
A Domain Specific Transformation Language to
Support the Interactive Definition of Model

Transformation Rules

Luis Silvestre

Computer Science Department, University of Chile
Beauchef 851, 8370459 Santiago, Chile

lsilvest@dcc.uchile.cl

http://www.dcc.uchile.cl

Abstract. Model-driven engineering (MDE) is a new software develop-
ment paradigm that intends to improve software construction by raising
the abstraction level through the use of models and transformations. Re-
cently, MDE has also been used for automatic change evolution and in
particular for tailoring software processes. Even though there are some
proposals for automatically generating part of the transformation mod-
els, they are not easily applicable in the software industry because the
potential users usually do not have the capabilities of developing or main-
taining transformations. Proposals trying to address this problem should
balance the formality required by MDE and the usability needed by the
users. This research applies higher-order transformations (HOTs) and
decision models for generating transformations to tailor software process
models with no direct user interaction with the code. To that end, a
graphical interface was defined with such a purpose, so that transfor-
mation rules are interactively defined using a domain specific languaje
(DSL), and the tailoring transformation is automatically generated and
applied using a domain specific transformation language (DSTL).

Keywords: Model-driven Engineering, Software Process Tailoring, Do-
main Specific Transformation Language

1 Introduction

Model-driven engineering (MDE) [23] looks forward to improving development
productivity and software quality by reducing the semantic gap between the
problem domain and its solution, using models and transformations that raise
the abstraction level of the managed concepts [4]. MDE has been applied in
the development of applications [2], automatic change evolution [13] and also
in software process engineering [7]. Recently, MDE techniques have also been
applied for tailoring software process models [18]. In Hurtado et al. [14, 15], two
source models are considered as input for the tailoring transformation: (1) the
organizational process model of a certain company based on SPEM (Software



and Systems Process Engineering Metamodel) [20], and (2) the concrete con-
text model for a project where the process needs to be applied. The tailoring
transformation is implemented using ATL [6]. Although such a proposal proves
that the approach is technically feasible, there are still factors that make the
solution difficult to deploy in software companies, and more specifically in small
software enterprises (SSEs). First, defining and maintaining tailoring transfor-
mations with two source models is in itself a complex task. Second, the tailoring
knowledge encapsulated within the transformation rules is generally only man-
aged by the company’s process engineer, but he usually is not familiar with the
syntax and semantics of transformation languages. Therefore, he could hardly
develop and maintain the transformation code.

As a means to address such a problem, this research proposes the auto-
matic generation of tailoring transformations through the interactive definition
of tailoring rules, that improves the usability and hides the complexity of MDE
components. In our research, a graphical environment allows rule definition as
a variation decision model (VDM). We developed a HOT [30] that takes the
VDM as input and generates a tailoring transformation written in a DSTL (in
this case, a subset of ATL). Defining the transformation rules using our DSL is
easier than writing them directly in a transformation language such as ATL [6]
or QVT [21], without sacrificing expressiveness for the application domain.

2 Problem Statement

Tailoring transformations implementation is difficult because it requires high
expertise about MDE concepts and also about the application domain, and these
two kinds of knowledge are almost never mastered by the same person. MDE
knowledge can be obtained through training, but highly skilled people are still
required, and these people are not generally in charge of the process in SSEs.

MDE solutions are powerful and suitable for different application domains,
but they are almost always complex. There are social and organizational factors
that threaten industrial adoption [16] (e.g., technological factors, resistance to
change). Probably, if we could lower complexity, then adoption would be higher.
In this sense, if SSEs would like to reuse their processes through model-based
tailoring by defining and applying the transformation rules, they should not
require a direct interaction with the source code of any model transformation.

3 Related Work

There have been several proposals to deal with the difficulty of writing trans-
formations. Some high abstraction level transformation languages specifically
created for this purpose have been proposed, such as ATL [6] or QVT [21]. Pro-
vided that these languages have very specific syntax and semantics, few people
in SSEs have the capabilities of developing or maintaining this kind of code.

Varró and Balogh, through the VIATRA framework [31], provide an inte-
grated environment for building and executing transformations at an even higher



abstraction level. It includes its own language that intends to hide the complex-
ity of transformations and is supported by Eclipse. However it does not provide
an easy-to-use environment for process engineers.

Provided that transformations can also be considered as models [5], HOTs [30]
are a special kind of transformations that may take a transformation as input
and/or generate a transformation as output. In particular, HOTs that generate
transformations are called synthesis [29]. This is the kind of HOTs in which we
are interested.

The Atlas Model Weaver (AMW) [10] tool includes an interactive interface
for defining a weaving model that defines the relationships between two or more
models. The weaving model can then be used as input for automatically generat-
ing model transformations. The purpose of AMW is to generate transformations
for traceability or matching, so the rules are simple and they do not include com-
plex structures; in particular it is not possible to include conditions for matching
elements as we need for tailoring process models according to the project con-
text. Nevertheless, we follow the structure of the AMW tool for our solution:
defining the relationship between both input models and the output model, and
use this model as the input for a HOT.

There are other MDE proposals that intend to address usability. MOLA [17]
and GREaT [1] allow specifying transformations through visual mapping pat-
terns. They specify rules and mappings using class diagrams, but considering an
environment inspired in activity diagrams. Both works define the possibility of
establishing relationships between metamodel attributes and elements. But they
still need the user to directly interact with metamodels and class diagrams, which
still represents a strong restriction for process engineers in terms of usability.

There are some recent proposals such as MTBE (Model Transformations
By Example) [33] and MTBD (Model Transformation By Demonstration) [28]
that present innovative solutions for simplifying the implementation of model
transformations using visual strategies and patterns. These strategies generate
part of the code of the model transformations; however, it is still needed to
complete such code. Therefore, this represents a semi-automatic approach to
generate model transformations that is still not enough for process engineers.

4 Proposed Solution

The proposed solution consists of applying diverse MDE concepts to allow au-
tomatic transformation generation in a usable way for final users. The gener-
ated transformations should be expressive enough for its purpose, i.e. for tai-
loring software process, the interactive definition of transformations should be
usable for target users, i.e. process engineers, and the complete generation pro-
cess should be transparent, and no direct interaction with the code should be
necessary. This proposal focuses particularly on the need of SSEs, which have
to adapt their software processes for efficient development, but they generally
do not count on highly specialized people for manually tailoring their processes.
The proposed solution is called Architect of Tailoring Rules (ATR). ATR is a



Fig. 1. Architecture of the Proposed Solution

model-based tool that allows process engineers to interactively define the trans-
formation rules using a graphical environment. The output of the tool is the
tailoring transformation that can be used to adapt the organizational software
process.

The proposed solution has four major components:

– The graphical environment rules definition requires two source models. The
first input is the organizational software process model defined by the SSE
for guiding its software developments (component 1 in Fig. 1). This model
contains all activities, roles, work products and tasks involved in the soft-
ware process. In particular, it identifies the variable process elements whose
inclusion is defined by the rules [27]. The second input is the organizational
projects context model (component 2 in Fig. 1), where the attributes that
characterize projects along with their set of potential values are defined.
The graphical environment itself (component 3 in Fig. 1) includes two el-
ements: an interactive rule definition interface for defining transformation
rules and the Text-to-Model transformation for generating a VDM.

– The variation decision model (VDM) for formally representing transforma-
tion rules. We have defined the VDM using our DSL (component 4 in Fig. 1)
that is a high-level representation of the transformation rules using an ab-
stract syntax (metamodel) and a concrete syntax (textual representation).
The VDM is inspired by Decision Models [32] and Semantics of Business Vo-
cabulary and Business Rules (SMVB) used for building decision rules [19].
In this work, we also defined a Variation Decision Metamodel (VDMM).

– The tailoring transformation generation (HOT) (component 5 in Fig. 1).
This HOT has one input model, the VDM, and follows a transformation
synthesis pattern for generating the tailoring transformation model, that



conforms to the ATL metamodel. This HOT is an exogenous transformation
because the models are expressed using different languages (decision and
transformation models). Then, we apply an ATL extractor for generating
the tailoring transformation. In this work, we applied a vertical transfor-
mation because the source and target model of the HOT reside at different
abstraction levels.

– The tailoring transformation. After applying the HOT, we obtain a tailoring
transformation (component 6 in Fig. 1) using an ATL subset. The DSTL uses
only some structures of the ATL language that are necessary in this domain
(e.g., lazy rules and called rules are not used). The tailoring transformation
is generated only once and it can be used for tailoring all concrete contexts.
The adapted software process model (component 8 in Fig. 1) is the output of
applying such transformation using the organizational software process and
the concrete project context as input. Such a process includes the process
elements that are needed for the specified context.

This research has two specific goals: (1) automatically generating tailoring
transformations using our DSL, and (2) applying the generated tailoring trans-
formation for obtaining an adapted software processes. The results of this work
will be applied in organizational software process of Chilean SSE, so that they
can be adapted to different project contexts, and thus the development produc-
tivity and product quality are improved. The expressiveness of the DSTL and
the usability of the graphical environment will be rigorously evaluated.

5 Preliminary Results and Contributions

We have studied several alternatives for implementing the preliminary solution
of the proposal, and we have analyzed the feasibility and the effort required to
implement the ATR components.

The first step was to explore the feasibility to implement HOTs using two
input models. We have successfully addressed this issue, in our case the organi-
zational software process model and the organizational context model. We tried
using some of the most promising techniques and tools for developing HOTs such
as AMW and MOFScript but we found limitations for dealing with two input
models [25]. We then decided to divide the HOT in two parts: rule definition
and transformation generation. We defined one input model for the HOT and
we called it VDM. We found researches about business rules [19] and decision
models [32], we used them as inspiration and we formalized the DSL for our
application. The VDM is a formal representation of transformation rules.

The second step consisted of building a proof of concept and an initial imple-
mentation of the ATR. For this step, we were able to build the infrastructure of
the ATR and apply it through a running example. The initial ATR implementa-
tion has a graphical interface, a preliminary VDM (Fig. 2), a HOT and an initial
DSTL. For the first implementation of ATR, we defined the models using Eclipse
Modeling Tools (EMT) and implemented the transformations using Java. The
running example was used to generate a tailoring transformation for a Chilean



Fig. 2. The transformation rules definition using our DSL

SSE [26]. The output of the Model-Based tool is an ATL file that is compilable
in EMT for software process tailoring.

The third step encapsulated ATR in a megamodel application. We have pro-
posed a megamodel to improve the adoption and evolution of the MDE-based
tailoring approach in industry [3]. ATR is a relevant part of this megamodel.

6 Plan for Evaluation and Validation

We have applied ATR to an exploratory case study in a Chilean company, and
we will apply a confirmatory multi-case study in two or three other companies.

The exploratory case study addressed the evaluation of correctness and pro-
ductivity. We compared the productivity of adapted software processes obtained
by using two different approaches: template-based tailoring [9] and automatic
tailoring [26]. The productivity is measured in terms of the missing and ex-
tra tasks the template-based tailored process has when compared with the au-
tomatically tailored process. We found that the automatic tailoring has more
fine-grained rules for generating the process and the results of template-based
tailoring are in most of the cases sub-optimal [12]. The correctness was evaluated
by comparing the adapted software processes obtained manually and automati-
cally. We tested our automatic tailoring by applying it to the company’s process,
and then interviewing the process engineer about the quality of the result.

In the multi-case study, we will incorporate the evaluation of usability and
expressiveness. We will evaluate the usability by applying structured question-
naires to process engineers [8] about their perception about the graphical inter-
face usability focusing on the elements of Quality in Use Integrated Measurement



(QUIM) [22]. Evaluating the expressiveness of the DSTL will consist of verifying
that it counts on all the required constructs for expressing the process engineer’s
intentions for tailoring software process. Usability and expressiveness will be an-
alyzed using qualitative methods [24], while correctness and productivity will
use quantitative methods [11].

We expect that SSEs will improve their competitiveness using the proposed
approach because they will be able to apply software processes that are specif-
ically adjusted to the needs of their particular projects. Using the solution will
probably also enhance the quality of the software products, although this eval-
uation is out of the scope of this work.

Acknowledgments. This work has been partly funded by Project Fondef
GEMS IT13I20010 and Luis Silvestre was also supported by PhD Scholarship
Program of Conicyt, Chile (CONICYT-PCHA/2013-63130130).

References

1. D. Balasubramanian, A. Narayanan, C. vanBuskirk, and G. Karsai. The graph
rewriting and transformation language: GReAT. Electronic Communications of
the EASST, 1, 2007.

2. K. Balasubramanian, A. Gokhale, G. Karsai, J. Sztipanovits, and S. Neema. Devel-
oping applications using model-driven design environments. Computer, 39(2):33–
40, 2006.

3. M. C. Bastarrica, J. Simmonds, and L. Silvestre. Using megamodeling to im-
prove industrial adoption of complex MDE solutions. In J. M. Atlee, V. Kulkarni,
T. Clark, R. B. France, and B. Rumpe, editors, MiSE, pages 31–36. ACM, 2014.

4. J. Bézivin. Model driven engineering: an emerging technical space. In H. Berlin,
editor, GTTSE, pages 36–64, Braga, Portugal, 2006. Springer-Verlag.

5. J. Bézivin, F. Büttner, M. Gogolla, F. Jouault, I. Kurtev, and A. Lindow.
Model transformations? transformation models! In O. Nierstrasz, J. Whittle, and
D. Harel, editors, MoDELS, volume 4199 of LNCS, pages 440–453. Springer, 2006.

6. J. Bézivin, G. Dupé, F. Jouault, G. Pitette, and J. E. Rougui. First experiments
with the ATL model transformation language: Transforming XSLT into XQuery.
In OOPSLA, page 50, Anaheim, CA, USA, 2003.

7. E. Breton and J. Bézivin. Model driven process engineering. In COMPSAC, pages
225–230. IEEE, 2001.

8. M. A. Campion, J. E. Campion, and J. P. Hudson. Structured Interviewing: A
note on Incremental Validity and Alternative Questions Types. Journal of Applied
Psychology, 79(6):998–1002, 1994.

9. A. Cockburn. Crystal Clear a Human-powered Methodology for Small Teams.
Addison-Wesley Professional, first edition, 2004.

10. M. D. Del Fabro, J. Bézivin, and P. Valduriez. Weaving Models with the Eclipse
AMW plugin. In Eclipse Modeling Symposium, volume 2006. Citeseer, 2006.

11. T. Dyb̊a, V. B. Kampenes, and D. I. K. Sjøberg. A systematic review of statistical
power in software engineering experiments. Information & Software Technology,
48(8):745–755, 2006.

12. F. Gonzalez, L. Silvestre, M. Solari, and M. C. Bastarrica. Template-Based vs.
Automatic Process Tailoring. In To appear in proc. SCCC, 2014.



13. J. Gray, Y. Lin, and J. Zhang. Automating change evolution in model-driven
engineering. Computer, 39(2):51–58, 2006.

14. J. A. Hurtado, M. C. Bastarrica, A. Quispe, and S. F. Ochoa. An MDE approach
to software process tailoring. In D. Raffo, D. Pfahl, and L. Zhang, editors, ICSSP,
pages 43–52, Honolulu, HI, USA, 2011. ACM.

15. J. A. Hurtado, M. C. Bastarrica, A. Quispe, and S. F. Ochoa. MDE-based process
tailoring strategy. Journal of Software: Evolution and Process, 26(4):386–403, 2014.

16. J. Hutchinson, J. Whittle, and M. Rouncefield. Model-driven engineering practices
in industry: Social, organizational and managerial factors that lead to success or
failure. Science of Computer Programming, 89:144–161, 2014.

17. A. Kalnins, J. Barzdins, and E. Celms. Model Transformation Language MOLA.
In U. Aßmann, M. Aksit, and A. Rensink, editors, MDAFA, volume 3599 of LNCS,
pages 62–76, Twente, The Netherlands, 2004. Springer.

18. M. Kuhrmann. You can’t tailor what you haven’t modeled. In H. Zhang, L. Huang,
and I. Richardson, editors, ICSSP, pages 189–190. ACM, 2014.

19. OMG. Semantics of Business Vocabulary and Business Rules (SBVR) Version 1.0.
Technical Report 2008-04-01, 2008. http://www.omg.org/spec/SBVR/1.0/.

20. OMG. Software & Systems Process Engineering Metamodel Specification (SPEM).
Technical Report 2008-04-01, 2008. http://www.omg.org/spec/SPEM/2.0/PDF/.

21. OMG. Meta Object Facility (MOF) 2.0 Query/View/Transformation Specification.
Technical report, January 2011. http://www.omg.org/spec/QVT/1.1/PDF/.

22. H. Padda. QUIM: A Model for Usability/Quality in Use Measurement. LAP
Lambert Academic Publishing, Germany, 2009.

23. D. C. Schmidt. Guest Editor’s Introduction: Model-Driven Engineering. IEEE
Computer, 39(2):25–31, 2006.

24. C. B. Seaman. Qualitative Methods in Empirical Studies of Software Engineering.
IEEE Trans. Software Eng., 25(4):557–572, 1999.

25. L. Silvestre, M. C. Bastarrica, and S. F. Ochoa. HOTs for Generating Transfor-
mations with Two Input Models. In proc. SCCC, 2013.

26. L. Silvestre, M. C. Bastarrica, and S. F. Ochoa. A model-based tool for generating
software process model tailoring transformations. In L. F. Pires, S. Hammoudi,
and J. Filipe, editors, MODELSWARD, pages 533–540. SciTePress, 2014.

27. J. Simmonds, M. Bastarrica, L. Silvestre, and A. Quispe. Variability in software
process models: Requirements for adoption in industrial settings. In PLEASE,
pages 33–36, May 2013.

28. Y. Sun, J. White, and J. Gray. Model Transformation by Demonstration. In
A. Schürr and B. Selic, editors, MoDELS, volume 5795 of LNCS, pages 712–726,
Denver, CO, USA,, 2009. Springer.

29. M. Tisi, J. Cabot, and F. Jouault. Improving Higher-Order Transformations Sup-
port in ATL. In ICMT, volume 6142 of LNCS, pages 215–229, Malaga, Spain,
2010. Springer.

30. M. Tisi, F. Jouault, P. Fraternali, S. Ceri, and J. Bézivin. On the Use of Higher-
Order Model Transformations. In ECMDA-FA, volume 5562 of LNCS, pages 18–33,
Enschede, The Netherlands, 2009. Springer.

31. D. Varró and A. Balogh. The model transformation language of the VIATRA2
framework. Science of Computer Programming, 68(3):214–234, 2007.

32. D. Weiss, J. Li, H. Slye, T. Dinh-Trong, and S. Hongyu. Decision-Model-Based
Code Generation for SPLE. In SPLC, pages 129–138, Sept 2008.

33. M. Wimmer, M. Strommer, H. Kargl, and G. Kramler. Towards Model Transfor-
mation Generation By-Example. In HICSS, page 285, Big Island, HI, USA, 2007.
IEEE Computer.


