
Towards a Structured Workflow Language for
Model Management?

Sahar Kokaly

Department of Computing and Software
McMaster University, Hamilton, ON, Canada

kokalys@mcmaster.ca

Abstract. In Model Driven Engineering (MDE), models and mappings
play a key role in system design. However, in practice, models and map-
pings do not exist in isolation, but are combined to form systems of
interrelated models. We call the trace of operations, such as model trans-
formations or model merges, between an initial configuration of a system
of interrelated models to a final one, a workflow. Current approaches for
using workflows in MDE exist, but are generally informal and do not
properly address traceability and verification. In this work, we propose a
structured method for defining workflows for model management, which
automatically ensures traceability and inherently enables verification.
This approach also sets the stage for defining a declarative workflow lan-
guage, which we believe can aid in validation. Through this framework,
comparison and optimization of workflows is possible, as they are repre-
sented as algebraic terms in a mathematically defined language. Finally,
the framework gives rise to multiple levels of abstraction, making it flex-
ible enough to be used at different stages of the system design, while
enabling better workflow readability and maintainability.

1 Problem

The need for workflows in MDE.
Model Driven Engineering (MDE) focuses on the use of models and map-

pings between them to drive the software development cycle. However, models
and mappings do not exist in isolation, but are combined to form systems of in-
terrelated models, that are chained through the use of operations, to form work-
flows that fulfill a given intention in the software design. Forming such chains
is therefore a natural step in MDE to enable the description of the composition
of activities in software construction and provide explicit means for MDE au-
tomation [8]. Consider the Epsilon family of languages [1], which is comprised of
various domain-specific languages that are used for tasks such as model trans-
formation (Epsilon Transformation Language (ETL)), model validation (EVL),
model merge (EML), model comparison (ECL) and code generation (EGL). In
order to combine the outputs of these languages and form a chain of model man-
agement operations, a workflow language must be used.

? This work is being done as part of the NECSIS project, funded by Automotive
Partnership Canada and NSERC. I would like to thank Dr. Tom Maibaum, Dr.
Zinovy Diskin, and Dr. Richard Paige for their supervision in this work.



Workflows should be modelled.
However, in order to stay faithful to the MDE philosophy, workflows should

also be modelled before implementation [9], making them amenable to analysis
and independent of platform specific details. But, as supported in [8], to the
best of our knowledge, little work is devoted to understanding the underlying
structure of such workflows when they are used in MDE.

Models of workflows should be structured.
As was recently stated in an article by Whittle et al.: “It turns out that the

main advantages are in the support that MDE provides in documenting a good
software architecture. Most would agree that a clearly described software archi-
tecture is one of the key ingredients for successful software development”[10]. In
order for MDE to provide this advantage, workflows in MDE should not only
be modelled, but be defined in a structured way that makes their specification
serve as a good documentation method, and as a basis for sound implementation.
Structured approaches have historically demonstrated their value in managing
the complexity of systems. For example, the shift from assembly programming to
the structured programming paradigm has proved to be a good design decision,
and we believe the same is true for the way workflows should be defined in MDE.

The right level of abstraction.
The current way workflows are modelled is via diagrams that contain only

unstructured nodes and unstructured arrows. However, this makes the workflow
definitions too abstract, which does not lend itself to their disciplined implemen-
tation, or checking their correctness. To further motivate the importance of this
problem, consider the following model management scenario:

User: “I have two models: M1 and M2. I would like to merge them and then
generate code from the result. I would then like to trace back to see what part of
the code came from M1.”

A(simple(scenario(

!  User:!“I!have!two!models:!M1!and!M2.!I!would!like!
to!merge!them!and!then!generate!code!from!the!
result.!I!would!then!like!to!trace!back!to!see!what!
part!of!the!code!came!from!M1.”!

!

M1!

M2!

M3! M4!
(Code)!

3:transform!
2:merge!

import!models!M1,!M2!
import!overlap!O=O(M1,!M2)!
merge!(M1,M2)!into!M3!using!O!
import!transformaPon!t!
apply!t!to!M3!to!produce!Code!
Intersect!(M1,Code)!into!M14!

5"

M14!

1:overlap!

4:intersect!

given! heurisPcs! automaPc!

Fig. 1. A simple workflow...

A(simple(scenario(

!  User:!“I!have!two!models:!M1!and!M2.!I!would!like!
to!merge!them!and!then!generate!code!from!the!
result.!I!would!then!like!to!trace!back!to!see!what!
part!of!the!code!came!from!M1.”!

!

M1!

M2!

M3! M4!
(Code)!

3:transform!
2:merge!

import!models!M1,!M2!
import!overlap!O=O(M1,!M2)!
merge!(M1,M2)!into!M3!using!O!
import!transformaPon!t!
apply!t!to!M3!to!produce!Code!
Intersect!(M1,Code)!into!M14!

5"

M14!

1:overlap!

4:intersect!

given! heurisPcs! automaPc!
Fig. 2. ...and the script
implementing it.

This can be depicted graphically in Fig. 1, and a script implementing this
workflow scenario is shown in Fig. 2. We start with two input models M1 and
M2, define their overlap in the first step of the workflow, then merge these
two models into a third model M3 via a merge operation. Afterwards, some
transform operation is used to generate code (M4). In order to find which part



of the code came from M1, an intersect operation is used, which yields M14.
The main issue with the current way the workflow is represented is that there
exists a very large gap between the diagram and the code that would implement
it. We would therefore like to propose a way to model the workflow that is still
abstract, but not too abstract to be too far from the semantics of the operations
and how they are composed.

Traceability mappings as first class citizens.
Traceability is increasingly required in software development at the stake-

holder level (e.g., to ensure a given requirement has been implemented in the
system), but also at the software development level (e.g., to ensure traceability as
high level models are refined along the development process) [8]. Because model
management workflows explicitly model the relations between the several steps
of an MDE process, traceability is a natural consequence of using such work-
flows. But, as in any system, in order to be able to reason about it, it should be
modelled by a correct mathematical model. If the model is incomplete, reasoning
is not possible [5]. Based on that, traceability mappings should be considered
first class citizens in the workflow model; if they are left implicit, they cannot
be directly used for reasoning and analysis. To do this, traceability mappings
should be included in the arity of the model management operations (i.e., the
typing of their parameters), and then, the composition of these operations to
construct workflows will also have explicit traceability.

Verification and Validation of Workflows.
Finally, it is known that the presence of errors in models and model man-

agement operations risks both the reliability of MDE-based processes and the
soundness of the resulting products. For this reason, there is a great need for
mechanisms to ensure quality and the absence of errors in models and model
management operations. This propagates to the workflow level as well, creating
a need for mechanisms to ensure quality and absence of errors in the model
management workflows. To do this, verification and validation techniques are
typically used, but as far as we know, none exist in the area of modelling work-
flows in MDE. For verification, what is needed is a mechanism to ensure that
the workflows satisfy one or more correctness properties. For validation, mech-
anisms to check whether the workflows meet the user requirements are needed.
The latter is typically done through testing, but some formal methods, like model
checking, can also aid in validation.

In this work, we propose a method that we argue will improve how workflows
are modelled in MDE. We see this work being useful in both theory and practice
and of interest to audiences from both academia and industry that are generally
interested in specifying their model management tools and reasoning about their
model management chains.

2 Related Work

In this section we provide an overview of current approaches in the area of
workflows for MDE, and summarize with a list of problems.



Epsilon is a suite of languages that are used for modeling and applying op-
erations on models, such as comparison, validation, transformation, merge, etc.
[1]. In order to make use of the power of these languages and build a complex
system, a workflow needs to be defined that executes tasks, prescribed in the
different languages, in a predefined order. The current tool of choice to do this
in Epsilon is the ANT tool [1]. What ANT does is similar to what a “make file”
does. In ANT, each workflow is captured as a project, and each project consists
of a number of targets. There is a default target that represents the starting
state, and each target contains a number of tasks that depend on other targets
that must be executed before it. In this manner, what ANT does is simply define
a control flow with provision for branching and looping.

The Formalism Transformation Graph (FTG) and its complement, the Pro-
cess Model (PM) as presented in [8], together form a framework for explicitly
describing model transformation chains in MDE. The FTG describes the differ-
ent languages that can be used at each stage of model development. The PM
models the control flow and data flow between each transformation action in the
chain. Though traceability is claimed in this work, it is not clearly shown.

Model Transformation Chain (MTC) Flow is a tool that allows MDE devel-
opers to design, develop, test and deploy MTCs [2]. It offers a graphical editor
for defining any MTC and suggests alternative execution paths for MTCs. One
obvious disadvantage to this tool is that it currently only supports sequential
transformation chains, and does not enable activities like merging or comparing
between models within a chain.

UML Activity Diagrams are used for specifying workflows and takes into
account both data and control flow [6]. There has been work based on using
UML activity diagrams as a workflow modeling language [9], but it has been
shown in the same work that although UML’s activity diagrams are well-suited
for this problem, they are not ideal. Traceability in UML activity diagrams can
be ensured at a high level (i.e., between interfaces of activities and operations),
and not at the lower level desired in MDE (i.e., the model and mapping level).

In summary, below are the issues we have identified and plan to address:

– Modeling: Workflows are not always modelled before implementation, and
if they are, it is not in a structured way that enables reasoning.

– Expressiveness: Many languages/tools support sequential composition only
and do not support more interesting workflow combinators such as parallel
composition and branching.

– Traceability: As far as we understand, traceability is either implicit or non-
existent. A way to automatically ensure traceability, or use it for reasoning
and analysis, is not possible with current approaches.

– Verification: This cannot be done without the notion of data flow, and
requires a grammar from which to build terms and the ability to check
whether a term is correct or not.

– Validation: In general, this is not straightforward, but we think it can be
achieved with the help of a proper declarative workflow language.



3 Proposed Solution

This section provides a high level overview of our proposed solution to modelling
workflows in MDE. We propose a structured approach, and for the purposes of
this paper, we use diagrams to exhibit this structure.

3.(Diagrammatic(Workflow(
!  User:!“I!have!two!models:!M1!and!M2.!I!would!like!

to!merge!them!and!then!generate!code!from!the!
result.!I!would!then!like!to!trace!back!to!see!what!
part!of!the!code!came!from!M1.”!

!

8" given! heurisPcs! automaPc!

M1!

M2!

M3! M4:!
Code!

traceability!

1:!MATCH
!

2:!MERGE!
3:TRAN

SFORM
!

O

e1!

e2!

M14!

4:INTER
SECT!

Fig. 3. Structured workflow through
diagrams.

3.(Diagrammatic(Workflow(
!  User:!“I!have!two!models:!M1!and!M2.!I!would!like!

to!merge!them!and!then!generate!code!from!the!
result.!I!would!then!like!to!trace!back!to!see!what!
part!of!the!code!came!from!M1.”!

!

7" given! heurisPcs! automaPc!

M1!

M2!

M3! M4:!
Code!

traceability!

1:!MATCH
!

2:!MERGE!
3:TRAN

SFORM
!

O

e1!

e2!

M14!

4:INTER
SECT!

!
!
!
!
!
!
!
!
!
!
!

:qExe&
:relab&

Source&MM& target&MM&

Source&Model&
(CD)&

Target&Model&
(DB&Schema)&

[[Q]](CD)&

Q(Source&MM)&

Fig. 4. Transformation diagrammati-
cally.

Typing(for(operations(
Name! Input!Arity! Output!Arity!

Match!

Merge!

Transform!

Intersect!

A B A B

R
p q

A B

R
p q

A B

R
p q

C
r s

A A Bt

A B

R
p q

A B

R
p q

C
r s

Fig. 5. Typing system for a subset of model
management operations.

Back to our example from Section
1, we model our workflow once again
using a diagram as depicted in Fig.
3. Now, the operations appearing on
the chevrons are themselves defined
diagrammatically. For example, con-
sider the transformation operation,
which was first proposed in [3] and is
shown in Fig. 4. The transformation
is defined through the tiling (compo-
sition via a common edge) of two op-
erations: qExe, which specifies query
execution, and relab, which relabels the query result in terms of the target
metamodel. Note that the output of one operation (qexe), namely the vertical
blue arrow, becomes part of the input to the next operation (relab). Also, no-
tice two types of output mappings from the generated target model; the vertical
blue arrow which represents a typing mapping to the target metamodel, and
the horizontal blue arrow which represents a traceability mapping. This way of
defining the transformation automatically ensures traceability in the system, as
the traceability mapping is explicit in the arity of the operation, or, in other
words, the typing of its parameters and outputs; when the parameter or output
is a graph, the type is a graph shape. We can then define a typing system for
the operations (i.e., prescribing their (graphical) arities), which is also diagram-
matic in its nature. This is shown for a subset of model management operations,
namely, match, merge, transform and intersect, in Fig. 5.

Workflow definitions defined in this manner can then be parsed into a Di-
rected Acyclic Graph (DAG) which can be used to verify correctness of the
terms. Some properties that can be checked are lack of cycles in the DAG and
that each operation satisfies its typing, presented in Fig. 6.



11"

M1! M2!

span!

CoI
span!

t!

match%

M3!

M4!

span!

e1!

M14!

merge%

project%
project%

project%

project%

transform%

intersect%

given! heurisPcs! automaPc!

Fig. 6. Parsing the algebraic work-
flow using a DAG.

Finally, we can construct a workflow
language (W = (ΣMMT , ΣC)), where
ΣMMT is the signature of model man-
agement operations and ΣC is the sig-
nature of workflow combinators. For our
current simple scenario, a workflow would
be structured as an algebraic term W =
(match;merge; transform; intersect), where
match,merge, transform, intersect are from
ΣMMT and ; is sequential composition from
ΣC . This algebraic term represents the intent
of Fig. 3, and the meaning of sequential com-
position is given by the tiling explained in [3]
and shown in Fig. 4.

We envision our framework supporting
the full range of model management opera-
tions supported by standard model management tools, and containing workflow
combinators that we will derive from common model management scenarios.

In summary, we specify our system of interrelated models via graphs and
graph mappings, constraints on such a system via diagram predicates, and op-
erations on these systems via diagram operations. The latter are then composed
(tiled) to form complex chains which define workflows in our language.

4 Preliminary Work

This work started by examining the emerging concept of “megamodeling” in
MDE. We quickly realized that the way megamodeling is discussed in most pa-
pers lacks a theoretical foundation and therefore is not amenable for verification
or reasoning. We decided to look at megamodeling from a more formal view,
and we presented “Mapping-Aware Megamodels” in [4]. In the mentioned work,
we proposed that megamodels are models of systems of interrelated models and
operations over them. We showed how to specify this system of interrelated
models, some operations over such a system and composition of such operations.
The highlight of our approach is that all of the above was specified in a non-ad
hoc way, meaning, we proposed a general approach for specifying megamod-
els in MDE that is built on mathematical foundations borrowed from Category
Theory. What we ended up with was a library of design patterns and laws for
megamodelling, that we believe act as building blocks important for laying the
foundations of a systematic engineering approach to this field.

In related work done within our group [7], a declarative approach to model
transformations that is query structured is presented. The initial results show
that such an approach when compared to procedural model transformation ap-
proaches makes the transformation definition more structured, which leads to
better readability, maintainability and verifiability of the transformations. This
way of defining a model transformation is an example of how we would like to
structure our model management operations, allowing us to compose them in



such a way that guarantees correctness of the chain by construction, and pro-
viding better readability, maintainability and verifiability at the workflow level.

5 Expected Contributions

The main contributions of this work will be:

– A structured specification of megamodels: Models and mappings as first
class citizens modelled via graphs and graph mappings, respectively, the
constraints on them modelled via diagram predicates, and the operations on
them modelled via diagram operations.

– A workflow language for megamodeling that is built via the composition
(tiling) of diagram operations.

– Evaluation of the workflow language and a set of suggested improvements
to the state-of-the-art in the area of workflows in MDE.

We expect that our work will serve as a framework on which model manage-
ment languages, and model transformation chain tools can build specifications
for their tools and verify correctness of their chains. In addition to addressing
the issues in the state-of-the-art (refer to Section 2), we believe our work will
provide the following advantages to the way workflows are modelled in MDE.

– Readability and Maintainability: Workflows that are easier to read and
write, and are therefore more maintainable. Early work showing this with
regards to using a declarative model transformation approach shown in [7].

– Multiple levels of abstraction: Workflows that can be modelled at differ-
ent levels of abstraction, making them usable at various stages of the design,
from the initial stage of communicating with the domain expert to get the
requirements for the workflows, down to code generation.

– Comparison and Optimization: Representing workflows as algebraic terms
will enable us to compare workflows to check if they are semantically equiv-
alent, and optimize workflows to find more efficient ones.

6 Plan for Evaluation and Validation

For validation, we plan to build our workflow language by example. What this
means is that we will start with simple case studies to help define what model
management operations and workflow combinators will form our language, and
then work our way up to more complex examples while expanding our language.

For evaluation, the plan is to compare our approach to similar approaches
by taking a practical model management scenario1, modelling it in the various
approaches (including ours), and performing analysis with respect to predefined
criteria. For example, readability, ease of use and maintainability of the workflow
definitions can be achieved through a usability study that would reveal how much
the various approaches aid in improving communication and help in different

1 We plan to conduct an industry case study from the automotive domain which has
been used in the NECSIS project, namely the power window case study used in [8].
We would also like to aim for another industry case study which we hope to define
as the work progresses.



design stages. Other criteria include how traceability is defined and correctness
of the methods. As an outcome of the evaluation step, we hope to identify a set
of weaknesses in the related approaches and come up with a set of suggestions
for improving the way workflows are modelled in MDE.

7 Current Status and Timeline

The remainder of the PhD will take our work in [4], expand the work on diagram
operations and workflows by adding more operations and combinators, and im-
plement the parsing approach to work with these operations and combinators.
As explained in Section 6, we plan to build our workflow language “by exam-
ple” which means the case study work will be performed in parallel with the
workflow language specification. We expect that this approach will help reveal
the model management operations and combinators to be included as part of
the signatures that define our workflow language, as a primary step, and help
evaluate our language as a secondary step. The planned timeline for this work
is as follows:

– More detailed literature review. To be completed by Oct’14.
– Workflow language specification and case studies. To be completed by Dec’15.
– Evaluation. To be completed by Mar’16.
– Workflow comparison and optimization. To be completed by Jun’16.
– Writeup, submission, and defence. To be completed by Dec’16.

References

1. The Epsilon Book. Dimitris Kolovos, Louis Rose, Antonio Garćıa-Domı́nguez,
Richard Paige (2014)

2. Alvarez, C., Casallas, R.: MTC Flow: A Tool to Design, Develop and Deploy Model
Transformation Chains. In: ACME. pp. 7:1–7:9. ACME ’13, ACM (2013)

3. Diskin, Z.: Model Synchronization: Mappings, Tiles, and Categories. In: GTTSE.
pp. 92–165 (2009)

4. Diskin, Z., Kokaly, S., Maibaum, T.: Mapping-Aware Megamodeling: Design Pat-
terns and Laws. In: SLE. pp. 322–343 (2013)

5. Diskin, Z., Xiong, Y., Czarnecki, K., Ehrig, H., Hermann, F., Orejas, F.: From
State- to Delta-Based Bidirectional Model Transformations: The Symmetric Case.
In: MoDELS. pp. 304–318 (2011)

6. Dumas, M., Hofstede, A.H.M.t.: UML Activity Diagrams As a Workflow Specifi-
cation Language. In: UML. pp. 76–90. Springer-Verlag, London, UK, UK (2001)

7. Gholizadeh, H., Diskin, Z., Maibaum, T.: Providing a well-formed structure for
model transformation. In: AMT@MoDELS (In submission)

8. Lucio, L., Mustafiz, S., Denil, J., Vangheluwe, H., Jukss, M.: FTG+PM: An Inte-
grated Framework for Investigating Model Transformation Chains. In: SDL Forum.
pp. 182–202 (2013)

9. Vanhooff, B., Baelen, S.V., Hovsepyan, A., Joosen, W., Berbers, Y.: Towards a
Transformation Chain Modeling Language. In: SAMOS. pp. 39–48 (2006)

10. Whittle, J., Hutchinson, J., Rouncefield, M.: The State of Practice in Model-Driven
Engineering. IEEE Software 31(3), 79–85 (2014)


