordingly.

2 JUNG: http://jung.sourceforge.net/ (visited 20.05.2014)
3 GUERY: https://code.google.com/p/gueryframework/ (visited 20.05.2014)
4 Xtext: http://www.eclipse.org/Xtext/ (visited 20.05.2014)



Towards Context Modeling in Space and Time 11

6 Conclusion and Future Work

The domain of service-robots highly requires software systems that adapt their
behavior based on past, present and potential future situations of the involved
system. The MAPE-K loop represents the adaptation process from data acqui-
sition, to system reconfiguration, based on data stored in a shared knowledge
base. An important part of this knowledge base is the context model, capturing
environmental data. It was observed, that structured knowledge representations
(e.g., ontologies) are best suited for modeling open and unknown environments.
Current approaches, however, fail to support context data analysis over time
and location simultaneously. In this paper, we have proposed the context model
GRoCoMo (Graph- and Role-Based Context Model), using a typed, attributed
and directed graph as a foundation. The model supports different predefined en-
tities and relations, which can be extended for specific domains. The model
treats activities, time and location as first-class-citizens. For temporal informa-
tion, validity-timespans are attached to each modeling element, representing the
timespan when an element is/was valid (w.r.t. a specific location). To model
locations, the model provides specialized location nodes and relations, as well
as a transitive semantics for those relations. We have outlined a first version
of a pattern-based Query Language, as well as a Manipulation Language using
pattern-based situation detection and a set of predefined manipulation opera-
tions, to change the context model. For future work, the provided prototypical
implementations of the API and the corresponding languages have to be finished,
stabalized and published. In addition, the presented approach has to be evalu-
ated in real-world examples. Bettini et al. [2] described additional properties of
context models that mainly focus on data quality. Those properties were already
considered, but were not described in this paper. Those properties have to be
investigated, covered and evaluated as well. Finally, it has to be investigated
how pattern recognition techniques can be used to automatically detect situa-
tions in terms of context graph patterns, enabling machine-learning adaptation
strategies, as well as situation specification guidance.

Acknowledgment

This work is supported by the German Research Foundation (DFG) within the
Cluster of Excellence “Center for Advancing Electronics Dresden” and the Col-
laborative Research Center 912 “Highly Adaptive Energy-Efficient Computing”.

References

1. Baldauf, M., Dustdar, S., Rosenberg, F.: A survey on context-aware systems. Int.
J. Ad Hoc Ubiquitous Comput. 2(4), 263–277 (Jun 2007)

2. Bettini, C., Brdiczka, O., Henricksen, K., Indulska, J., Nicklas, D., Ranganathan,
A., Riboni, D.: A survey of context modelling and reasoning techniques. Pervasive
Mob. Comput. 6(2), 161–180 (Apr 2010)



12 Towards Context Modeling in Space and Time

3. Bolchini, C., Curino, C.A., Quintarelli, E., Schreiber, F.A., Tanca, L.: A data-
oriented survey of context models. SIGMOD Rec. 36(4), 19–26 (Dec 2007)

4. Crowley, J.L.: Navigation for an intelligent mobile robot. Robotics and Automa-
tion, IEEE Journal of 1(1), 31–41 (1985)

5. Gu, T., Wang, X.H., Pung, H.K., Zhang, D.Q.: An ontology-based context model
in intelligent environments. In: In Proceedings of Communication Networks and
Distributed Systems Modeling and Simulation Conference. pp. 270–275 (2004)

6. yi Hong, J., ho Suh, E., Kim, S.J.: Context-aware systems: A literature review and
classification. Expert Systems with Applications 36(4), 8509 – 8522 (2009)

7. IBM Corp.: An architectural blueprint for autonomic computing. IBM Corp., USA
(Oct 2004)

8. Kawamura, K., Pack, R., Iskarous, M.: Design philosophy for service robots. In:
Systems, Man and Cybernetics, 1995. Intelligent Systems for the 21st Century.,
IEEE International Conference on. vol. 4, pp. 3736–3741 vol.4 (Oct 1995)

9. Paganelli, F., Giuli, D.: An ontology-based system for context-aware and config-
urable services to support home-based continuous care. Trans. Info. Tech. Biomed.
15(2), 324–333 (Mar 2011)

10. Piechnick, C., Richly, S., Götz, S., Wilke, C., Aßmann, U.: Using role-based com-
position to support unanticipated, dynamic adaptation-smart application grids.
In: ADAPTIVE 2012, The Fourth International Conference on Adaptive and Self-
Adaptive Systems and Applications. pp. 93–102. Nice, France (2012)

11. Piechnick, C., Richly, S., Kühn, T., Götz, S., Püschel, G., Amann, U.: Con-
textpoint: An architecture for extrinsic meta-adaptation in smart environments.
In: ADAPTIVE 2014, The Sixth International Conference on Adaptive and Self-
Adaptive Systems and Applications. Venice, Italy (2014)

12. Reichle, R., Wagner, M., Khan, M.U., Geihs, K., Lorenzo, J., Valla, M., Fra, C.,
Paspallis, N., Papadopoulos, G.A.: A comprehensive context modeling framework
for pervasive computing systems. In: Proceedings of the 8th IFIP WG 6.1 Inter-
national Conference on Distributed Applications and Interoperable Systems. pp.
281–295. DAIS’08, Springer-Verlag, Berlin, Heidelberg (2008)

13. Strang, T., Linnhoff-Popien, C.: A context modeling survey. In: In: Workshop on
Advanced Context Modelling, Reasoning and Management, UbiComp - Sixth In-
ternational Conference on Ubiquitous Computing, Nottingham/England (2004)

14. Strang, T., Linnhoff-Popien, C., Frank, K.: Cool: A context ontology language to
enable contextual interoperability. In: Distributed Applications and Interoperable
Systems, Lecture Notes in Computer Science, vol. 2893, pp. 236–247. Springer
Berlin Heidelberg (2003)

15. Wang, X., Zhang, D.Q., Gu, T., Pung, H.: Ontology based context modeling and
reasoning using owl. In: Pervasive Computing and Communications Workshops.
pp. 18–22 (March 2004)

16. Xu, N., Zhang, W.S., Yang, H.D., Zhang, X.G., Xing, X.: Cacont: A ontology-based
model for context modeling and reasoning. Applied Mechanics and Materials 347,
2304–2310 (2013)

17. Zimmermann, A., Lorenz, A., Oppermann, R.: An operational definition of context.
In: Modeling and Using Context, Lecture Notes in Computer Science, vol. 4635,
pp. 558–571. Springer Berlin Heidelberg (2007)


