
Model-based software refactoring driven by
performance analysis

Davide Arcelli

Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica
Università degli Studi di L’Aquila

67100 L’Aquila, Italy
{davide.arcelli}@univaq.it

Abstract. In order to deal with performance of software systems, it is important
to introduce approaches that work in the early phases of the software life-cycle,
even before the code is developed. In fact, if performance requirements are not
met, there may be negative consequences on significant parts of the project.
Some work has been done in the last few years to tackle the problem of automati-
cally interpreting model-based performance analysis results and translating them
into architectural feedback. In this context, software and performance models are
typical artifacts involved in the interpretation, and architectural feedback con-
sists of refactoring that can take place either on the software or the performance
model. We present here this problem context, by means of a unifying framework
that supports model-based software refactoring driven by performance analysis.

Keywords: Software Performance Engineering, Performance Antipatterns, Software
Refactoring, Model-Driven Engineering, Control Theory.

1 Problem

In the software development domain, there exists a high interest in the early validation
of performance requirements because it avoids late and expensive fix to consolidated
software artifacts [1]. Current approaches to these problems are mostly based on the
skills and experience of software developers or performance analysts. Since manual
tasks are cost-intensive and are error-prone due to the complex design space, it is crucial
to introduce automation in this domain [2]. One main challenge is to enable software
designers and/or performance experts (that represent the target audience of this this re-
search) to automatically analyze solutions to performance problems. In other words, we
focus on sources of performance problems, both potential and existing, to suggest how
to refactor models in order to remove them. For example, it may happen that an exces-
sive number of requests is required to perform a task, due to inefficient use of available
bandwidth, an inefficient interface, or both. To mitigate this problem, the model can be
refactored by automatically introducing the Batching performance pattern for a better
use of available bandwidth [3], or the Session Facade design pattern to provide more
efficient interfaces [4].



Fig. 1: Software performance analysis process.

Figure 1 illustrates a model-based performance analysis round-trip process that rep-
resents the context of this work. Continuous arrows represent the process control flow.

The forward path of the process starts from a software model that is transformed
into a performance model [5] that can be solved with common analysis techniques/tools
to obtain performance indices (e.g., response times and throughputs, node utilizations,
node queue lengths) [6,7]. The backward path consists of a main step aimed at detecting
and removing possible sources of performance problems. A set of refactoring actions is
produced that may apply to the software or the performance model.

Due to the target audience of this research, consisting of software designers and
performance experts, we identify two “sides” (i.e., categories) of related work, based
on the artifacts with which these actors cope with. In particular, (i) at the software side
(see dotted-line arrows), software designers work on a software model expressed in a
certain modeling notation, e.g., UML profiled with MARTE [8], whereas (ii) at the per-
formance side (see dotted arrows), performance experts work on a performance model,
e.g., a Queueing Network (QN) [5]. The choice of the side to apply the refactoring is
crucial, because software and performance models differ both syntactically and seman-
tically [9]. In case of performance side, a transformation from the performance model
to the software model may have to take place when satisfactory performance indices are
obtained [10]. However, in both cases the forward path has to be run at each iteration to
obtain the performance indices of a refactored (performance or software) model.

Each step of the framework can be implemented with different technologies and
methods. The main objective of this work is to propose (automated) solutions to the
steps of the framework, by leveraging implementations of the process that use tech-
nologies and methods from Model-Driven Engineering (MDE) and Control Theory.

2 Related and Prior works

An extensive overview of existing research in the field of software refactoring (not only
related to performance problems) is provided in [11].

In literature, many approaches often apply refactoring to the program itself (i.e. the
source code), but preventing performance problems at design-time is clearly suitable to
avoid critical situations that lead to dramatically raise development costs [12].



Some model-based approaches for automated performance diagnosis and improve-
ment have been introduced up today in the software modeling domain [13,14,15,16],
but they strictly depend on specific modeling notations.

In the last two decades the concept of Performance Antipattern [17] has been used
for “codifying” the knowledge and experience of analysts, by looking at negative fea-
tures of a software system [18,19]. A performance antipattern identifies a problem, i.e.
a bad practice that negatively affects the software performance, and a solution, i.e. a set
of refactoring actions that can be carried out to remove it.

We have been working, in the last few years, to provide tailored techniques to man-
age technology-independent performance antipatterns on software models. However,
still a lot of work is ahead of us, as illustrated in the rest of the paper, due to their intrin-
sic complexity (as combinations of design features and performance indices) and their
multi-view nature (as combinations of elements from different modeling views).

In the last few years, Control Theory [20] has started to be applied to analyti-
cally guarantee Quality of Service in unpredictable environments [21,22,23]. In general
terms, Control Theory is a systematic approach whereby a signal to be controlled is
compared to a desired reference signal, and the discrepancy is used to compute correc-
tive control actions, thereby making the system able to adapt to specific contexts, even
in presence of disturbances.

On one end, an important contribution concerning the application of Control The-
ory to performance analysis came from Lu [24], where queueing systems have been
preliminarily considered to be controlled. On another end, a whole theory on bottleneck
identification and removal on Queueing Networks has been introduced by Lazowska [5]
few decades ago, and has been continuously refined by more recent results [25,26] that
propose approaches for automated software performance diagnosis by identifying per-
formance flaws before the software system implementation. Thus, we have started to
study the problem of automated refactoring at the performance side as solvable with the
(formal) synthesis of controllers on performance models, aimed at keeping the indices
of the latter (e.g., node queue lengths) within pre-defined ranges, also in presence of
significant divergences of variable parameters (e.g., workload, operational profile).

3 Proposed Solution

So far, we have deeply explored solutions at the software side, hence Section 4 focuses
on the latter. At the performance side, we have clear in mind our contribution and how
to obtain it, but we are in a preliminary phase of the work.

On the basis of this recent experience and the previous work done by our research
group on detecting and solving performance antipatterns in different modeling lan-
guages, i.e., UML profiled with MARTE [13], PCM [14], and Æmilia [16], we make
an abstraction step to define a metamodel for specifying performance antipatterns and
refactoring actions, conformingly to the logic-based definitions given in [27] and inde-
pendently from users modeling notations. The metamodel we propose is named Per-
formance Antipatterns Modeling Language (PAML). It specifies concepts on which the
constructs of modeling languages used by software designers can be mapped. Such



mapping enables the porting of advanced MDE techniques (e.g., model differences for
antipattern solution [28]) on concrete modeling languages.

Primary concepts of the performance antipatterns domain come from the union
of constructs in two “categories”: (i) Reference Elements for Antipatterns Definition
(READ), whose constructs are mapped onto the design constructs of the considered
modeling languages, and (ii) performance elements, whose constructs are mapped onto
the performance constructs of the considered modeling languages. For example, READ
contains the concept of SoftwareEntity, aimed at specifying a software resource that
owns Operations. A performance element named StructuredResourceDemand is used
to specify the amount of service that an operation requires to a set of sw/hw resources.

READ is a Role-Based Modeling Language (RBML), i.e., a language for describ-
ing role models. The concept of role is very suitable to capture the heterogeneity of the
knowledge (i.e. design features and performance indices) underlying the specification
of performance antipatterns. We embed READ into PAML while driven by clear sepa-
ration of concerns (e.g., we explicitly characterize parts of the system in terms of Static,
Dynamic and Deployment Views). This key-feature of PAML is preserved in antipattern
solutions, where the concept of role model [29] explicitly emerges to model refactoring
actions aimed at falsifying antipattern logical predicates, in terms of the model dif-
ference between a source role model (SRM) and the corresponding target role model
(TRM) [28], still relying on READ constructs.

At the performance side, we apply feedback control theory to performance models
representing adaptive software, in order to ensure that performance requirements are
met. We aim at defining a broadly applicable methodology for the design of control
systems based on QN models with formally provable quality guarantees. To do this, we
define Adaptive Queueing Networks (AQNs), i.e., QNs where controllers can be syn-
thesized and embedded to support adaptation at simulation time. We envisage a service
center as a plant, where a performance index subject to a quantified requirement (e.g.,
response time, queue length) can be sensed by a controller; modifiable model param-
eters represent variables that can be manipulated by the controller through actuators
(e.g., demands of classes of jobs to service centers); disturbances can come from the
system environment (e.g., variable workload and/or operational profile over time). The
goal of a controller in this context is to keep the sensed value within a certain threshold
(setpoint) by acting on model parameters under disturbances.

4 Preliminary work

First, we have conducted a study aimed at highlighting the peculiar aspects of working
on either the software side or the performance side. Here we shortly report some im-
portant findings related to modeling notations and process convergence, i.e., MN and
PC respectively. Results of the study are explicitly discussed in [9].

MN1: The number of alternative refactoring actions available at the software side is usu-
ally considerably higher than the one at the performance side.

MN2: The refactoring complexity is generally lower at the performance side.
PC1: The effectiveness of refactoring actions will be given by the trade-off between the

refactoring complexity (i.e. the distance between the original model and the refac-
tored one) and the performance gain obtained from the refactoring.



PC2: Although the number of refactoring actions is typically higher at the software side,
the performance gain deriving from refactoring actions is more unpredictable. For
this reason, decision support heuristics, for example based on convenience metrics,
might help the designer to mitigate this aspect [30,2] at the software side.

PC3: Since the refactoring complexity is generally lower at the performance side, more
iterations may be needed to converge at this side. Nevertheless, formal support and
high degree of automation can be more easily achieved at the performance side.

In [27] a formal interpretation is provided, based on first-order logic rules, that de-
fines a set of system properties under which a performance antipattern occurs on a soft-
ware model. A specific characteristic of performance antipatterns is that they contain
numerical parameters that represent thresholds referring to either performance indices
(e.g., high device utilization) or design features (e.g., many interface operations). Both
the detection and refactoring activities are heavily affected by multiplicity and estima-
tion accuracy of thresholds that an antipattern requires. For this reason, we have expe-
rienced the influence of thresholds with respect to these two activities. In particular, we
have conducted a sensitivity analysis by varying the numerical values of several thresh-
olds of different performance antipatterns, on a case study. We have quantified threshold
variations with the support of recall and precision metrics, and derived several useful
findings for dealing with performance antipatterns on software models [31].

We summarize in the following the results that we have achieved so far:
(i) we have conducted a study aimed at highlighting the peculiar aspects of working

on either the software side or the performance side [9];
(ii) we have preliminarily approached the problem of providing support to performance-

based refactoring of software models, by introducing a first version of our antipattern-
based approach [4]. In particular, we have defined a tailored RBML (i.e., a meta-
model), with respect to a preliminary version of the PAML metamodel;

(iii) we have introduced further automation in our antipattern-based software refac-
toring process, by means of advanced MDE techniques (i.e., model differences,
Higher-Order Transformations and Model-to-Model Transformations) [28];

(iv) we have defined a stable version of PAML, relying on READ to support the defini-
tion of model-based performance antipattern specifications and refactoring actions;

(v) we have experienced the influence of numerical thresholds on the capability and
effectiveness of detecting and refactoring performance antipatterns, by analyzing
the recall and precision of detection rules and refactoring actions respectively [31].

5 Expected contributions

The results obtained so far (as illustrated in Section 4) represent our contributions to the
problem up to now. We are currently working on several directions, that shall outcome
in the following expected contributions.

At the software side, the definition of mappings between PAML metamodel con-
structs and the ones of the considered software modeling languages [8,15,32]. Basing
on this contribution, we will be able to provide automated MDE support to the specifica-
tion, detection and refactoring of model-based performance antipatterns, independently
from users modeling notations.



At the performance side, a method for the definition, the design and implementation
of AQNs, and the analysis of the controlled system. The effects of this contribution will
be twofold. It can be applied at design time to design controllers that will be imple-
mented within the running system, and at runtime to induce in the running system the
changes that are suggested from the controlled system.

6 Plan for evaluation and validation

In order to validate our work, we plan to provide running artifacts that support our
framework at both the software and the performance side.

At the software side, we intend to develop an Eclipse plugin implementing a fully-
automated sub-process for applying refactoring actions, based on model differencing,
that will be evaluated by test users (e.g., students) by means of a large repository of
refactoring actions, to demonstrate the expressivity of our approach and the significant
support that we can provide in the model refactoring activity. Together with other tools
by our research group (e.g., the tool for antipattern detection on software models), the
evaluated plugin would provide support to the whole framework of Figure 1

At the performance side, we intend to realize a Modelica1 library of components that
define, through differential equations, adaptive QN elements with variable parameters,
without requiring deep mathematical skills usually not mastered by software engineers.
To validate the work at this side, we plan to use our library on several case studies, i.e.,
experimental sessions aimed at showing the behavior of a model and a controller under
different scenarios, as described in Section 3.

7 Current status

To finalize our work, we identify the following tasks at the software and performance
side, i.e., ST and PT respectively, that will lead to a Ph.D. dissertation (i.e., TD).
Figure 2 shows a planned timeline for completion.

ST1: To define mappings between PAML and the considered modeling languages, i.e.,
UML profiled with MARTE [8], PCM [15] and Æmilia [32].

ST2: To define a graphical editor for creating Ecore-based PAML models in an easy way.
ST3: To provide a large repository of refactoring actions in terms of (SRM,TRM) pairs

that conform to PAML.
ST4: To implement a fully-automated sub-process for applying refactoring actions (ex-

pressed in terms of models that represent differences between SRMs and corre-
sponding TRMs), with the support of appropriate decision mechanisms [30].

PT1: To realize a Modelica library of components that define (adaptive) QN elements
with variable parameters, e.g., workload and operational profile.

PT2: To study the synthesis of controllers for software and hardware adaptation that
provide performance guarantees, and to extend our Modelica library to deal with
specific “classes” of QNs.

1 Modelica is an analysis and simulation environment to define dynamic models of engineered
systems and to support the design and synthesis of suitable controllers [33].



PT3: To experiment the use of our Modelica library on several case studies.
TD: Ph.D. thesis and dissertation.

Fig. 2: Planned timeline w.r.t. the identified tasks.

Acknowledgements. This work has been supported by the European Office of Aero-
space Research and Development (EOARD), Grant/Cooperative Agreement (Award no.
FA8655-11-1-3055).

References

1. C. U. Smith, “Introduction to software performance engineering: Origins and outstanding
problems,” in SFM, vol. 4486 of LNCSe, pp. 395–428, Springer, 2007.

2. A. Martens, H. Koziolek, S. Becker, and R. Reussner, “Automatically improve software ar-
chitecture models for performance, reliability, and cost using evolutionary algorithms,” in
Proceedings of ICPE, WOSP/SIPEW ’10, (New York, NY, USA), pp. 105–116, ACM, 2010.

3. F. Ballesteros, F. Kon, M. Patio, R. Jimnez, S. Arvalo, and R. Campbell, “Batching: A design
pattern for efficient and flexible client/server interaction,” in Transactions of PLP I (J. Noble
and R. Johnson, eds.), vol. 5770 of LNCS, pp. 48–66, Springer Berlin Heidelberg, 2009.

4. D. Arcelli, V. Cortellessa, and C. Trubiani, “Antipattern-based model refactoring for software
performance improvement,” in ACM SIGSOFT QoSA, pp. 33–42, 2012.

5. E. Lazowska, J. Kahorjan, G. S. Graham, and K. Sevcik, Quantitative System Performance:
Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., 1984.

6. C. M. Woodside, D. C. Petriu, D. B. Petriu, H. Shen, T. Israr, and J. Merseguer, “Performance
by unified model analysis (PUMA),” in WOSP, pp. 1–12, ACM, 2005.

7. G. Casale and G. Serazzi, “Quantitative system evaluation with java modeling tools,” in
WOSP/SIPEW ICPE, pp. 449–454, 2011.

8. Object Management Group (OMG), “UML Profile for MARTE,” 2009. OMG Document
formal/08-06-09.

9. D. Arcelli and V. Cortellessa, “Software model refactoring based on performance analysis:
better working on software or performance side?,” in FESCA, vol. 108 of EPTCS, pp. 33–47,
2013.

10. R. Eramo, V. Cortellessa, A. Pierantonio, and M. Tucci, “Performance-driven architectural
refactoring through bidirectional model transformations,” in QoSA, pp. 55–60, 2012.

11. T. Mens and G. Taentzer, “Model-driven software refactoring,” in WRT, pp. 25–27, 2007.
12. H. Harreld, “NASA Delays Satellite Launch After Finding Bugs in Software Program,” 1998.
13. V. Cortellessa, A. Di Marco, R. Eramo, A. Pierantonio, and C. Trubiani, “Digging into UML

models to remove performance antipatterns,” in ICSE Workshop Quovadis, pp. 9–16, 2010.



14. C. Trubiani and A. Koziolek, “Detection and solution of software performance antipatterns
in palladio architectural models,” in ICPE, pp. 19–30, 2011.

15. S. Becker, H. Koziolek, and R. Reussner, “The Palladio component model for model-driven
performance prediction,” Journal of Systems and Software, vol. 82, no. 1, pp. 3–22, 2009.

16. V. Cortellessa, M. De Sanctis, A. Di Marco, and C. Trubiani, “Enabling performance an-
tipatterns to arise from an adl-based software architecture,” in WICSA/ECSA, pp. 310–314,
2012.

17. C. U. Smith and L. G. Williams, “More New Software Antipatterns: Even More Ways to
Shoot Yourself in the Foot,” in ICMGC, pp. 717–725, 2003.

18. W. J. Brown, R. C. Malveau, H. W. McCormick, III, and T. J. Mowbray, AntiPatterns: Refac-
toring Software, Architectures, and Projects in Crisis. John Wiley & Sons, Inc., 1998.

19. T. Parsons and J. Murphy, “Detecting performance antipatterns in component based enter-
prise systems,” Journal of Object Technology, vol. 7, no. 3, pp. 55–90, 2008.

20. J. C. Doyle, B. A. Francis, and A. R. Tannenbaum, Feedback Control Theory. Macmillan,
New York, 1992.

21. A. Filieri, C. Ghezzi, A. Leva, and M. Maggio, “Self-adaptive software meets control theory:
A preliminary approach supporting reliability requirements,” in Automated Software Engi-
neering (ASE), 2011 26th IEEE/ACM International Conference on, pp. 283–292, Nov 2011.

22. M. Maggio, H. Hoffmann, M. Santambrogio, A. Agarwal, and A. Leva, “Power optimization
in embedded systems via feedback control of resource allocation,” Control Systems Technol-
ogy, IEEE Transactions on, vol. 21, pp. 239–246, Jan 2013.

23. A. Gambi, G. Toffetti, C. Pautasso, and M. Pezze, “Kriging controllers for cloud applica-
tions,” IEEE Internet Computing, vol. 17, no. 4, pp. 40–47, 2013.

24. C. Lu, J. A. Stankovic, T. F. Abdelzaher, G. Tao, S. H. Son, and M. Marley, “Performance
specifications and metrics for adaptive real-time systems,” in RTSS’10, pp. 13–23, IEEE
Computer Society, 2000.

25. G. Franks, D. C. Petriu, C. M. Woodside, J. Xu, and P. Tregunno, “Layered bottlenecks and
their mitigation,” in QEST, pp. 103–114, 2006.

26. J. Xu, “Rule-based automatic software performance diagnosis and improvement,” Perfor-
mance Evaluation Journal, vol. 67, no. 8, pp. 585–611, 2010.

27. V. Cortellessa, A. Di Marco, and C. Trubiani, “An approach for modeling and detecting
software performance antipatterns based on first-order logics,” SoSyM Journal, 2012.

28. D. Arcelli, V. Cortellessa, and D. D. Ruscio, “Applying model differences to automate
performance-driven refactoring of software models,” in EPEW, vol. 8168 of LNCS, pp. 312–
324, Springer, 2013.

29. R. B. France, S. Ghosh, E. Song, and D.-K. Kim, “A Metamodeling Approach to Pattern-
Based Model Refactoring,” IEEE Software, vol. 20, no. 5, pp. 52–58, 2003.

30. V. Cortellessa, A. Martens, R. Reussner, and C. Trubiani, “A process to effectively identify
guilty performance antipatterns,” in FASE’10, pp. 368–382, Springer-Verlag, 2010.

31. D. Arcelli, V. Cortellessa, and C. Trubiani, “Experimenting the influence of numerical thresh-
olds on model-based detection and refactoring of performance antipatterns.,” ECEASST,
vol. 59, 2013.

32. A. Aldini, M. Bernardo, and F. Corradini, A Process Algebraic Approach to Software Archi-
tecture Design. Springer Publishing Company, Incorporated, 1st ed., 2009.

33. Modelica Association, “Modelica - A Unified Object-Oriented Language for Systems Mod-
eling,” 2012.


	Model-based software refactoring driven by performance analysis
	Problem
	Related and Prior works
	Proposed Solution
	Preliminary work
	Expected contributions
	Plan for evaluation and validation
	Current status


